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Endophytes, which mostly include bacteria, fungi and actinomycetes, are the
endosymbionts that reside asymptomatically in plants for at least a part of their life
cycle. They have emerged as a valuable source of novel metabolites, industrially
important enzymes and as stress relievers of host plant, but still many aspects of
endophytic biology are unknown. Functions of individual endophytes are the result of
their continuous and complex interactions with the host plant as well as other members
of the host microbiome. Understanding plant microbiomes as a system allows analysis
and integration of these complex interactions. Modern genomic studies involving
metaomics and comparative studies can prove to be helpful in unraveling the gray areas
of endophytism. A deeper knowledge of the mechanism of host infestation and role of
endophytes could be exploited to improve the agricultural management in terms of plant
growth promotion, biocontrol and bioremediation. Genome sequencing, comparative
genomics, microarray, next gen sequencing, metagenomics, metatranscriptomics are
some of the techniques that are being used or can be used to unravel plant–endophyte
relationship. The modern techniques and approaches need to be explored to study
endophytes and their putative role in host plant ecology. This review highlights “omics”
tools that can be explored for understanding the role of endophytes in the plant
microbiome.
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INTRODUCTION

Endophytes are the microorganisms that reside within various tissues of the host plant in
a commensal or beneficial manner. They can be considered as promising source of natural
metabolites holding plethora of potential benefits in medical field (Strobel and Daisy, 2003; Strobel
et al., 2004; Kaul et al., 2012; Premjanu and Jayanthy, 2012; Mousa and Raizada, 2013). A large
number of compounds with significant bioactivities have been isolated from endophytes (Strobel
et al., 2004; Kaul et al., 2012; Kusari et al., 2014). The scientific community has explored number
of medicinal plants until now, for their endophytic repository. Inspite of a long list of reports
on bioactive compounds from endophytes, commercial production of such compounds is still
in its infancy (Kusari et al., 2014). Moreover, endophytes also have the ability to benefit the
host plants with biotic and abiotic stress tolerance as well as improved nutrient acquisition and
plant growth promotion (Johnson et al., 2004; Rodriguez et al., 2008). Such an ability can be
exploited as a novel strategy to mitigate the repercussions of world climate change on agricultural
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crops and land. Therefore, in order to realize the potential
of endophytes in pharmaceutical and agricultural industry,
integrative understanding of all aspects of endophytism is
essential.

Earlier, scientist community focussed on unraveling the
endophytic diversity and their metabolite potential but now-a
days there is more thrust on deep understanding of the host
plant–endophyte niche. Suryanarayanan (2013), has highlighted
some gray areas of endophytism which need to be addressed viz.
endophyte-host plant interactions; interactions among different
endophytes of the same host plant, relation of endophytes with
non-endophytic groups of the plant microbiome, life strategies
of endophytes with respect to their saprotrophic and pathogenic
counterparts, etc., Modern methodologies discussed in the review
would be helpful to fill these gaps and thus enhance our
knowledge about endophytism (Suryanarayanan, 2013).

GENOME SEQUENCE ANALYSIS

The basic physiological aspect of the endophyte host interaction
is poorly understood. Therefore, identification, isolation and
characterisation of genes involved in such beneficial interactions
is critically important for the effective manipulation of the
mutualistic association between the two. Endophyte genome
analysis has provided a new tool to closely view the endophytism
and to reveal the requisite features to harbor plants as a habitat.
It has revealed the genes, important for the endophytic life style,
as found common in the endophyte genomes such as genes for-
nitrogen fixation, phytohormone production (IAA, GA, etc.),
mineral acquisition (Fe, P, etc.), stress tolerance, adhesion and
other colonization related genes (Fouts et al., 2008; Firrincieli
et al., 2015; Martinez-Garcia et al., 2015). These traits explain
the role of microbes in nutrient cycling as well as their ability to
colonize plant endosphere.

Whole genome analysis of endophytic microbes has revealed
the genetic features that directly or indirectly influence the
various bioactivities as well as colonizing preferences. It aids
in the identification of particular genes involved in mechanism
of antibiotic resistance, antibiotic production, plant growth
promotion, endophytic secretory system, surface attachment
and insertion elements, transport system and other related
metabolic mechanisms. Such studies have provided greater
understanding of the ecology and evolution of endophytes. The
presence of genes encoding N-acyl homoserine lactone synthases
and hydrolases, hyperadherence factors, fusaric acid resistance
proteins, etc., highlight the biotechnological potential of the
endophytic bacterium Pantoea ananatis (Megias et al., 2016).
Endophytic members of the fungal order sebacinales have raised
considerable interest due to their plant growth promotion and
stress tolerance potential (Weiss et al., 20111). Pirifomospora
indica (order sebacinales) represents a model for the study of
symbiosis interactions. Genome sequence analysis of P. indica
has revealed its potential as plant probiotic agent (Qiang et al.,
2012). Complete genomes of many of the bacterial as well as

