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With our increasing appreciation of the true complexity of diseases and pathophysiologies,
it is clear that this knowledge needs to inform the future development of pharmacothera-
peutics. For many disorders, the disease mechanism itself is a complex process spanning
multiple signaling networks, tissues, and organ systems. Identifying the precise nature and
locations of the pathophysiology is crucial for the creation of systemically effective drugs.
Diseases once considered constrained to a limited range of organ systems, e.g., central
neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
and Huntington’ disease (HD), the role of multiple central and peripheral organ systems in
the etiology of such diseases is now widely accepted.With this knowledge, it is increasingly
clear that these seemingly distinct neurodegenerative disorders (AD, PD, and HD) possess
multiple pathophysiological similarities thereby demonstrating an inter-related continuum
of disease-related molecular alterations. With this systems-level appreciation of neurode-
generative diseases, it is now imperative to consider that pharmacotherapeutics should
be developed specifically to address the systemic imbalances that create the disorders.
Identification of potential systems-level signaling axes may facilitate the generation of ther-
apeutic agents with synergistic remedial activity across multiple tissues, organ systems,
and even diseases. Here, we discuss the potentially therapeutic systems-level interaction
of the glucagon-like peptide 1 (GLP-1) ligand–receptor axis with multiple aspects of the AD,
PD, and HD neurodegenerative continuum.

Keywords: transcriptomics and proteomics, pharmacotherapeutics, pathophysiology, heptahelical G protein-
coupled receptor

INTRODUCTION
Heptahelical G protein-coupled receptors (GPCRs) represent per-
haps the most important single-protein class of pharmacothera-
peutic targets. GPCR systems have adapted to perceive almost all
forms of environmental and endogenous signaling entities, e.g.,
photons, odorants, lipids, carbohydrates, peptides, and nucleic
acids. Currently, nearly 50% of existing licensed therapeutic com-
pounds functionally interact with GPCRs (1, 2). Not only do
GPCRs constitute one of the primary therapeutic targets but
also their importance in systemic biology cannot be underesti-
mated, as GPCRs constitute approximately 5% of the genome in
early species such as the nematode worm and still approximately
1.5% of the genome in Homo sapiens (3–5). Therefore, it is likely
that the molecular diversity is closely associated with changes in
organismal complexity and compartmentalization. Rudimentary
organisms such as nematode worms, with little tissue separation
or definition, often require multiple ligands and receptors to spec-
ify particular signaling modalities. However, with the increased
tissue complexity and physical separation present in highly com-
plex multisystem organisms such as Homo sapiens, this ligand–
receptor multiplicity has been refined to achieve the same degree

of functional specificity. Therefore, instead of producing a single
ligand–receptor system for each distinct function, ligand–receptor
systems have been reproduced in distinct and often distant sites
but are functionally differentiated from each other via cell-type
specific scaffolding and transduction system interactions (6–13).
Such a paradigm therefore creates a whole-organism mechanism
to coordinate the activities of ligand–receptor systems at multi-
ple tissue sites. While simple organisms essentially can constitute
one physical interaction environment, more complex organisms
require the subtly regulated behavior of multiple tissue/organ sys-
tems to be present for the homeostasis of such complex events
as energy metabolism or reproduction. It is now clear from
recent research that more complex communication systems, which
overarch traditional organ axis [e.g., the hypothalamic–pituitary–
gonadal (HPG) axis], potentially exist and that these “super-axes”
are instead coordinated and generated around repeated and trans-
posed ligand–receptor systems (14–20). The generation of these
ligand–receptor super-axes therefore demonstrates an alternative
method compared to more clinically based anatomical axes, in
which to study and appreciate both physiological and patho-
physiological processes. While normal homeostatic processes can

www.frontiersin.org September 2014 | Volume 5 | Article 142 | 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Frontiers - Publisher Connector

https://core.ac.uk/display/82839706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Endocrinology
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/about
http://www.frontiersin.org/Journal/10.3389/fendo.2014.00142/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2014.00142/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2014.00142/abstract
http://www.frontiersin.org/people/u/177960
http://www.frontiersin.org/people/u/165804
http://www.frontiersin.org/people/u/69980
http://www.frontiersin.org/people/u/69984
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Structural_Endocrinology/archive
mailto:stuart.maudsley@molgen.vib-ua.be


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Janssens et al. Systems-level G protein-coupled receptor therapy

be coordinated through these systems, it is likely that disease
processes as well could be specifically present at this level of mol-
ecular complexity. While these added dimensions of physiological
appreciation may seem daunting, they do, however, present the
capacity to identify ligand–receptor super-axes that can be targeted
for therapeutic situations in which a wide-scope of therapeu-
tic activity is desired (6). It is in this context that our review is
focused, i.e., is there potential ligand–receptor super-axis thera-
peutics that can ameliorate the multiple central and peripheral
pathological processes that are present in neurodegenerative dis-
eases such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
and Huntington’s disease (HD). In addition to the identification of
potential super-axis therapeutics, we shall also discuss the poten-
tial strategies for engineered specificity of functional activity and
signaling bias.

SYSTEMS-LEVEL EXPRESSION OF NEURODEGENERATIVE
DISORDERS
In recent years, considerable evidence has accumulated that
demonstrates that many of the classical central neurodegenerative
disorders also coincide with significant and widespread peripheral
pathophysiologies. In this respect, we must start to consider that
diseases such as AD, PD, and HD may all share some common and
coordinated pathological axes that are present in both central and
peripheral sites. The presence of such a controlling system provides
the possibility for a mechanism to systemically regulate and even-
tually remediate these diseases in a whole-body-wide approach. In
the following sections, we will outline the multiple commonali-
ties across these diseases and then allude to potential therapeutic
systems that may facilitate such a multi-level therapy.

