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RNA editing is a dynamic mechanism for gene regulation attained through the alteration of
the sequence of primary RNA transcripts. A-to-I (adenosine-to-inosine) RNA editing, which
is catalyzed by members of the adenosine deaminase acting on RNA (ADAR) family of
enzymes, is the most common post-transcriptional modification in humans. The ADARs
bind double-stranded regions and deaminate adenosine (A) into inosine (I), which in turn is
interpreted by the translation and splicing machineries as guanosine (G). In recent years,
this modification has been discovered to occur not only in coding RNAs but also in non-
coding RNAs (ncRNA), such as microRNAs, small interfering RNAs, transfer RNAs, and
long non-coding RNAs. This may have several consequences, such as the creation or dis-
ruption of microRNA/mRNA binding sites, and thus affect the biogenesis, stability, and
target recognition properties of ncRNAs. The malfunction of the editing machinery is not
surprisingly associated with various human diseases, such as neurodegenerative, cardio-
vascular, and carcinogenic diseases. Despite the enormous efforts made so far, the real
biological function of this phenomenon, as well as the features of the ADAR substrate, in
particular in non-coding RNAs, has still not been fully understood. In this work, we focus on
the current knowledge of RNA editing on ncRNA molecules and provide a few examples
of computational approaches to elucidate its biological function.

Keywords: A-to-I RNA editing, ncRNA, microRNA, RNA-seq, ADARs, HTS

BACKGROUND
While in the past researchers mainly focused on DNA mutations in
order to further elucidate molecular pathways involved in numer-
ous cancers, in the last decade focus has shifted to the analysis
of post-transcriptional modification events, such as RNA editing.
Concurrently, it has been estimated that only 1% of mammalian
genome codes for protein, while the vast majority of the tran-
scriptome is composed of non-coding RNAs crucially involved in
gene expression pathways, such as transcription, translation, and
gene regulation (Cech and Steitz, 2014). The editing machinery,
occurring both in coding and non-coding RNAs, has been impli-
cated in various human diseases (Galeano et al., 2012; Tomaselli
et al., 2014). Strong interest is thus growing toward understand-
ing how and why RNA editing can influence non-coding RNA
function.

RNA editing is a type of post-transcriptional modification that
takes place in eukaryotes. Several forms of RNA editing have been
discovered, but nowadays A-to-I RNA editing is considered the
predominant one in mammals (Nishikura, 2010). Adenosine (A)
deamination produces its conversion into inosine (I), which in
turn is interpreted as guanosine (G) by both the translation and
splicing machineries (Rueter et al., 1999). Enzymes members of
the adenosine deaminase acting on RNA (ADAR) family catalyze
this biological phenomenon which occurs only on dsRNA struc-
tures (Bass, 2002; Jepson and Reenan, 2008; Nishikura, 2010).

Double-stranded RNAs are imperfect duplexes formed by base-
pairing between residues in the region proximate to the editing
site (usually overlapping a neighboring intron) and the exonic
sequence containing the A. Such proximate region is termed editing
complementary sequence (ECS), potentially located several hun-
dred to several thousand nucleotides upstream or downstream of
the edited A. This requires experimental validation and represents
one critical issue with the detection of editing sites.

Three members of the ADAR gene family can be distinguished
in humans, in particular, two isoforms of ADAR1 (ADAR1p150
and ADAR1p110) (Kim et al., 1994), ADAR2 (Lai et al., 1997), and
ADAR3 (Chen et al., 2000). While ADAR1 and ADAR2 are widely
expressed in tissues, ADAR3 is limited to brain tissues (Melcher
et al., 1996). Interestingly, unlike ADAR1 and ADAR2, ADAR3
possesses a catalytically inactive (Chen et al., 2000) arginine-rich R
domain, which allows the enzyme to bind single strand structures.

