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The origin of photosynthetic organelles via endosymbiosis more than 1 Gya ago was

a major detonator of eukaryotic diversification. The evolution of a stable endosymbiotic

relationship between eukaryotic cells and photosynthetic cyanobacteria involved series

of cellular and molecular processes that are not entirely understood. Critical steps toward

the evolution of plastids occurred when the host cell gained genetic andmetabolic control

over the captured cyanobacterium. Proteins recruited from the host repertoire had major

roles initiating the metabolite exchange between both symbiotic partners. Concurrently,

the relocation of certain cyanobacterial genes into the host nuclear genome was critical

to coordinate the division of the endosymbiotic cells and the transit of nuclear-encoded

proteins into the novel organelle. This review explores diverse studies that have identified

key “endosymbiosis genes” and discusses the putative roles of the encoded proteins

during the early evolution of plastids. The understanding of the regulation mechanisms

and functions of the “endosymbiosis genes” will shed light on the design of genetic

engineering approaches to facilitate endosymbiotic associations.

Keywords: gene transfer, endosymbiosis, membrane transporters, organelle genome, plastid protein import,

photosynthesis, plastid division

Introduction

Photosynthesis is the generic name for different photoautotrophic pathways (i.e., use of light energy
and inorganic substrates to produce organic compounds) that vary depending on the types of light-
harvesting systems, photosynthetic pigments, electron donors (e.g., H2O, H2, S2, H2S, S2O

2−
3 )

and released byproducts (e.g., O2, S2, H2S) (Bryant and Frigaard, 2006; Blankenship, 2010). The
oxygen producing (i.e., oxygenic) photosynthesis likely evolved first in the ancestors of modern
cyanobacteria between 3.8 and 2.8 Gya ago (Bryant and Frigaard, 2006; Buick, 2008; Blankenship,
2010). Geochemical evidence indicate that oxygenic photosynthesis became significant at planetary
scale 2.5 Gya ago (Kopp et al., 2005; Buick, 2008), and since then it has been one of the major
processes of primary production on Earth and pivotal for the evolution of Life (Farquhar et al.,
2011).

Circa 2 Gya after the appearance of the oxygenic photosynthesis some eukaryotes
acquired the photosynthetic metabolism through the establishment of a “permanent”
endosymbiotic relationship with cyanobacteria (Hedges et al., 2004; Yoon et al., 2004).
A widely accepted scenario suggests that those endosymbiotic cyanobacteria evolved
into the photosynthetic organelles (i.e., primary plastids) of the first photoautotrophic
eukaryotes, which presumably are the ancestors of the Archaeplastida supergroup (Palmer,
2003; Bhattacharya et al., 2004). Following the evolution of the first photosynthetic
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eukaryotes photosynthesis spread to diverse groups via numerous
eukaryote-eukaryote (i.e., secondary and tertiary) endosymbioses
(Palmer, 2003; Bhattacharya et al., 2004).

Escaping Digestion

The transformation of free-living cells into endosymbionts
involves a series of foundational steps. Initially, the captured
photosynthetic cells must survive the host digestive processes
(Callieri, 2002; Xinyao et al., 2006). Engulfed cells are usually
stored in food vacuoles and digested shortly after (Callieri, 2002;
Gu et al., 2002; Xinyao et al., 2006; Kodama and Fujishima,
2012), but in certain cases the captured cells avoid digestion and
survive metabolically active for some periods of time (Kodama
and Fujishima, 2005, 2014; Escalera et al., 2011). Survival of
digestion may occur by preventing lysosome fusion to the food
vacuole, resistance to the hydrolytic enzymes of lysosomes, or
escaping from the digestive vacuole into the host cytosol (Matz
and Kjelleberg, 2005; Kodama et al., 2007, 2011).

Retention of viable captured cells is an obvious key step
for the establishment of permanent endosymbiosis (Kodama
and Fujishima, 2012, 2014), but another crucial event is
the establishment of a steady flux of metabolites between
the photosynthetic endosymbiont and the host cytoplasm
(Weber et al., 2006; Reyes-Prieto et al., 2007). The stable
exchange of compounds must have been critical as well for the
evolution of metabolic interdependencies (e.g., complementary
biochemical pathways) between the novel partners (Figure 1B).
What molecular mechanisms may have facilitated the flux of
metabolites during early stages of organelle evolution?