1http://mycor.nancy.inra.fr/blogGenomes/?page_id=149

fungal endophytes have been sequenced (Table 1), and the list is
getting further populated. Available endophyte genomes serve as
the model systems to study plant–microbe and microbe–microbe
interactions. Further, individual genome sequences improve the
data analysis in metaomics (metagenomics, transcriptomics, and
proteomics) studies of plant associated microbes.

Host plant genome evolution is also affected by endophytic
colonization (Guo et al., 2015) whereas Zgadzaj et al. (2015)
reported that host genetic factors control establishment of both
endophyte and the symbiont within root-nodules, therefore host
genome studies are also important for a clearer view.

MULTIGENOME ANALYSIS

Comparative multigenome analysis is quite helpful in
understanding genetic and metabolic diversity of similar or
related microbes involved in different types of interactions
with the plants as well as with animals. It seems that a fine
line divides the colonization of host plant by a microbe as
symptomless endophyte or a pathogen. Extensive comparative
analysis of the genome of Piriformospora indica with that of
fungi belonging to different classes, has revealed the presence
of genes related to both saprotropism as well as biotropism
lifestyle (Zuccaro et al., 2011). Interestingly, the microbe is
equipped with the essentials for both the life styles, so there
must be some external factors that make the microbe to choose
one of them. Comparison of genomes of closely related species
inhabiting different microbiomes is quite useful in disclosing
the molecular determinants responsible for this distinction.
Comparative genomics studies have revealed that difference in
metabolic, secretory, transport, and surface attachment proteins
are mainly responsible for selection of contrasting habitats.
Monteiro et al. (2012) reported lipopolysaccharide and adhesins
as potential molecular factors responsible for the contrasting
phenotypic behavior of closely related species during host plant
colonization as symbiont endophyte or as phytopathogen.
Variation was observed in the distribution of essential genes
related to signaling, surface attachment, secretion, and transport
between the two strains of Klebsiella pneumoniae which revealed
the divergences for the preferred lifestyle as plant endophyte for
Kp342 and as a human pathogen for other strain MGH78578
(Fouts et al., 2008). These data suggest that Kp342 is well adapted
to escape plant defense reactions and successfully establishes
itself inside a plant. Monteiro et al. (2012) have identified the
genes accounting for differences in the colonization patterns
of two closely related species, i.e., endophytic Herbaspirillum
seropedicae Smr1 and the phytopathogenic H. rubrisubalbicans
M1, using suppression subtractive hybridisation (SSH). SSH is an
effective technique for the analysis of genetic diversity among the
microbes (Winstanley, 2002; Galbraith et al., 2004). SSH libraries
are constructed to identify the DNA fragments present in one
species and absent in other.

Genome comparison of endophytic isolates with their non-
endophytic counterparts reveal features likely to be inevitable
for establishing and further maintaining plant microbial
interactions. Further, the study is also helpful to realize the
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TABLE 1 | List of endophytes whose genomes have been sequenced.