ALZHEIMER’S DISEASE
Alzheimer’s disease (AD) is the most common form of demen-
tia that currently affects over 30 million people worldwide. With
increasing life-span and lack of interventions to slow or stop the
progression of AD, epidemiological studies indicate that this num-
ber is expected to reach 115.4 million in 2050 (21–25). Two dif-
ferent forms of AD have been described: the inherited form called
“early-onset familial AD”(FAD) is caused by rare genetic variations
in genes encoding amyloid precursor protein (APP), presenilin 1
(PSEN1), and 2 (PSEN2) involved in β-amyloid (Aβ) process-
ing and which affect the intracellular trafficking of Aβ or APP
(26, 27). Since <1% of AD cases are caused by genetic variations
(27), the vast majority of AD cases are affected by the “sporadic
late-onset” form of AD (SAD) (26, 27), which remains poorly
understood. No genetic cause is known for SAD, but numerous
risk factors exist such as aging, which is considered the most
common risk factor for developing AD, head trauma, traumatic
brain injury, metabolic dysfunctions, and many others. Further-
more, the ε4 allele of apolipoprotein E (APOE) represents another
very important risk factor in both FAD and SAD (28, 29). The
APOE protein is crucial for phospholipid and cholesterol transport
and for neuronal damage repair. AD-related neurodegeneration
causes progressive memory loss and a decline in cognitive abili-
ties. These symptoms are associated with two neuropathological
lesions: senile plaques that correspond to an extracellular depo-
sition of Aβ peptides (27, 28), and neurofibrillary tangles (NFTs)

due to the intracellular accumulation of the hyperphosphorylated
microtubule protein Tau (30–32). AD-related behavioral abnor-
malities result from neuronal dysfunctions and death in different
brain regions involved in cognition and mood such as the hip-
pocampus, the amygdala, and the temporal, parietal, and frontal
lobes of the cerebral cortex (25, 33, 34). AD pathology also includes
coexisting metabolic and hormonal dysfunctions, inflammatory
processes, excitotoxic damage, altered energy metabolism, and
oxidative stress, not only in the brain but also throughout the body.
These metabolic dysfunctions observed throughout the body are
likely to contribute as well to neurological symptoms observed in
AD (26, 27). Therefore, it is now clearly established that we need to
take in consideration many other somatic and metabolic dysfunc-
tions present in AD for a better understanding of the disease and to
provide new targets for novel preventive or therapeutic efficacious
treatments.

METABOLIC DYSFUNCTION IN AD
Metabolic syndrome (MetS) is a disorder of energy utilization and
storage and is characterized by abdominal obesity, elevated blood
pressure, increased plasma glucose levels, high serum triglyc-
erides, and low high-density cholesterol (HDL) levels (27, 28).
Consequently, MetS has been considered as a risk factor for the
development of cardiovascular diseases, type 2 diabetes mellitus
(T2DM), and a number of dementias such as AD in patients over
age 75 years (27). This is also reflected by the cellular and bio-
chemical alterations observed in MetS since some of them have
also been observed in AD patients (27, 28). In addition to MetS,
insulin resistance in peripheral tissues corresponds to one of the
main syndromes in T2DM and constitutes a high risk factor of
developing AD (35). Insulin resistance results in the incapacity of
insulin, generated in pancreatic β-cells, to mediate effective glu-
cose uptake. Epidemiological studies have reported that people
with diabetes mellitus have a 1.5- to 2.5-fold greater risk of devel-
oping cognitive impairment and dementia (36, 37). Moreover,
hyperglycemia and insulin resistance are also likely to deterio-
rate the neuropathology of AD, especially in APOE4 carriers.
Mechanistically, the increased risk of dementia with T2DM or
obesity could be due to hyperglycemia, peripheral insulin resis-
tance, oxidative stress, accumulation of advanced glycation end
products, increased production of pro-inflammatory cytokines,
and cerebral microvascular disease (38).

INFLAMMATORY PROCESSES IN AD
Alzheimer’s disease is also closely associated with low-grade
chronic inflammation (39) as highlighted by a number of
increased systemic inflammation markers including C-reactive
protein (CRP), fibrinogen, interleukin-6 (IL-6), and tumor necro-
sis factor α (TNF-α) (39, 40). It is well established that chronic
inflammation in AD associated with MetS may arise from a dereg-
ulation of the endocrine homeostasis of adipose tissue, which
is infiltrated by immune cells and produces pro-inflammatory
molecules such as adipokines, cytokines, and chemokines (40).
Pro-inflammatory molecules inhibit mitochondrial respiration in
the brain, decrease the activities of the electron transport chain
and mitochondrial membrane potential, increase mitochondrial
membrane permeability, enhance reactive oxygen species (ROS)
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production, interfere with ATP production and cause mitochon-
drial shutdown, ultimately leading to neuronal degeneration (41).
Increased levels of inflammatory molecules such as interleukin-
1 (IL-1), IL-6, TNF-α, CRP, granulocyte macrophage colony-
stimulating factor (GM-CSF), eotaxin, and macrophages inflam-
matory protein 1-α (MIP-1 α) have been reported in brain tissue
from patients with AD (40, 42). In addition, 18 plasma bio-
markers related to inflammation had been identified in patients
affected with AD (23). Chronic inflammation is characterized by
mononuclear cell infiltration of the affected tissue, angiogenesis,
tissue clearance, fibrosis, and tissue remodeling that can inter-
fere with the optimal tissue functions (43) and lead to some
pathological disorders. Moreover, chronic inflammation may play
a role in accelerated cognitive impairment by a direct effect
on the brain or by influencing the development of vascular
disease (36).