Sharing Resources with the
Photosynthetic Partner

Photosynthetic organelles of plants and algae are bound by at
least two membranes (e.g., the outer envelope membrane, OEM,
and the inner envelope membrane, IEM, of primary plastids),
with numerous examples of organelles delimited by three or four
membranous layers (McFadden, 1999; Van Dooren et al., 2001).
The membranes surrounding recently captured photosynthetic
cells are significant physical barriers for the flux of metabolites
between the potential endosymbiont and the host cytoplasm. The
recruitment of membrane proteins able to translocate carbon
compounds produced by the cyanobacterial photosynthesis was
a critical step for the metabolic integration of the host and the
endosymbionts, allowing the interconnection of the metabolite
pools of both cells (Weber et al., 2006; Tyra et al., 2007; Weber
and Linka, 2011).

It has been suggested that the diverse plastid-localized
antiporters of the nucleotide-sugar/triose phosphate translocator
(NST) family, which are essential to mobilize different carbon
compounds (e.g., phosphorylated 3-, 5-, and 6-carbon sugars)
across the plastid inner membrane, evolved from a “generalist”
transporter selected from the host endomembrane system to
extract carbohydrates from the endosymbiont (Weber et al.,
2006; Facchinelli and Weber, 2011) (Figure 1B). Interestingly,

alternative solutions may have evolved to take advantage of
the endosymbiont photosynthates and different membrane
transporters have been recruited to translocate metabolites from
the photosynthetic compartment. For example, the glaucophyte
Cyanophora paradoxa lacks plastid antiporters of the NST
family, and UhpC-type transporters (Uhp: uptake of hexose
phosphate) are possibly responsible for the carbohydrate
extraction (Price et al., 2012) (Figure 1B). Other plastid-localized
transporters that regulate the export and import of diverse
metabolites, such as 2-oxoglutarate, glucose-6-P, ribose-5-P,
pyruvate, and tetrahydrofolate, evolved from proteins encoded
in the host genome. The evidence suggests that a basic set
of metabolite membrane transporters has been fundamental
to highjack photosynthetic endosymbionts and initiate the
metabolic integration (Tyra et al., 2007; Facchinelli and Weber,
2011).

Besides the translocation of photosynthates into the host
cytoplasm, the metabolic integration must require also the flux
of minerals, vitamins and nutrients into the endosymbiont.
Inner plastid membranes harbor transporters that import
substrates from the host pool, such as tetrahydrofolate
(purine biosynthesis), ammonia (nitrogen fixation network),
phosphoenolpyruvate (aromatic amino acid biosynthesis), and
S-adenosylmethionine (methylation reactions) (Bräutigam et al.,
2012). Among these diverse plastid membrane transporters,
the ATP/ADP translocator (NTT) (Reiser et al., 2004), which
imports ATP into the organelle in exchange for ADP, was likely
a key player recruited from third-party sources (Chlamydiae
bacteria; Linka et al., 2003) to provide the captured cyanobacteria
with high-energy molecules to drive reactions during dark
periods (Neuhaus et al., 1997) (Figure 1B).

A central event to facilitate the recruitment of host proteins
for organelle functions is the relocation (i.e., import) of
proteins translated in the host cytoplasm into the endosymbiotic
compartment.What do we know about the ancestral mechanisms
of protein import underlining the evolution of primary
photosynthetic organelles?

Redecoration of the Endosymbiotic
Compartment

Relocating Proteins: A Small Step for a Cell, One
Big Leap for Organelle Origins
The import of cytoplasm-translated proteins into plastids
depends on the activity of the TOC/TIC machinery, which is
composed of two multimeric translocation channels localized
in the organelle membranes: the TOC (translocon at the outer
membrane) and the TIC (translocon at the inner membrane)
complexes. Diverse comparative analyses suggest that the
ancestral TOC/TIC machinery comprised just few key proteins
that were able to translocate proteins into the endosymbiotic
compartment (Steiner et al., 2005; Kalanon and McFadden, 2008;
Bodył et al., 2009; Gross and Bhattacharya, 2009b).