An RNA edited site neighborhood profiling was established
for ADAR1-2. While for ADAR1, no 3′ neighbor preference has
been identified, a 5′ nearest neighboring preference consisting
of U=A > C > G (Polson and Bass, 1994) can be observed. Like
ADAR1, ADAR2 has a similar 5′ nearest neighboring preference
(U≈A > C=G) but, furthermore, it has a 3′ nearest neighboring
preference (U=G > C=A) as well, creating a particular trinu-
cleotide sequence with the adenosine at the center (UAU, AAG,
UAG, AAU) (Lehmann and Bass, 2000). In addition, the ADARs
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show selectivity based on both dsRNA length and the presence
of mismatches, loops, and bulges that interrupt the base-pairing
(Bass, 1997).

There are two kinds of A-to-I RNA editing: specific A-to-I
editing occurs in short duplex regions interrupted by bulges and
mismatches (Wahlstedt and Ohman, 2011); the promiscuous one
occurs within longer stable duplexes of hundreds of nucleotides,
mostly formed by repetitive elements, such as Alus, in which up
to 50% of adenosines could be targeted by ADARs (Carmi et al.,
2011; Bazak et al., 2014b).

Adenosine-to-inosine RNA editing has been discovered both
in intronic and exonic regions, 5′ and 3′-UTRs as well. RNA edit-
ing events can take place in several cellular contexts: in the gene
expression pathway (Bazak et al., 2014b), such as in translation
(Nishikura, 2010) or in the creation and/or destruction of splicing
sites (Rueter et al., 1999); during gene regulation through editing
events in microRNA/mRNA binding regions (Nishikura, 2006;
Borchert et al., 2009). Recent reports affirmed that RNA edit-
ing may occur in non-coding RNA molecules, particularly within
precursor-tRNA (Su and Randau, 2011), pri-miRNA (Kawahara
et al., 2008; Kawahara, 2012), and lncRNA (Mitra et al., 2012).
It was estimated that 10–20% of miRNAs undergo A-to-I edit-
ing (Blow et al., 2006; Kawahara et al., 2008) at the pri-miRNA
level (Yang et al., 2006). Editing can influence both the maturation
process (Yang et al., 2006) and the recognition of binding sites on
target mRNAs (Kawahara et al., 2007; Wu et al., 2011). Indeed, a
single editing site in a miRNA seed region could drastically change
its set of targets (Alon et al., 2012).

In the past decade, surprising results have been obtained in
RNA editing site discovery, thanks initially to the application of
bioinformatic approaches, subsequently fully replaced by RNAseq-
based methods in recent years. The large amount of editing sites
discovered by these methodologies has led to the creation of
public databases (Kiran and Baranov, 2010; Kiran et al., 2013;
Ramaswami and Li, 2014). As described below, all these resources
containing very important information, such as editing level and
genomic annotations, can help to functionally elucidate the RNA
editing phenomenon.

This mini review summarizes both the current knowledge on
RNA editing, as well as past and present approaches for discov-
ery and analysis of editing sites, particularly emphasizing on RNA
editing in non-coding RNA (ncRNA) molecules.

COMPUTATIONAL APPROACHES TO DISCOVER AND
ANALYZE RNA EDITING EVENTS
THE ORIGINS OF THE ANALYSIS AND DETECTION OF RNA EDITING
SITES – COMPUTATIONAL AND BIOCHEMICAL METHODS
In the early 2000s, the ADAR enzyme family was observed to play
an important role during embryonic development (Higuchi et al.,
2000; Wang et al., 2000), while also associating the alteration of
the editing machinery to neurological diseases (Maas et al., 2001;
Kawahara et al., 2004). At that time, only few RNA editing sites
were discovered (Morse and Bass, 1999). Hoopengardner et al.
(2003) using comparative genomics identified and experimentally
validated 16 novel editing sites in fruit fly and one in human. Inter-
estingly, they discovered that these editing sites are surrounded by
highly conserved exonic regions which form a dsRNA structure as

required for ADARs. Despite these efforts, most editing sites were
detected by chance.