AD AND GASTROINTESTINAL FUNCTION
In addition to alterations of the central neuronal activity, it is
now clear that a similar degradation of the enteric nervous system
(ENS) in AD is apparent (44, 45). Gastrointestinal (GI) motil-
ity deficits are frequently occurring co-morbidities in dementia
and represent a long-term debilitating problem. The structural
integrity of gut muscle as well as the innervating ENS is both
subject to amyloid-related cellular toxicity. Disruption of gut
motility and the ability to absorb nutrients will significantly
reduce metabolic support for stressed tissues across the whole
body as nutrient absorption will be curtailed. With respect to GI
energy uptake, alterations of multiple pancreatic factors are also
involved in AD pathology, including amylin, leptin, and ghrelin.
Amylin and leptin are both hormones that activate overlapping
intracellular signaling pathways such as STAT3, Akt, and AMPK,
which have a role in glucose and lipid metabolism and have an
additive effect in signaling pathways. Amylin is co-localized and
co-secreted with insulin from pancreatic β-cells in response to
nutrient stimuli. As insulin secretion, the secretion of amylin
is also impaired in T2DM. As for the deposition of Aβ in AD,
amylin is also an amyloidogenic protein (islet amyloid peptide),
which gets deposited in T2DM indicating that both AD and
T2DM share many common disease features (46). In addition
to disruption of the gut activity itself, there are also additional
effects of AD pathology on the gut–brain axis communication.
The orexigenic peptide ghrelin is primarily produced by the stom-
ach, controls the central hunger sensation, and forms one of the
major components of the gut–brain axis (26, 47). Ghrelin lev-
els are often altered in AD patients suggesting that the gut–brain
axis may contribute to defective cognition (48, 49). Ghrelin exerts
an opposite effect to the anorexigenic leptin on food intake and
energy homeostasis (26). Interestingly, it has been demonstrated
that intracerebrovascular injection of ghrelin improved cognitive
ability in streptozotocin-induced diabetic-rats by increasing the
expression of cAMP response element-binding protein (CREB)
and brain-derived neurotrophic factor (BDNF), and by attenuat-
ing the neuronal apoptosis in the hippocampus (27, 50). These
findings suggested that ghrelin plays a pivotal role in metabolic
control but also in regulating cognitive function and memory
capacity.

AD AND ADIPOSE TISSUE
While insulin increases the production of leptin by adipose tissue,
leptin exerts a negative feedback on both insulin secretion and
insulin gene expression in pancreatic islet β-cells. These effects are
mediated by both the autonomic nervous system and by direct
actions via leptin receptors on pancreatic β-cells (51, 52). AD-
related insulin resistance syndromes could be associated with the
dysfunction of the adipoinsular axis leading to obesity and hyper-
insulinemia (26). Leptin is directly neuroprotective in dopamin-
ergic cells, potentially via APP- and tau-related mechanisms (26).
Adiponectin is a protein hormone specifically released from adi-
pose tissue and regulates the sensitivity of insulin, modulates fatty
acid catabolism, glucose homeostasis, and anti-inflammatory sys-
tems. Adiponectin plays also a role in memory and cognitive
impairment and contributes to a dysregulated glucose metabo-
lism and mitochondrial dysfunction observed in patients with
AD (27). Adiponectin modulates the expression of inflammatory
molecules and protects neurons against β-amyloid toxicity (53),
supporting the evidence of a link between the immune response
and insulin resistance. Taken together, these findings support the
role of adipokines and hormones related to the adipoinsular axis
in the development of Alzheimer’s disease. Leptin and amylin can
modulate the activity of key molecules involved in energy balance
and neurogenesis. Ghrelin is also able to regulate not only energy
metabolism but also cognitive function and active memory capac-
ity. Adipokines are also capable to modulate the inflammatory
response mediated by the glial cells. Thus, adipokines can play a
relevant role as targets in the treatment of AD neurodegeneration
processes and support to the relationship between AD and diabetes
or MetS (26).

AD AND CARDIOVASCULAR DISEASE
Multiple lines of evidence demonstrate a strong functional linkage
between cardiovascular functionality and AD-related pathophys-
iology (54). Amyloid peptides have been demonstrated to be
directly toxic to endothelial cells in the peripheral and cerebral
circulation (55, 56). Due to AD-related vascular dysfunction, local
hypoxic events in the central nervous system (CNS) may fur-
ther elevate metabolic dysfunction and eventual amyloid plaque
deposition and NFT generation. Initial vascular damage in the
CNS can also cause a significant reduction in blood–brain-barrier
(BBB) integrity, which can result in pathophysiological exchange
of humoral agents, toxic proteins (e.g., amyloid), or abnormal
hormone levels between the periphery and CNS (57). In addition
to the detrimental effects of amyloid upon vascular structures,
there is also considerable evidence of AD-related cellular toxicity
induced by amyloid aggregation-mediated disruption of normal
protein stability, folding, and proteolysis in cardiac tissues (58).

AD AND CIRCADIAN RHYTHMS
Significant alterations in daily behavioral and sleep patterns are
commonly described in AD and other neurodegenerative disorders
(59). Notable disruptions of circadian rhythm in AD include the
fragmentation of the sleep–wake cycle leading to increased noctur-
nal awakenings with increased daytime sleep bouts (60). Prospec-
tive human studies have indicated that circadian activity pattern
disruption (decreased rhythm amplitude and phase-delays) are
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significant predictors of subsequent AD, suggesting that compro-
mised rhythms might actually be a reliable preclinical phenome-
non (61). Circadian rhythms are generated in the suprachiasmatic
nucleus (SCN) as an output of the clock gene cycle, produced
by a series of interlocking transcriptional feedback/feedforward
loops of a panel of clock genes (e.g., PER1,2, CRY1,2, CLOCK,
BMAL1) (62). Outside of the SCN, there are circadian oscillators
throughout the body that control multiple autonomic functions.
As the activity of many tissues is strongly regulated in a circadian
manner, it is not surprising that disruption can negatively impact
immune, metabolic, and cardiovascular systems (59).

AD AND SENSORY MODALITIES
Neurodegeneration associated with AD affects multiple central
and peripheral systems, including several perceptive modalities
including vision, taste, pain, and olfaction (63–65). Olfactory
impairment has been shown to be predictive of conversion from
mild cognitive impairment to AD with a higher than 80% sensi-
tivity (66). With respect to it has also been demonstrated that both
cognitively impaired and AD patients present a significant reduc-
tion of total taste scores and also individual taste scores on either
side of the tongue (67). As sensory modalities are currently further
investigated in AD, it appears that these systems may eventually
serve as potential “therapeutic gateways” into the psychosocial and
physiological alterations in AD (66).