The ancestral TOC/TIC system likely included the
receptor/pore protein Toc75 (a member of the Omp85
superfamily) (Hsu et al., 2008; Day et al., 2014; Richardson et al.,
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FIGURE 1 | Key subcellular events and proteins involved in the evolution of primary photosynthetic organelles. (A) The genome reduction of

the endosymbiotic cyanobacteria (ECB) was triggered by both gene losses via deleterious events and endosymbiotic gene transfer (EGT) into the host

nucleus (NUC). Successfully transferred genes (green double strands) should have been expressed and translated in the host nucleocytoplasm system.

Cytoplasm-translated proteins (Pro) of non-cyanobacterial origin (red ribbons) and cyanobacterial provenance (green ribbons) were imported into the

cyanobacterial compartment via the ancestral protein import machinery (PIM). (B) The recruitment of cytoplasm-translated membrane transporters of host

(e.g., members of the NST family and hexose transporters of the UhpC type) and diverse bacterial (e.g., the Chlamydiae-like ATP/ADP nucleotide

translocator; NTT) sources was essential for the establishment of steady metabolite (e.g., 3-, 4-, or 6-carbon compounds; ATP) fluxes and further

evolution of metabolic interdependencies. OEP represents diverse host-derived pore proteins (e.g., OEP24, OEP16 and OEP21) that facilitate the

transport of a broad range of metabolites across the outer envelope membrane. (C) The evolution of the core plastid protein import system relied on

the activity of the cyanobacterial proteins Toc75 and Tic20. These two pore-forming proteins were present originally in the plastid ancestor genome but

the encoding genes were likely transferred early during endosymbiosis to the host genome (Tic20 are still plastid-encoded in some algal lineages). The

ancestral organelle import system was able to translocate both cyanobacterial (green ribbons) and non-cyanobacterial (red ribbons) proteins translated in

the host cytoplasm. (D) Other transferred cyanobacterial genes with putative key roles on plastid evolution were those encoding subunits of the

Photosytems I (psaE, psaI, psaK) and II (psbO, psbP, and psbU) with important roles for the photosynthetic activity under stress conditions. The

cytochrome b6f complex (b6f) is indicated. (E) Initial host control over the endosymbiont division likely relied on transferred cyanobacterial genes

encoding cytokinesis-associated proteins, such as FtsZ, which is a tubulin-like protein fundamental to assemble the contractile Z-ring. The protein FtsZ is

nuclear-encoded in most eukaryotes bearing plastids. Other cyanobacterial-derived genes frequently present in nuclear genomes encode the key

plastid-division proteins ARC6 MinC, MinD, and MinE. Key code: STR (plastid stroma); IEM (inner envelope membrane); IMS (intermembrane space);

OEM (outer envelope membrane); CYT (host cytoplasm). Red and green rounded rectangles represent non-cyanobacterial and cyanobacterial-derived

proteins, respectively.

2014) and the pore-forming protein Tic20 (Kikuchi et al., 2013;
Nakai, 2015) (Figure 1C). Other TOC/TIC subunits, such as
the receptors/GTPases Toc33/34 and Toc159, the presumed
pore-forming Tic110, the plastid-encoded Tic214 (Ycf1) were
incorporated later during plastid evolution in some eukaryote
groups (Li and Chiu, 2010; Nakai, 2015; De Vries et al., 2015).

The phylogenetic history of the TOC/TIC core subunits indicates
that Toc75 and Tic20 were recruited from the cyanobacterial
genetic repertoire, whereas other pieces of later addition, such as
Tic 110, Toc33/34, and Toc159, are of non-cyanobacterial origin
(Kalanon and McFadden, 2008; Gross and Bhattacharya, 2009b;
Shi and Theg, 2013). Regardless of the increased molecular
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complexity (i.e., gaining of additional subunits) observed during
evolution of the TOC/TIC machinery in some lineages, it seems
that cyanobacterial proteins were the pivotal elements to form
the primary membrane channels able to import proteins from
the host cytoplasm (Figure 1C). But how did the primordial
TOC/TIC machinery evolve?