In 2004, unprecedented computational methods were designed
in order to discover clustered A-to-I RNA editing sites in Alu
repeats of the human transcriptome (Athanasiadis et al., 2004;
Kim et al., 2004; Levanon et al., 2004), going from dozens to
tens of thousands of editing sites. By aligning millions of pub-
licly expressed sequence tags (EST) (Boguski et al., 1993) against
a reference genome, it is indeed possible to identify A-to-G mis-
matches as putative candidates of A-to-I editing events. Unfortu-
nately, without considering RNA editing, related features such as
nearest neighbor preference sequence, this naïve approach pro-
duces a large amount of false positives due to sequencing errors
originating from poor sequencing quality, somatic mutations, or
single nucleotide polymorphisms (SNP). All of the above methods
avoided this issue by taking into account cDNA-genome align-
ments along with clusters of mismatches in long and stable dsRNA
structures and, finally, filtered known SNPs from the obtained
candidates, reaching good accuracy.

A more quantitative and accurate analysis was later provided
by Eggington et al. (2011)1, who predicted editing sites in dsRNAs
by assuming a multiplicative relationship between the coefficients
(estimated by a non-linear regression model and dependent on
the bases neighboring each site) used to determine the percentage
of editing sites.

The bioinformatics methods for RNA editing detection com-
paring a cDNA sequence with a reference genome nevertheless
present a significant problem: they are not able to distinguish a
guanosine originating from an I-to-G replacement, from a guano-
sine as a product of noise, sequencing errors, or SNP. To overcome
this limit, Sakurai et al. (2010) designed a biochemical method,
called inosine chemical erasing (ICE), for the identification of
inosine sites on RNA molecules by employing inosine-specific cya-
noethylation with reverse transcription, PCR amplification, and
direct sequencing. Without requiring changing profiles of cellular
gene expression nor genomic DNA for reference, this method accu-
rately and consistently identifies inosines in RNA strands. Recently,
Sakurai et al. (2014) combined the ICE method with deep sequenc-
ing technology (ICE-seq) for an unbiased genome wide screening
of novel A-to-I editing sites.

NEW ERA OF RNA EDITING DISCOVERY – HIGH-THROUGHPUT
SEQUENCING APPROACHES
Despite the substantial results achieved with the approaches
described above, some restrictions due to sequencing limitations
remained. Before 2009, in fact, only a few dozen editing sites had
been detected outside repetitive regions in humans due to the
impossibility of designing a systematic method to discover editing
events in ncRNA genes.

With the advent of high-throughput sequencing technology
(HTS), things radically improved. In 2009, Li et al. (2009) devel-
oped the first HTS-based application which, through massively
parallel target capture and DNA sequencing, identified 36,000
non-repetetive putative A-to-I editing events. Recently, several

1http://www.biochem.utah.edu/bass/index.html
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HTS-based approaches for editing discovery have been developed
(see Table 1). It was latterly hypothesized that there are more than
100 million editing sites in human Alu repeats, located mainly in
genic regions (Bazak et al., 2014a). Despite the increased accu-
racy, these methods have limitations in terms of false positives
produced (Kleinman and Majewski, 2012; Lin et al., 2012; Pickrell
et al., 2012).

Table 1 depicts some of the most important studies on RNA
editing detection by HTS. The majority was designed to iden-
tify RNA editing events in protein-coding RNA, while a few also
focus on lncRNAs as well. In 2010, de Hoon et al. developed a
strategy to correct cross-mapping of small RNA deep-sequencing
libraries, applying it to analyze RNA editing in human mature
miRNAs. They concluded that miRNA editing is rare in animals

Table 1 | Deep sequencing based approaches.