Fungal endophytes Reference

1 Epichloe festucae E2368 Schardl et al., 2009, 2010

2 Piriformospora indica Zuccaro et al., 2011

3 Ascocoryne sarcoides Gianoulis et al., 2012

4 Penicillium aurantiogriseum NRRL
62431

Yang Y. et al., 2014

5 Shiraia sp. slf14 Yang H. et al., 2014

6 Harpophora oryzae Xu et al., 2014

7 Pestalotiopsis fici Wang et al., 2015

8 Rhodotorula graminis WP1 Firrincieli et al., 2015

9 Phialocephala scopiformis DAOMC
229536

Walker et al., 2016

10 Microdochium bolleyi J235TASD1 David et al., 2016

11 Xylona heveae Gazis et al., 2016

Bacterial endophytes Reference

1 Azoarcus sp. strainBH72 Krause et al., 2006

2 Klebsiella pneumoniae 342 Fouts et al., 2008

3 Gluconacetobacter diazotrophicus
Pal5

Bertalan et al., 2009

4 Enterobacter sp. strain638 Taghavi et al., 2010

5 Stenotrophomonas maltophilia
R551-3

6 Pseudomonas putida W619

7 Serratia proteamaculans 568

8 Azospirillum sp. B510 Kaneko et al., 2010

9 Bacillus subtilis Deng et al., 2011

10 Variovorax paradoxus Han et al., 2011

11 Herbaspirillum seropedicae strain
SmR1

Pedrosa et al., 2011

12 Burkholderia phytofirmans strain
PsJN

Weilharter et al., 2011

13 Stenotrophomonas maltophilia
RR-10

Zhu et al., 2012

14 Enterobacter sp. strain SST3 Gan et al., 2012

15 Burkholderia sp. strain KJ006 Kwak et al., 2012

16 Enterobacter cloacae subsp.
Cloacae strainENHKU01

Liu et al., 2012

17 Enterobacter radicincitans
DSM16656(T)

Witzel et al., 2012

18 Rhizobium sp. strain IRBG74 Crook et al., 2013

19 Enterobacter cloacae P101 Humann et al., 2013

20 Pseudomonas poae RE∗1-1-14 Muller et al., 2013

21 Herbaspirillum frisingnse GSF30 Straub et al., 2013

22 Bacillus pumilus Jeong et al., 2014

23 Paenibacillus sp.P22 Hanak et al., 2014

24 Pantoea agglomerans Gan et al., 2014

25 Staphylococcus haemolyticus

26 Pseudomonas sp. strain RIT288 &
RIT357

27 Microbacterium oleivorans

28 Micrococcus luteus strain RIT304,
RIT305 & RIT324w

29 Janthinobacterium lividum

30 Stenotrophomonas sp.

(Continued)

TABLE 1 | Continued

Bacterial endophytes Reference

31 Delftia sp.

32 Sphingomonas sp.

33 Exiguobacterium sp.

34 Klebsiella variicola DX120E Lin et al., 2015

35 Pseudomonas fluorescens PICF7 Martinez-Garcia et al., 2015

36 Kosakonia oryzae K0348 Meng et al., 2015

37 Raoultella terrigena R1Gly Schicklberger et al., 2015

38 Paenibacillus dauci Wu et al., 2015

39 Pantoea ananatis AMG521 Megias et al., 2016

40 Bacillus thuringiensis KB1 Jeong et al., 2016

41 Staphylococcus epidermidis strains
SE2.9; 4.6; 4.7 and 4.8

Chaudhry and Prabhu, 2016

genetic drivers of niche adaptation (Lopez-Fernandez et al.,
2015). Genomes of closely related endophytic species, but
exhibiting different functional roles in host plant can also
be compared for determining the adaptability and evolution
strategies. Tezerji et al. (2015) have compared the genomes of
three strains of P. ananatis. The three strains were isolated
as maize seed endophytes but exhibited different interaction
strategies with the host plant. Genome comparisons revealed
differences among the strains for secretory protein, integrase,
transposase and phage related genes. Multigenome comparative
analysis of more than ten members of Clavicipitaceae family,
for gene clusters of four classes of alkaloids, revealed that
variations in peripheral genes of the alkaloid loci are responsible
for their pharmacological specificities (Schardl et al., 2013).
Thus, comparative genome analysis of endophytes for different
metabolite gene clusters can prove to be useful in understanding
metabolic diversity among the members of a microbiome and
thus, this knowledge can be exploited in metabolic engineering.

Pan genome studies have also opened a new window to closely
observe genetic determinants of endophytism (Medlini et al.,
2005; Mayer et al., 2014). Pan genome can be defined as an
overall gene repertoire of a species which comprises of a core
genome and an accessory genome. Core genome involves the
genes present in all strains of the species whereas accessory
genome involves genes unique to particular strains. Pan genome
studies may therefore lead to the identification of signature genes
responsible for adaptation and evolution of a microbe as an
endophyte. Genome sequence studies are based on cultivation
dependent approach and therefore, non-culturable endophytic
microbial taxa remain untouched.

METAGENOMICS

Metagenomics involves analysis of sequence information from
microbial members of various ecological communities. It evades
the need for isolation and cultivation of individual species.
In order to understand and manipulate the contribution of
endophytes to the host plant, it is important to uncover
their metabolic potential and beneficial characteristics. However,
determination of endophytic microbial functions is impeded
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by the non-culturable feature of many endophytes (Dinsdale
et al., 2008). A metagenomics approach is quite helpful in
unraveling the potential of uncultured microbial communities
(endophytes) (Dinsdale et al., 2008), thus revealing the
information beyond the genomic information of individual
taxa. In this approach, DNA is extracted from the whole
population and analyzed for its gene content. Sessitsch et al.
(2012) unraveled the putative functional characteristics of the
root endophytes of rice based on metagenome analysis. They
reported numerous metabolic adaptations of endophytes to their
microhabitat, thereby, suggesting high potential of the endophyte
community in terms of plant-growth promotion, enhancement
of plant stress resistance, bio control against pathogens and
bioremediation.