A plausible scenario is that a gene encoding a protein of
the Omp85 family (the ancestral Toc75) was transferred from
the cyanobacterial genome into the host nucleus. Subsequently,
the Omp85-like protein was translated in the host cytoplasm
and relocated via the host endomembrane system (e.g.,
nuclear envelope, endoplasmic reticulum, Golgi apparatus,
vesicle trafficking) into the cyanobacterial OEM (Gross and
Bhattacharya, 2009a; Day et al., 2014). The evolution of the
protein import function of the TOC pore involved an opposite
topological orientation of Toc75 with respect to the orientation
of the original Omp85-like protein in the cyanobacterial OEM
(Steiner et al., 2005; Sommer et al., 2011). The ancestral TIC pore
was likely assembled with the Tic20 protein, which has the ability
to form a multimeric membrane channel (Kovács-Bogdán et al.,
2011; Nakai, 2015).

Organelle import systems have evolved and been remodeled
several times during eukaryote history (e.g., peroxisomes,
mitochondria, and the diverse serial gains of plastids) (see
Kunau et al., 2001; Wickner and Schekman, 2005; Sheiner
and Striepen, 2013), but the case of the filose amoeba
Paulinella chromatophora, which harbors cyanobacterial-derived
organelles (i.e., chromatophores) that evolved independently
from the plastids of plants and algae (Marin et al., 2005,
2007), has offered unique insights into the evolution of protein
import systems in organelles of endosymbiotic origin. The
chromatophores of Paulinella are able to import proteins
translated in the cytoplasm, probably using both elements of the
host endomembrane system and pore-forming proteins localized
in the endosymbiont envelope (Mackiewicz et al., 2012; Nowack,
2014).

Overall, phylogenetic and functional data suggest that in
principle the import of unfolded proteins into an endosymbiotic
compartment can be achieved with a relatively simple set
of pore-forming proteins and the participation of the host
endomembrane system.

The Plastid Proteome is a Phylogenetic Mosaic
Plastid genomes contain, at the most, 210 protein-coding
genes (Wang et al., 2013), but the collection of plastid-
localized proteins, which varies among different biological
groups, comprises between 2500 and 4000 proteins (Van Wijk
and Baginsky, 2011). Therefore, hundreds of plastid proteins
encoded in the nuclear genome have to be imported into the
photosynthetic organelle via the TOC/TIC machinery (Keegstra
and Cline, 1999; Leister, 2003) (Figure 1A). Remarkably, only
between 600 and 1700 of the plastid-localized proteins are of
cyanobacterial provenance (Price et al., 2012; Dagan et al., 2013),
and a considerable proportion of the organelle protein collection
has been recruited from the host repertoire and diverse bacterial
sources during plastid evolution (Suzuki and Miyagishima, 2010;
Qiu et al., 2013; Schönknecht et al., 2014).

Minimizing the Genetic Program to Run a
Photosynthetic Endosymbiont

An inevitable consequence of the endosymbiotic life style is the
reduction of the genome of the captured cells (Selosse et al., 2001;
Reyes-Prieto et al., 2010). Besides the losses of genetic material,
the transference of genes to the host nucleus (i.e., endosymbiotic
gene transfer; EGT) is another mechanism leading the reduction
of endosymbionts genomes (Martin and Herrmann, 1998). The
transference of endosymbiont genetic material seems to be
stochastic, relatively frequent and correlated with the amount of
endosymbiotic genomic copies available (Stegemann and Bock,
2006). However, successful EGT implies not only the relocation
of the genetic material to the nuclear genome, but the acquisition
of elements necessary for expression (e.g., promoters regions
and intron sequences) and translation (e.g., similar GC content,
potential changes in codon usage) in the host genetic system
(Martin and Herrmann, 1998). It is widely assumed that EGT
has played a major role for the establishment of “permanent”
endosymbionts. However, the magnitude and overall impact of
EGT during early stages of primary plastid evolution is not
entirely understood.

A pivotal issue in plastid evolution is the identification of those
transferred cyanobacterial genes that were critical for the success
of the early endosymbiosis. Most of the genomic evidence to
answer that question in plants and algae with primary plastids has
been diluted after more than 1 billion years of evolution (Yoon
et al., 2009). However, comparative genomics studies including
information from Archaeplastida lineages and P. chromatophora
have provided valuable insights to better understand the scale,
impact and tempo of EGT during early stages of endosymbiosis.