Focus Year # Editing sites (ES) discovered Description Reference

mRNAs 2009 239 A-to-I ES Parallel target capturing and DNA sequencing Li et al. (2009)

miRNAs 2010 10 (three A-to-I and two C-to-U) Strategy to correct for cross-mapping in short RNA

sequencing libraries

de Hoon et al. (2010)

mRNAs 2011 1,809 (1,096 A-to-I and 11

C-to-U)

Massively parallel DNA and RNA sequencing of 18

Korean individuals

Ju et al. (2011)

mRNAs 2012 9,636 (5,965 A-to-I) Accurate mapping approach to distinguish single-

nucleotide differences in one set of RNA-seq data

Bahn et al. (2012)

Coding, non-coding

and small RNA genes

2012 22,588 (21,113 A-to-I) Computational pipeline to identify RNA editing sites

from genome and whole-transcriptome data of the

same individual

Peng et al. (2012)

Alu and non-Alu

regions

2012 150,865 (144,406 A-to-I) from

GM12878

Framework to robustly identify RNA editing sites

using transcriptome and genome deep-sequencing

data from the same individual

Ramaswami et al. (2013)

457,078 (423,377 A-to-I) from

(Peng et al., 2012) data

mRNAs 2012 61 A-to-I ES Computational strategy based on two-step mapping

procedure with only RNA-seq and without a priori

RNA editing information

Picardi et al. (2012)

mRNAs 2012 5695 (5349 A-to-I) A rigorous computational pipeline to identify RNA

editing site in human polyA+ ENCODE RNA-seq data

from 14 cell types.

Park et al. (2012)

miRNAs 2012–

2013

19 A-to-I ES Protocol for the identification of RNA editing sites in

mature miRNAs using deep sequencing data.

Alon et al. (2012) and Alon

and Eisenberg (2013)

mRNAs 2013 >1 million of A-to-I ES in other

human LCL and several tissues

Two methods (separate and pooled sample methods)

to accurately identify RNA editing events by using

RNA-seq data from multiple samples in a single

species

Ramaswami et al. (2013)

mRNAs 2013 2,245 A-to-I ES A strategy to accurately predict consecutive RNA

editing events from human RNA-seq data in the

absence of relevant genomic sequences

Zhu et al. (2013)

mRNAs 2013 223,490 A-to-I ES from

(Ramaswami et al., 2013) data

Suite of python scripts to investigate RNA editing by

using RNA-seq data

Picardi and Pesole (2013)

Alu elements 2014 1,586,270 A-to-I ES Detection approach to analysis Alu editing by using

large-scale RNA-seq data

Bazak et al. (2014a)

mRNAs 2014 29,843 A-to-I ES Unbiased genome-wide screening of A-to-I editing

events using the ICE-method combined with deep

sequencing (ICE-seq)

Sakurai et al. (2014)

mRNAs 2014 455,014 A-to-I ES Computational method to detect hyper-edited reads in

RNA-seq data

Porath et al. (2014)

Some of the most important deep sequencing based approaches, developed in the last 5 years, to identify RNA editing sites in humans.
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and addressed methodological problems in its analysis through
RNAseq. Subsequently, Alon et al. (2012) systematically identified
known editing events in mature miRNAs of human brain, in addi-
tion to 17 novel ones, 12 of which occur in the seed region (Alon
and Eisenberg, 2013). They moreover identified sequence prefer-
ence in the residues, both flanking and opposing the A-to-I editing
site. As the authors suggested, this pipeline could identify editing
sites in miRNAs from NGS data of different experimental set-ups.
Currently, Alon’s method is the only one able to accurately detect
and quantify A-to-I RNA editing events in mature miRNAs by
NGS. Together with the latest pipeline published by Picardi et al.
(2014) for RNA editing detection in human lncRNAs from deep
sequencing experiments.

CURRENT KNOWLEDGE OF RNA EDITING ON ncRNA
MOLECULES
BIOLOGICAL DATABASES: DARNED AND RADAR
The birth of the first computational methods for the identifica-
tion of RNA editing events (Athanasiadis et al., 2004; Kim et al.,
2004; Levanon et al., 2004) caused a growing interest in the sci-
entific community for RNA editing, as there was a strong need
to collect in a centralized repository the tens of thousands of
editing events discovered up to that point. For this reason, Kiran
and Baranov designed DARNED2 (DAtabase of RNa EDiting),
the first public database of known editing sites in human (Kiran
and Baranov, 2010). The first release of DARNED contained more
than 40,000 predicted human editing sites, of which a few were
experimentally validated (Ramaswami et al., 2013). The useful-
ness of the repository rests in the ability to retrieve information
on RNA regions where editing events can occur, such as genome
coordinates, cell/tissue/organ sources, and the number of ESTs
supporting referenced and edited bases. According to the first
release of DARNED, Laganà et al. (2012) built miR-EdiTar3, a
database of predicted miRNA binding sites that could be affected
by A-to-I editing sites occurring in 3′UTRs.