PARKINSON’S DISEASE
Parkinson’s disease (PD) is the most common movement disorder
with an age-dependent prevalence, affecting about 1% of individ-
uals over 60 years of age and increasing up to 4–5% at an age of
85 years (68). Studies have demonstrated a broad genetic etiol-
ogy for several forms of PD and related Parkinsonian disorders
(69). Pathomechanisms associated with mutations in PD-related
genes involve mitochondrial dysfunction,abnormal protein degra-
dation, and oxidative stress (70, 71). In about 95% of PD patients,
however, no apparent genetic linkage (sporadic PD) has been
described, indicating that PD is a multifactorial disease that arises
owing to both genetic and environmental factors (69). The clas-
sical diagnosis of PD is based on the presence of bradykinesia
(slowness of movement) together with at least one other cardinal
motor feature such as resting tremor, rigidity, and postural insta-
bility (72, 73). Many PD patients experience also a wide range of
non-motor (NM) deficiencies, including neuropsychiatric symp-
toms, dysautonomia (i.e., malfunction of the autonomic nervous
system; ANS), hyposmia, sensory loss, sleep disturbances, and GI
dysfunction. Many of these NM symptoms precede the onset of
core motor dysfunctions and have a multisystem origin. Cognitive
and neuropsychiatric symptoms of PD range from depression,
anxiety, and apathy to frank dementia (68, 74). The occurrence of
mild cognitive impairment and subsequent dementia is common
in PD patients, but is more prevalent in later stages of the disease
where it affects up to 80% of patients (74, 75). Two dementia types
are associated with PD: Parkinson’s disease dementia (PDD) and
dementia with Lewy bodies (DLB), which can be distinguished
based on the onset of extrapyramidal (EP) signs. Depression is
another important feature of PD and is reported in up to 45%
of PD patients. Motor dysfunction in PD is closely linked to a

striatonigral dopaminergic denervation and a progressive loss of
dopaminergic neurons located in the substantia nigra pars com-
pacta (SNPC) (76, 77). Lewy body (LB) pathology, characterized
as cytoplasmic inclusions of α-synuclein in neuronal perikarya,
and neurodegeneration in PD patients extends well beyond the
dopaminergic striatonigral system. Additional extranigral pathol-
ogy in the CNS involves noradrenergic, serotonergic, and cholin-
ergic systems, as well as the cerebral cortex and olfactory bulb
(78). Involvement of the ANS occurs at early stages of PD involv-
ing both the sympathetic and parasympathetic ganglia, and the
ENS. While nigrostriatal degeneration is responsible for motor fea-
tures of PD, the extranigral degeneration is thought to account for
global NM symptoms of the disease (79–81). These observations
have changed our traditional view of PD as being a predominant
single-system disorder with selective involvement of nigrostriatal
dopaminergic neurons toward a much broader multisystem LB
disorder, also defined as Parkinson complex or Lewy-complex.

PD AND SENSORY DYSFUNCTION
A number of NM features reported in PD can be attributed to
cholinergic dysfunction, e.g., altered rapid eye movement (REM)
sleep, mood, cognition, and olfaction. Olfactory impairment is
highly prevalent in PD and reported in approximately 95% of
early-stage PD patients. Loss of smell correlates well with neu-
rodegeneration and concomitant α-synuclein pathology in the
olfactory bulb and other secondary olfactory regions (82, 83).
Hyposmia occurs early in the disease progress and may precede
overt motor symptoms suggesting that PD might be a primary
disorder of olfaction (84). Whereas cholinergic dysfunction is sug-
gested as a molecular basis for hyposmia, decrements in other
neurotransmitter systems involving noradrenaline and serotonin
production are also reported (85–87).

PD AND GASTROINTESTINAL DYSFUNCTION
Gastrointestinal dysfunction is seen as one of the earliest mani-
festations of PD preceding motor involvement. The GI symptoms
in PD include weight loss, dysphagia, and concomitant excessive
drooling, reduced salivation, nausea, constipation, and defecatory
dysfunction, which reflect a deregulation of the GI motility along
the entire length of the GI tract (88). Moreover, a number of the
GI manifestations such as constipation are suggested to be propor-
tional to the risk of developing the disease (89). Neuropathological
studies have indicated early enteric pathology in PD in terms of LB
and Lewy neurite (LN) accumulation in the dorsal motor nucleus
of the vagus (DMV) and the ENS (80, 90). Importantly, the ENS
shares a number of characteristics with the CNS, but is easier
accessible and analyzable compared to the CNS through colonic
biopsies. Therefore, the ENS offers reasonable potential for iden-
tifying novel disease markers in living patients with PD (80). In
addition to the bowel dysfunctions (constipation) reported in PD,
impairments in other pelvic organs including the urinary bladder
and reproductive organs (also called the genitourinary system) are
common NM disorders in PD (91).

PD AND SLEEP PATHOLOGIES
Since dopamine is known to have a role in the sleep–wake cycle
(92), it is not surprising that PD patients present with sleep
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pathologies, e.g., sleep-maintenance insomnia, and REM sleep
behavior disorder (RBD) (74). The occurrence of RBD is com-
mon in PD and manifests before the onset of clinical PD (93). In
these patients, decreased cholinergic innervation was reported in
sleep nuclei located in the lower brainstem. Furthermore, patients
with RBD are more likely to have hyposmia, cardiac sympathetic
denervation, and an increased risk for developing dementia in PD
(94, 95).

CARDIOVASCULAR SYSTEM DYSFUNCTION AND PD
Parkinson’s disease also involves considerable cardiovascular man-
ifestations of dysautonomias (96). More specifically, sympathetic
noradrenergic denervation of the heart is an integral part of the
disease and is associated with LBs in sympathetic ganglia includ-
ing those that innervate the heart. The sympathetic nerve fibers in
the heart are decreased in PD. Reduced cardiac uptake and con-
comitant sympathetic denervation is already reported in the early
disease process and increases with disease duration and severity,
however, the heart also receives parasympathetic input from the
dorsal vagal nucleus; there is less known about parasympathetic
denervation in the heart of PD patients (97–101). Another deter-
minant that underlies the cardiovascular dysautonomia is arterial
baroreflex failure. The baroreflex is the most important vasocon-
strictor mechanism to buffer acute fluctuations of arterial blood
pressure (ABP) that occur during changes in posture, exercise,
emotion, and other conditions (102). Together, these cardiovascu-
lar deficits result in orthostatic hypotension (OH), which is present
in about 30–40% of PD patients (103).