The idea that photosynthesis was the major driving force
of plastid evolution correlates with the relatively high number
of plastid genes related with the photosynthetic function and
carbon fixation. Among the “typical” plastid genomes of plants
and algae there are circa 40 genes encoding subunits of the
Photosystems I and II, the Cytochrome b6f complex, light
harvesting systems, photopigment biosynthesis and enzymes
of the Calvin-Benson cycle. However, in all studied algal
lineages some subunits of these key plastid pathways have been
transferred, sometimes independently, to the nuclear genomes.
In contrast to “typical” primary plastids, the chromatophore
genome of P. chromatophora retains ∼850 protein-coding genes
(the number of genes varies between Paulinella strains), which
represent approximately one third of the coding capacity of their
cyanobacterial ancestors (Nowack et al., 2008; Reyes-Prieto et al.,
2010), with most of the genes involved in photosynthesis and
carbon fixation still present in the organelle gene collection.
Unlike the case of plants and algae, where several hundreds of
genes have been transferred via EGT from the plastid ancestor
into the nuclear genome, only 32 chromatophore-derived genes
have been identified among thousands of nuclear transcripts of P.
chromatophora (Nowack et al., 2011).

This minimal estimate of 32 chromatophore-derived genes
encodes mainly proteins of relative low molecular weight
(≤250 amino acids), including 19 involved in photosynthesis
and light-stress responses (e.g., several proteins of the high
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light-inducible protein family; Hli) (Nowack et al., 2011). These
results revealed two trends: genes of relatively short length
were prone to successful EGT and the encoded proteins, which
participate in photosynthesis and light stress responses, were
likely important to gain initial control over the endosymbiont
autotrophic metabolism (Nowack et al., 2011). It has been
suggested that the transference of sequences encoding proteins
important for photosynthesis under stress conditions (e.g.,
oxidative or light stress; nutrient deprivation), such as the
photosystems subunits encoded by psaE, psaK psaI, psbO, psbP
and psbU, or the Hli proteins involved in photo-acclimation
(Figure 1D), was important to incorporate key modulators of
the photosynthetic activity into the host genetic system (Nowack
et al., 2011; Dorrell and Howe, 2012).

Controlling Proliferation and Segregation
of the Endosymbioitc Partner

Other key genetic mechanism that must have emerged early
during organelle evolution is the host control over both the
division of the endosymbiotic cells and the synchronized
segregation of the divided endosymbionts into the next
generation of host cells. How did the first genetic mechanisms
to control the endosymbiont division evolve?

Certain clues have come from comparative studies about the
origin of the plastid-division machinery and the localization of
the corresponding protein-coding genes. For instance, some of
the proteins that choreograph the plastid division are nuclear
encoded and were likely selected from the host repertoire to
control organellar functions. This is the case of the dynamin-
like DRP5B, the glycogenin-like PDR1, the inner envelope
protein MCD1 and the outer envelope proteins PDV1and PDV2
(Miyagishima et al., 2012; Vasetenkov and Koksharova, 2013).
However, not all these host-derived components are universally
present in the diverse plastid-bearing lineages and are likely
independent additions. The other major component of the
plastid division machinery comprises proteins of cyanobacterial
provenance, such as FtsZ, FtsI, FtsW, SepF, ARC6, MINC,
MINE and MIND, which are present in most algal and plant
groups (Miyagishima et al., 2012). Similarly to the cases of the
photosynthetic and carbon fixation pathways, a number of the
cyanobacterial-derived proteins involved in plastid-division are
still encoded in the organelle genome, but certain genes have been
transferred to the nuclear genome (Miyagishima et al., 2012).