In subsequent years, the advent of high-throughput RNA
sequencing (RNAseq) and biochemically-based (Sakurai et al.,
2010) techniques progressively led to the development of
increasingly accurate transcriptome-wide methods for RNA edit-
ing detection. Furthermore, deep sequencing based approaches
allowed to identify a large number of editing sites, up to two
orders of magnitude higher than before. Two years later, a new
release of DARNED recorded more than 330,000 editing sites in
human (Kiran et al., 2013). This led to the design of tools to both
visualize and annotate RNA-Seq data with known editing sites
(Picardi et al., 2011; Distefano et al., 2013).

Although DARNED contains precious information regarding
known editing sites, only a small portion of this have been later
manually annotated, not providing any information about the spa-
tiotemporal regulation of editing events through their editing level
(Wahlstedt et al., 2009; Solomon et al., 2014). To improve this
aspect, Ramaswami and Li built RADAR4, a rigorously annotated
database of A-to-I editing sites. Particularly, they have enriched

2http://darned.ucc.ie
3http://microrna.osumc.edu/mireditar
4http://RNAedit.com

RNA editing knowledge by including detailed manually curated
information for each editing site, such as genomic coordinates,
type of genomic region (intergenic region, 3′-or-5′ UTR, intron,
or coding sequence if the editing site occurs in genic region),
type of repetitive element (when the editing event occurs in Alu
or not-Alu element), the conservation in other species (chim-
panzee, rhesus, mouse), and the tissue-specific editing level when
known. Currently, RADAR contains about 1.4 million editing
sites as detected in Homo Sapiens (Ramaswami and Li, 2014).
Among them, the editing sites that occur in human ncRNAs are
only a small fraction, consisting of about 21,000 events, with only
1,219 editing sites in microRNAs. Despite being a relatively small
percentage, amounting to about 1.6% of the total number of
human editing sites, these miRNA editing events may very well
posses significant importance as far as the editing phenomenon is
concerned.

Without a doubt, continuous updating of the RADAR database
gradually will become a precious resource for researchers in this
field, leading to a better understanding of the editing phenomenon
in coming years.

EFFECT OF RNA EDITING IN NON-CODING RNA MOLECULES
In the last decade, editing events have been discovered in ncRNA
molecules, such as miRNAs, siRNAs, tRNAs, and lncRNAs.
Although not fully demonstrated yet, these editing sites could alter
the stability, the biogenesis, and target recognition of ncRNAs, as
shown in Figure 1.

RNA editing in miRNAs and siRNAs
As seen above, many A-to-I editing sites in miRNAs have been
discovered (Luciano et al., 2004; Kawahara et al., 2007; Alon et al.,
2012), and these could influence miRNA-mediated gene regula-
tion in several ways (Nishikura, 2010), although in some cases
low percentage editing of mature miRNAs could be a low level of
genomewide editing noise rather than possessing biological rel-
evance (de Hoon et al., 2010). First, editing sites occurring in
pri-miRNAs can suppress cleavage processing by Drosha and/or
Dicer due to the presence of inosines, while in addition, highly
edited dsRNAs could be rapidly degraded by Tudor-SN (TSN)
(Yang et al., 2006). Second, some editing events in pri-miRNAs
can produce edited pre-miRNAs, for which different scenarios can
occur based on the location of the editing site. In particular, studies
have demonstrated that A-to-I editing sites in miRNA seed regions
can drastically change their target set (Kawahara et al., 2008; Alon
et al., 2012), causing a functional transformation, but also affect
the mRNA target selection and silencing processes (Kume et al.,
2014).