METABOLIC DYSFUNCTION AND PD
Recent epidemiological and molecular genetic studies have high-
lighted strong links between PD and T2DM. Patients with T2DM
have an increased risk of developing AD (65%) and PD (35%) (104,
105). Overlap between PD and T2DM is further strengthened by
the fact that more than 60% of PD patients have impaired insulin
signaling and are glucose intolerant (106, 107). This is in line with
neuropathological studies of PD patients, which have shown that
insulin receptors are also densely packed on dopaminergic neurons
of the SNPC (108). Furthermore, a number of animal and in vitro
studies have indicated a role for insulin and glucose metabolism
in the regulation of brain dopaminergic activity and firing (106).
Chronic hyperglycemia is known to induce oxidative stress and
concomitant production of ROS, factors implicated in T2DM and
PD etiology. Moreover, energy starvation and metabolic impair-
ment can induce the aggregation of α-synuclein in dopaminergic
cells (109). Despite the marked clinical differences between PD
and T2DM, an intriguing common pathogenesis is emerging and
involves alterations in mitochondrial turnover, neuroinflamma-
tion, protein degradation, and glucose metabolism [for review, see
Ref. (107)].

PD AND INFLAMMATION
Chronic inflammation is a prominent feature of multiple neurode-
generative disorders including PD (110, 111). Neuroinflammation
is strongly associated with dopaminergic neuron degeneration
and progression of PD. Leucine-rich repeat kinase 2 (LRRK2),
a kinase mutated in both autosomal-dominantly inherited and

sporadic PD cases, modulates inflammation in response to dif-
ferent pathological stimuli. PD-associated LRRK2 mutations may
sensitize microglia cells toward a pro-inflammatory state, which
in turn results in exacerbated inflammation with consequent neu-
rodegeneration (112). Inflammatory pathways in PD appear to
play a crucial role in the destruction of both pancreatic islet β-cells
and dopaminergic neurons in the substantia nigra (113). Emerg-
ing evidence indicates that system-wide metabolic dysfunction
in PD can induce metabolic inflammation, thus exacerbating the
neurodegenerative activity in this disorder. The combined inter-
action between energy balance and inflammatory responses in PD
therefore represent an important field for therapeutic study.

HUNTINGTON’S DISEASE
Huntington’s disease (HD) is a disabling neurodegenerative dis-
order characterized by a progressive impairment of motor and
cognitive functions and is caused by a mutation that takes the
form of a CAG trinucleotide repeat expansion in exon 1 of the
huntingtin (htt) gene on chromosome 4 (114, 115). Presently, the
precise nature of the molecular functionality of endogenous non-
mutant huntingtin is not comprehensively appreciated. However,
huntingtin appears to be associated with modulation of BDNF
expression (116), cytoskeletal organization (117), vesicle traffick-
ing (118), and clathrin-mediated endocytic pathways (119). The
mutated form, with the polyglutamine expansion, possesses an
altered protein structure leading to its aggregation in the CNS.
These changes in protein function and aggregation then invariably
lead to neuronal degeneration. HD manifests in a variety of symp-
toms, which can be behavioral, motoric, and cognitive. Behavioral
changes commonly occur before motor symptoms and include
mood changes, irritability, restlessness, psychosis, and hallucina-
tions. Motor symptoms mainly occur as quick sudden movements
in the arms, legs, and face (chorea). Tremors, unsteady gait and
head turning, and shift eye position also occur as motor symptoms.
As the disease prognosis worsens, a progressive dementia occurs
in the form of memory loss, disorientation, confusion, and loss
of judgment. Huntington’s disease is also associated with several
other debilitating non-neuronal impairments that also occur in
other neurodegenerative disorders, particularly PD. These include
weight loss as one of the major symptoms, insulin resistance,
changes in energy metabolism, and sleep disturbance due to the
disturbance of the circadian rhythm (120–122).

HD AND METABOLIC DYSFUNCTION
In the pre-symptomatic phase and over the course of HD pro-
gression, several disruptive changes occur to the neuroendocrine
system as a result of the htt mutation. Such changes can lead
to detrimental effects to appetite, body weight, mood changes,
and alterations of metabolism. One of the hubs of neuroen-
docrine metabolic disruption in neurodegenerative disease is the
hypothalamus. Proteomic analysis of rat hypothalami expressing
mutant htt has demonstrated alterations of heat shock protein-70
(Hsp-70), glutathione peroxidase (Gpx4) responsible for oxida-
tive damage, glial fibrillary acidic protein (Gfap), and the enzyme
acylglycerol-3-phosphate O-acyltransferase 1 (Agpat1) responsi-
ble for lipid synthesis (122). In addition to these hypothalamic
findings, alterations in circulating endocrine factors are apparent
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in HD models, i.e., reduced insulin and leptin as well as reduced
triglycerides and HDL. These changes were present presympto-
matically and are concordant with other human studies. Aziz et al.
(123) demonstrated that there are no significant differences in the
characteristics of secretion of growth hormone (GH) and ghrelin
of HD patients compared to controls. With disease progression,
there are significant increases in secretion and irregularity of GH
combined with an increased suppression of post-prandial ghre-
lin suppression. Such findings indicate that the impairment of
regulation of GH and ghrelin secretion is positively correlated
with worsening HD prognosis. HD patients as well as murine
HD models demonstrate considerable diabetic-like pathologies,
which create a severe metabolic stress and energetic dysregulation
(121, 124–126). HD patients are more prone to T2DM than the
general population (127). Such pathologies manifest in the form
of hyperglycemia and abnormal lipid metabolism. HD is linked
directly with a form of dysglycemia leading to a catabolic state
characterized by weight loss and a lower body mass index than the
healthy population. The lipid dysregulation involves high levels
of triglycerides and LDL, which also creates a risk of microvascu-
lar and macrovascular pathologies on the long (124, 125). Insulin
resistance is therefore thought to be one of the main factors of
the pathogenesis of HD leading to severe neurobiological impair-
ments. This hypothesis is supported by the InCHIANTI study
where people with cognitive impairments were found to be more
likely to suffer insulin resistance compared to controls (128). A
clear relationship has been established between insulin secretion
and HD using the R6/2 mouse model. These mice have shown gly-
cosuria and glucose intolerance while above 70% of them develop
diabetes at 14 weeks (126). The bacterial artificial chromosome-
mediated transgenic HD (BACHD) mouse model has also shown
impaired glucose metabolism and increased resistance to insulin
and leptin (diabetic-like pathology). These effects were replicated
by expressing a short fragment of mutant htt using an adenoviral
vector, which causes hypothalamic inactivation (129).