Studies in diverse algae have demonstrated that the expression
of nuclear genes encoding proteins participating in plastid
division, such as ftsZ, ARC6, minC is regulated by the host cell
cycle (Miyagishima et al., 2012). This evidence would explain
why in some eukaryote groups the photosynthetic organelles
divide just once during the cell cycle. In contrast to the nuclear
set, the expression of the plastid genes that encode elements
of the organelle division machinery, for instance ftsI, ftsW,
and sepF (minD and minE in certain algal groups), is not
regulated by the cell cycle. Gene expression analyses suggest
that the early transfer and integration of key cyanobacterial
genes under the host cell cycle regulation was a crucial step

to gain control over the endosymbiont division. The ftsZ gene
encodes a GTPase (protein FtsZ) of the tubulin superfamily that
participates in the formation of the cytokinetic contractile ring
(i.e., FtsZ- or Z-ring; Figure 1E) underneath the inner membrane
during organelle/bacterial division. The fact that ftsZ is nuclear-
encoded in plants and algae suggests that that the cooption and
regulation of this tubulin-like protein was important for the
host to coordinate the organelle proliferation and segregation
(Miyagishima et al., 2012).

The case of P. chromatophora seems to depict a different
evolutionary solution to exert control over the endosymbiont
division. It seems that the Paulinella host genetic machinery
coordinates the chromatophore division (Nomura et al., 2014),
but several genes typically involved in cyanobacterial division,
such as minC, minD, minE, ftn2 (ARC6 homolog), cdv1, cdv2
and, interestingly, ftsZ are encoded in the genome of the
Paulinella photosynthetic organelle (Nowack et al., 2008). The
presence of the ftsZ gene in the chromatophore genome indicates
that the Paulinella nucleus control over the organelle division
probably relies on the recruitment of different protein players.
For example, the gene sulA, which encodes a protein that inhibits
the polymerization of FtsZ and prevents the formation of the
Z-ring, is not present in the Paulinella chromatophore genome.
It has to be explored if the sulA gene has been transferred
into the Paulinella nuclear genome and if the encoded protein
has any particular role regulating the chromatophore division
(Nowack et al., 2008; Nowack, 2014). Overall, the evidence
from independently evolved photosynthetic eukaryotes suggests
that gaining control over the genes encoding proteins involved
in cytokinesis is a key step to orchestrate the division of the
photosynthetic endosymbionts.

Final Remarks

Vast amount of data has revealed the relevance of both
EGT and the recruitment of host genes to integrate the
cyanobacterial ancestor of plastids into the eukaryote cell context.
Overall, the evolution of the initial metabolic interdependencies
relied primarily on non-cyanobacterial elements (e.g., host-
derived or from other bacterial sources). In contrast, the
early evolution of the organelle protein import system, the
regulation of the photosynthetic activity and the control over the
endosymbiont division were facilitated mainly by the cooption of
cyanobacterial-derived proteins.

Besides the relevance that the identification of the key
“endosymbiosis genes” has to better understand the evolution
and the astonishing diversification of photosynthetic eukaryotes,
the information derived from the physiological roles of the
“endosymbiotic proteins” provides fertile grounds for studies in
the synthetic biology field. For example, genetic transformation
of potential host or endosymbiotic cells with reengineered
“endosymbiosis genes,” may facilitate survival of the partners, the
exchange of metabolites, or the transit of key proteins between
cells (see Weber and Osteryoung, 2010). This research avenue
involves series of complex experimental and methodological
difficulties, but some studies have provided interesting
results. For instance, in vitro experimental investigations

Frontiers in Ecology and Evolution | www.frontiersin.org 5 September 2015 | Volume 3 | Article 100

http://www.frontiersin.org/Ecology_and_Evolution
http://www.frontiersin.org
http://www.frontiersin.org/Ecology_and_Evolution/archive


Reyes-Prieto The endosymbiosis genetic toolkit

with murine macrophages (phagocytic cells) report that captured
cyanobacterial cells (Synechococcus elongatus), previously
transformed with bacterial genes encoding “cell invasion”
proteins (e.g., invasins and hemolysins), are able to escape
lysosome digestion, survive for several days and even divide at
slow rate inside the mammalian cell host (Agapakis et al., 2011).
These results suggest that relatively simple genetic engineering
protocols can preset cells with basic gene kits useful to establish
endosymbiotic associations.

A better understanding of the early evolution of
photosynthetic organelles will provide reliable road maps to
experimentally facilitate those critical stages for successful
endosymbiosis. This may direct the design of artificial
organelles to arm non-photosynthetic cells with light-powered

compartments. In the other direction, investigations on artificial
or assisted endosymbiosis have the potential to untangle crucial
subcellular or genomic events not yet identified during the
evolution of photosynthetic organelles.
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