Small interfereing RNAs, differently from miRNAs, originate
from long double-strand RNAs exported to the cytoplasm, where
they are cleaved by the Dicer-TRBP complex and successively
loaded inside the RISC complex. It has been observed that ADAR1-
p150, which acts in the cytoplasm, can bind to siRNAs preventing
and thus overall reducing the cleavage process of the Dicer-TRBP
complex (Yang et al., 2005; Kawahara et al., 2007).

Lately, a new role for ADAR1-p150 not associated to RNA
editing was discovered, in which the enzyme forms an het-
erodimer complex with Dicer by protein–protein interaction
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FIGURE 1 | Mainly hypothetical biological consequences. In this figure, we show some of the main biological consequences of A-to-I RNA editing in ncRNA
molecules, both in nucleus and cytoplasm.

(PPI), increasing the rate of siRNA and miRNA processing and
facilitating RISC loading and RNA silencing, instead of an antag-
onistic role in RNAi by an ADAR1–ADAR1 homodimer complex
(Nishikura et al., 2013; Ota et al., 2013).

RNA editing in lncRNAs
Another category of ncRNAs is represented by long non-coding
RNAs (lncRNAs). In recent years, HTS analyses have led to the
identification of thousands of lncRNAs, many of which have
revealed to be transcripts deriving from the antisense strand of
protein coding genes. lncRNAs, due to their stable long double-
strand regions, often originating from the presence of repetitive
elements, such as Alus, can be affected by A-to-I RNA editing (Peng
et al., 2012). The biological functions of A-to-I editing occurring
in lncRNAs can be several.

Long non-coding RNAs can be retained in the nucleus as a
consequence of the editing phenomenon until cleavage of the
hyper-edited region takes place and the remaining lncRNA portion
is exported to the cytoplasm (Prasanth et al., 2005). Nevertheless,
as for miRNAs (Yang et al., 2006), edited lncRNAs could though be
degraded through Tudor-SN. Considering the property lncRNAs
possess to bind with RNA and DNA (Rinn and Chang, 2012; Mer-
cer and Mattick, 2013), as well as RNA binding proteins (Hellwig
and Bass, 2008), cases of editing sites in lncRNAs could clearly
change their target set and RNP structures respectively, thus alter-
ing their intrinsic biological function (Geisler and Coller, 2013).
Finally, a far more rare RNA editing phenomenon compared to the
one caused by inverted repeat structures in mRNAs could occur for

those transcripts which associate to antisense lncRNAs, providing
a double strand RNA structure suitable for ADAR as suggested in
(Geisler and Coller, 2013).

RNA editing in tRNAs
Differently from mRNAs and several categories of ncRNA mole-
cules which undergo A-to-I editing primarily by ADARs, A-to-I
editing events in mature transfer RNAs (tRNAs) in eukaryotes,
can possibly be a result of adenosine deaminases acting on tRNA
enzyme family (ADATs) (Su and Randau, 2011). A-to-I editing in
these small ncRNAs is conserved in various species and occurs
principally at positions 34, 37, and 57 of certain tRNAs (Torres
et al., 2014). Despite this phenomenon being ubiquitously present
in human tissues, the role of A-to-I tRNA editing remains still
unknown.

CONCLUSION
As seen above, currently Alon’s pipeline is the only HTS-based
method to systematically identify A-to-I editing sites in pre- and
mature microRNAs. There is a current and urgent necessity for
new HTS-based methodologies to emerge in order to not only
accurately identify and analyze editing events in other categories of
ncRNA molecules, such as tRNAs, lncRNAs, and so on, but also to
investigate through functional enrichment analysis, the biological
outcomes that a single editing event can generate. Concurrently,
it could be interesting to analyze how the editing phenomenon
can influence a biological pathway within a temporally changing
cellular condition, such as starvation or hypoxia, considering that
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a single editing site in a ncRNA molecule could drastically modify
its function.
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