HD AND GASTROINTESTINAL FUNCTIONALITY
Huntington’s disease patients have severe autonomic dysfunctions
manifesting as disruptions of the GI tract, urinary and cardio-
vascular systems, as well as sexual dysfunction in men (114).
Symptoms include difficulties of swallowing, dysphagia, early
abdominal filling, defecation difficulties, urinary incontinence,
and incomplete bladder emptying and postural hypotension. Such
symptoms are very common in HD patients before the appearance
of overt motor symptoms and also in carriers of the mutation but
with less severity. Mutant htt is expressed along the GI tract and
throughout the ENS. HD mouse models demonstrate a signifi-
cant loss of functional neuropeptides in enteric nerves, decreased
thickening of the GI mucosa, and villi length (130). Functionality
of the GI tract is also significantly impaired in terms of gut motil-
ity and absorption of food. The degree of malabsorption inversely
correlated with body weight indicating the importance of the GI
tract dysfunction in weight loss and thus patient quality of life.

HD AND CIRCADIAN RHYTHM ALTERATIONS
Circadian studies have shown that HD patients suffer from
abnormal night–day ratios and in addition the R6/2 HD mouse

model also showed an abnormal night–day activity that was fur-
ther disturbed as the disease progressed (131, 132). These disrup-
tions were accompanied by an abnormal expression of clock genes
in the SCN, striatum, and the motor cortex, correlating with the
cognitive impairment and decline (132). In HD, it appears that
functionality of the isolated SCN is specifically intact but that
the pathophysiology is due to a dysfunction of the systemic cir-
cuitry rather than the SCN itself (133–135). Circadian changes in
melatonin levels have been reported in HD patients (123). Syn-
thesis of melatonin is regulated by the SCN and has a major
role in the regulation of sleep as well as in peripheral circadian
rhythms. Due to the ubiquitous expression of mutant htt and
the presence of both central and peripheral circadian rhythms,
HD-related pathology results in disruption of sleep as well as
in uncoupling of peripheral and central circadian rhythms. For
example, if liver metabolism is uncoupled from circadian rhythms,
this leads to metabolic disruption and a detrimental effect on
the disease progression (136). Levels of wakefulness-promoting
factors such as orexin, ghrelin, adrenocorticotrophin hormone,
and corticotrophin-releasing hormone have all been found to be
abnormal in HD (136). Consequences of sleep deprivation includ-
ing stress, depression, reduced immunity, memory and learning
impairments, and metabolic and hormonal abnormalities are all
likely to further exacerbate HD-related pathophysiology across the
whole body (137–140).

HD AND CARDIOVASCULAR DYSFUNCTION
Consistent with a significant autonomic dysfunction, the cardio-
vascular system is also impaired in HD patients as well as in
murine HD models (141, 142). It appears that both sympathetic
and parasympathetic cardiovascular system-regulating systems as
well as the baroreceptor reflexes are impaired along with their
central regulatory pathways (143). HD patients are more than
10 times more likely to suffer from cardiovascular health issues
compared to normal patients (144). While a significant compo-
nent of cardiovascular pathology in HD may be due to auto-
nomic nervous disruption, recent evidence has also demonstrated
a direct pathological action of mutant htt upon cardiomyocytes as
well (144, 145).

HD AND INFLAMMATORY PROCESSES
Studies have provided evidence that the immune system is patho-
physiologically active in HD even before overt disease manifes-
tation (146). In addition, deficits of immune cell migration in
response to chemoattractants have been obtained from human
studies (147). Chemokine profiles are also significantly altered in
HD patients as the disease progresses, with elevations of eotaxin
and eotaxin-3, the chemokine (C–C motif) ligand 2 (CCL2), 3
(CCL3), and 4 (CCL4) (148). In addition to altered chemokine
profiles, there is considerable evidence that demonstrates increased
levels of circulating and CNS-borne pro-inflammatory cytokines,
including IL-6, IL-8, and TNF-α (147). Reinforcing the potential
importance of TNF-α in HD pathogenesis, it has recently been
shown that therapeutic inhibition of TNF-α activity can signifi-
cantly attenuate central and peripheral inflammation in the R6/2
HD model mice (149).
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HD AND SENSORY MODALITIES
As with the other major neurodegenerative disorders discussed
here, HD pathophysiology has been demonstrated to impact
several sensory modalities. Hence, HD disease presentation and
progression has been associated with disruption of visual percep-
tive systems (150), impairment of olfactory sensitivity (151), and
alterations in gustatory responses to multiple stimulating tastants
(152). With respect to gustation, it has been hypothesized that the
specific disruption of this sensory modality may be a specific early
indication of the loss of sufficient neurotrophic support in the
CNS (153).

SIGNALING SYSTEM “SUPER-AXES”
From multiple sources of information, both physiological and
molecular biological, it now seems apparent that for many of
the major CNS neurodegenerative disorders. i.e., AD, PD, and
HD, their true pathophysiological spectrum is more widespread
across the body than previously considered. In addition, it is clear
that there are strong similarities between these neurodegenera-
tive conditions, suggesting perhaps that a considerable proportion
of these diseases is controlled by endogenous signaling systems
that are merely perturbed by the initial disease locus, but then
once activated stimulate a coherent series of pathophysiologi-
cal activities. This potential system-wide disease–response axis
clearly needs mechanisms to maintain its activity and also coor-
dinate its functionality across diverse tissues in varied locations
across the body. As we have previously discussed in the Section
“Introduction,” the evolution of receptor signaling systems has
had to deal with the challenges of intense somatic development

from nematode worms to the hyper-complex Homo sapiens. The
presence of the same receptor signaling system, in multiple spe-
cialized conformations, and in diverse tissues has been demon-
strated for cholinergic ligands such as acetylcholine and peptider-
gic ligands such as gonadotropin-releasing hormone (GnRH: 12).
With respect to a receptor signaling that may be preferentially
involved in regulating the generic neurodegenerative “super-axis”
system, we have identified a potential ligand–receptor system,
the glucagon-like peptide 1 (GLP-1) system that may be criti-
cal for regulating pathophysiology, and therefore, also facilitating
potential neurodegenerative remediation. Historically, GLP-1 has
been considered primarily a gut incretin that is vitally involved,
in concert with insulin, with glucose metabolism. GLP-1 is pro-
duced both in pancreatic α-cells as well as intestinal L-cells (154).
Upon release into the circulation after food ingestion, GLP-1 facil-
itates glucose uptake by directly acting on pancreatic islet β-cells
to enhance post-prandial insulin secretion (155). This process is
mediated by GLP-1-mediated activation of a class B1 (secretin-
like family) seven transmembrane spanning GPCRs (156, 157).
The GLP-1 receptor (GLP-1R) has been shown to functionally
interact with both heterotrimeric G proteins [Gαs, Gαq (158) as
well as β-arrestin (159)]. This promiscuity of the GLP-1R therefore
facilitates the ability to flexibly stimulate this receptor system to
engender multiple downstream signaling cascades (1). Underpin-
ning our assertion that the GLP-1 signaling system may represent
an organism-wide functional “super-axis,” it has been demon-
strated that components of the GLP-1 system are found in multiple
tissues all the way across the body from the tongue, olfactory
epithelia, CNS, heart, pancreas, intestine to reproductive tissues

FIGURE 1 | Glucagon-like peptide 1 (GLP-1) ligand and receptor system
super-axis are shown. The expression of the ligand and receptor
components of the GLP-1 system spans the whole human body. The
repetitive expression of this GPCR system in multiple tissue types reinforces
the importance of maintaining energy balance across the whole organism

with an easily coordinated mechanism. The physical and hormonal connection
between these multiple sites of GPCR functionality therefore can represent a
“super-axis” of signaling connectivity that spreads across and over more
classically defined tissue–tissue axes, such as the hypothalamic–pituitary–
gonadotropic axis.
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[Figure 1 (160–166)]. Considering the vital role of GLP-1 in energy
metabolism and in maintaining the viability of multiple tissues,
it is unsurprising that this receptor system has been transposed
across the body. This super-axis therefore creates that possibility
of multi-site, multi-tissue drug remediation of neurodegenera-
tive disorders. Given the recent emergence of appreciation of the
importance of metabolic support to diseases such as AD, PD, and
HD (107, 114, 122), it is evident that advanced therapeutic con-
trol of the GLP-1 super-axis could therefore generate an excellent
capacity to generate whole-organism systemic therapeutic actions.
With respect to the connection between neuropathophysiology, it
has been demonstrated that GLP-1 signaling is critically involved
in metabolic regulation (165), controlling inflammatory processes
(167), regulate gut–brain axis activity (168), control multiple sen-
sory modalities (169, 170), modulate cardiovascular activity (171),
coordinate sleep–wake cycles and circadian rhythms (172, 173).
The GLP-1 system is likely to be only one of the several ligand–
receptor systems that exerts a super-axis level of impact upon
neurodegenerative mechanisms from multiple divergent initiator
loci, however, due to considerable advances in therapeutic lig-
and design, it does represent an important target for the creation
of a systems-level remedial agent. Concordant with the findings
that the GLP-1 receptor system is intimately involved in multi-
ple aspects of the neurodegenerative axes of AD, PD, and HD, it
is unsurprising that ligands that can target this receptor system
have been demonstrated to exert multiple remedial and effec-
tive actions (168, 174–178). The therapeutic regulation of such

systems-level receptor systems clearly represents an excellent tar-
get for more nuanced therapeutic design as the efficacy of such
“super-axis” compounds may be reinforced very strongly via mul-
tiple forms of tissue-to-tissue communication. Thus, it is likely
that systems-level therapies may be far more efficacious than com-
pared to receptor-modulating ligands that are only targeted to
one specific component of the neurodegenerative axis (Figure 2).
In this context of the potential “super-axis” therapies, a more
advanced appreciation of the functional pharmacology of these
receptor–ligand systems is vital. The generation of novel tissue
and/or signal-selective GLP-1 modulating agents (1, 10, 179) is
therefore perhaps one of the most important future fields of study
for neurodegeneration.

GLP-1 LIGAND PHARMACOLOGY
The GLP-1 glycoprotein hormone exists in two circulating molec-
ular forms, GLP-1(7–37) and GLP-1(7–36) amide, both of which
are full agonists at the GLP-1R (180). As stated before, the GLP-
1R is expressed in multiple tissues including the central and
peripheral nervous systems, heart, pancreas, kidney, lung, and
GI tract. Once in the circulation, the GLP-1 peptide possesses
a very short half-life (1–2 min) due to the proteolytic activity
of dipeptidyl peptidase IV (DPP IV). Therefore, the creation of
systemic therapeutics targeting the GLP-1R system first focused
upon modification of the peptide backbone to prevent this degra-
dation. Multiple strategies have been employed to improve the
bioavailability of GLP-1 including, fatty acid acylation (181),

FIGURE 2 | Super-axis remediation of complex systemic
disorders is shown. Classical neurodegenerative diseases such as
Alzheimer’s, Parkinson’s, and Huntington’s disease (AD, PD, and HD)
represent intensely complex pathophysiological perturbations of
normal systemic biology. These neurodegenerative disorders
generate their full phenotypes through the disruption of multiple

connected tissue–tissue signaling systems. Therapeutics that can
interdict these perturbations at multiple sites in the disease process,
i.e., “super-axis” therapeutics (dark blue) possess a much greater
capacity to redress the systemic imbalances induced by disease than
traditional non-axis therapeutics (light blue) that possess a limited
functional repertoire.
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addition of polyethylene glycol groups (182), d-amino acid sub-
stitutions (183), and transferrin hybridization (164). Perhaps, one
of the most effective strategies for therapeutic generation was the
creation of agents based on reptile forms of GLP-1 (exendin-4)
that possess natural mutations that prevent DPP IV proteolysis
(184). Exendin-4 has subsequently demonstrated multiple effica-
cious effects against a wide range of neurodegenerative disorders
including AD, PD, and HD, reinforcing the importance of thera-
peutic targeting of this signaling super-axis. While the initial series
of GLP-1 system-targeted therapies were peptidergically based,
there is now considerable interest in the generation of novel, non-
peptidergic ligands that can modify specific activities of the GLP-1
receptors (185–187). Non-peptidergic small-molecule ligands typ-
ically represent a more facile mechanism for drug production and
administration. As the GLP-1R is a Class B secretin-like recep-
tor, designing small-molecule agents that regulate the activity
through an orthosteric interaction has proven difficult. However,
the generation of small molecules that can allosterically inter-
act to modulate GLP-1-mediated receptor activation has yielded
interesting results, especially with regard to signal selectivity of
functions. The search for small-molecule agonists/modulators of
the GLP-1R has led to the identification of multiple compounds
that can bind to and modulate GLP-1R function. Many of the
newly developed small-molecule ligands for the GLP-1R (BETP,
Novo Nordisk quinoxaline-based “Compound 2” [(6,7-dichloro2-
methylsulfonyl-3-tert-butylaminoquinoxaline) (188), TT15, Boc5
(189–194)] possess intrinsic efficacy at the receptor, with respect
to cAMP generation, and can augment insulin secretion either
alone or in combination with peptide occupation of the GLP-
1R orthosteric site. As the GLP-1R represents an interesting
mechanism for controlling multiple levels of neurodegenera-
tive behavior, it may be important for future therapeutic design
to engineer the capacity for specific and beneficial tissue-based
signaling bias to exploit the full therapeutic potential of this
super-axis.

GLP-1R SIGNALING BIAS
For ligand–receptor systems that may control whole-organism
super-axes, it is clearly important that their regulation is tightly
controlled in a highly nuanced manner. Thus, the molecular reg-
ulation networks of the GLP-1 receptor system are highly com-
plex, with multiple endogenous and exogenous peptides [at least
six: GLP-1(7–36)NH2, GLP-1(1–36)NH2, GLP-1(7–37), GLP-
1(1–37), GLP-1(9–36)NH2, and oxyntomodulin] that interact
with the receptor that results in the activation of numerous down-
stream signaling cascades (195). In the GLP-1R super-axis system,
it is clearly crucial that selectively exploiting, via signal selectiv-
ity and bias, the full signaling repertoire of the GLP-1R could
have tremendous benefit for multidimensional neurodegenerative
research.

Surprisingly, for such an important emerging super-axis level
therapeutic target, the current molecular appreciation of GLP-
1R signaling and regulation is relatively limited compared to
Class I rhodopsin-like receptors. Thus, the full gamut of GLP-
1-modulated signaling paradigms is still a subject of intense
research. In this respect, the GLP-1R has already demonstrated
a considerable degree of signaling promiscuity: coupling has

been demonstrated functional interactions with multiple het-
erotrimeric G proteins αs, αi/o, and αq/11 (196) as well as with
β-arrestin-mediated pathways (159, 197). In addition to these
classical signaling mechanisms, lateral signal transfer, i.e., “trans-
activation” (198), from the GLP-1R to epidermal growth factor
receptor has also been reported (199). With most GPCRs studied
to date, there is clearly a generic capacity for the activation of mul-
tiple and diverse signaling paradigms (1). For a receptor that can
interact with multiple ligands, both orthosteric and allosteric, it is
highly unlikely that the identical downstream signaling behavior,
when studied at a high-dimensionality level (200), can be induced
by chemically distinct ligands. Therefore, among both endogenous
peptidergic agents and xenobiotics, there is a tremendous capac-
ity to identify and therapeutically engineer ligand bias at such
pleiotropic receptors. An additional layer of signaling complexity
is also induced by the expression of the specific GPCRs in diverse
tissues that contain differing types of GPCR-interacting proteins
that again add further “texture” to the eventual signal.

In recent years using differential structure–activity-relationship
analysis, effective signaling bias between cAMP-related pathways
(MAPK signaling and calcium mobilization) for peptidergic lig-
ands at the GLP-1R has been demonstrated (188, 192, 201). In
addition to bias at the GLP-1R of peptidergic agents, small-
molecule ligands that typically interact allosterically with the
GLP-1R have also demonstrated an ability to exert selective sig-
naling actions. These allosteric receptor interactions of the small
molecules can be contemporaneous with the orthosteric ligand
and can affect the conformational induction or selection of the
receptor. Allosteric modulators, e.g., Novo Nordisk “Compound
2” (188, 201) can demonstrate their allosteric efficacy differen-
tially between some of the endogenous stimulatory peptides as
well as for peptidergic xenobiotics as well (188, 202). The allosteric
interaction of Novo Nordisk “Compound 2” was also shown to
significantly alter the qualitative nature of the transduced mol-
ecular signal as well from the orthosteric peptide ligands. Such
allosteric activity at the GLP-1R can also be generated by natu-
rally occurring medicinal agents such as quercetin and catechin,
which can selectively augment specific signaling activities from
specific subsets of peptidergic orthosteric agents (188, 203). Other
modulators such as BETP, which still exerts qualitative signal con-
ditioning effects on orthosteric ligand activity, have also shown
an intrinsic efficacy at the GLP-1R in the absence of orthosteric
engagement of the receptor (201). Not only are the activities of
allosteric agents dependent on the qualitative nature of the resi-
dent agent in the orthosteric site but the resultant effects of the
allosteric ligand can be further conditioned by changes in receptor
transport/desensitization dynamics as well as receptor scaffolding
and dimerization (196, 204).

It is clear that biased signaling is a significant pharmacological
aspect of the GLP-1R and that this can include both G protein-
dependent and G protein-independent pathways. This situations is
then further complicated with the addition of orthosteric-selective
allosteric receptor modulation. Rational and targeted exploita-
tion of these pharmacological characteristics to engender tissue-
and signaling-specific activity of the GLP-1 super-axis could yield
tremendous therapeutic benefit for multiple neurodegenerative
disorders. The functional and pathophysiological similarities of
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disorders such as AD, PD, and HD, potentially generated by a
commonality of energy insufficiency in each disease (27, 205–209),
presents a systemic level drug target whose exploitation may create
remedial activities far beyond those induced by more monophar-
macological agents. Drugs that target and remediate signaling
super-axes in disease will likely be more tolerable to the patient
as well, as endogenous tissue-to-tissue communication pipelines
will not be significantly disrupted and thus the drug activity will be
less opposed by homeostatic mechanisms. Our further enhanced
understanding of how multiple pathophysiological processes in
the body can be connected by functional signaling super-axes
will hopefully allow the creation of a new series of more effec-
tive, tolerable, and ultimately beneficial anti-neurodegenerative
therapies.
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