Functional diversity has been maintained among microbial
communities inhabiting different environments. Comparative
metagenomics approach can be successfully used to study
functional diversity among endophytes of same or the different
host plants. Dinsdale et al. (2008) used the comparative
metagenomics approach to describe the variations in functional
potential of nine different microbiomes.

High throughput sequencing called next generation
sequencing (NGS) has made metagenomic studies comparatively
easier and catalyzed the rapid, unprecedented characterisation
studies of microbiomes (Akinsanya et al., 2015). It has equipped
researchers with a wide ranging tool for quick and affordable
study of DNA sequences from an environmental sample
(Jones, 2010). Four hundred and fifty-four sequencing has
provided a convenient means for the characterisation of fungal
communities (Jumpponen et al., 2010). Toju et al. (2013)
described the community composition of root-associated fungi
in a temperate forest in Japan. They demonstrated the coexistence
of mycorrhizal fungi and endophytic fungi in roots of different
plant species using 454 pyrosequencing techniques. Coexistence
would surely involve complex interactions between the two
ecotypes which can be further studied using metaproteomics,
metatranscriptomics, or metaproteogenomics approach. One
should be aware of the limitations regarding NGS technologies
prior to using the same for experimental studies (Daniel et al.,
2008; Jones, 2010). High ratio of sequences with no homolog in
public databases is one of the major limitations of metagenomic
studies. Genome sequencing studies of the strains collected from
the same niche would overcome the limitation to an extent.

TRANSCRIPTOMICS AND
METATRANSCRIPTOMICS

Transcriptomics has been found as a feasible approach to
study the microbial communities associated with different plants
(Molina et al., 2012; Sheibani-Tezerji et al., 2015). It involves the
comparative analysis of transcriptomes of groups of interacting
species and helps to understand the response of microbial
communities toward changing environments. While genome and
metagenome based studies enumerate the presence or absence
of specific genes, expression studies of specific genes in different
microenvironments are essential to understand the endophytic

phenomenon. Deep analysis of the differentially expressed genes
in the host plant as well as symbiotic microbes would provide
insight into the basic nature and mechanism of mutualistic
relationships between the two. Dual RNA-seq transcriptional
profiling gives better idea of gene expression in both the partners
of symbiosis at a time. Camilios-Neto et al. (2014) have used dual
RNA-seq technology for transcriptional profiling of wheat roots
colonized by Azospirillum brasilense and observed upregulation
of nutrient acquisition and cell cycle genes. RNA seq allows
detection of more differentially expressed genes than microarray
alone. Despite of more advantages of RNA seq, microarray
is still more commonly used tool for transcriptional profiling
because of the high cost and relatively difficult data storage and
analysis in RNA seq technology. Metatranscriptomic analysis
of soybean plant has revealed the presence of a number of
small RNA sequences unrelated to soybean genome. Interestingly
comparative analysis of the obtained sequences established
the presence of various pathogenic, symbiotic and free living
microbes in different samples of soybean plant (Molina et al.,
2012).

Comparative transcriptome analysis of endophyte free and
endophyte infected plants direct us toward understanding the
basis of endophyte mediated disease resistance and plant growth
promotion properties. Comparative studies regarding differential
expression profiles of endophytes within and outside host
plant can be helpful to identify interaction factors involved in
maintaining the relationship. Conversely differential expression
of different host plant genes in presence and absence of
endophytes can also be studied. SSH, microarray analysis and
SOLiD-SAGE like techniques can be successfully used for
differential expression analysis (Johnson et al., 2004; Dinkins
et al., 2010; Ambrose and Belanger, 2012). SOLiD-SAGE
transcriptome analysis of endophyte free and Epichloe festucae
infected Festuca rubra has revealed about two hundred plant
associated genes that expressed differentially between the two
plant samples (Ambrose and Belanger, 2012). Genome based
studies make an important base for successful transcriptomics.
Thus, combined genome and transcriptome analysis is more
helpful in decoding the endophytic life style of symbionts.

PROTEOMICS AND METAPROTEOMICS

With the advancement in technology, post genomic analyses
of the microbial communities are becoming popular as the
genomics based analyses are unable to uncover the actual
function of microbial communities in situ. Proteomics is defined
as the large scale study of different proteins expressed by an
organism (Wilkins et al., 1995) whereas metaproteomics involves
identification of the functional expression of the metagenome
and elucidation of the metabolic activities occurring within a
community at the moment of sampling. It is also known as
whole community proteomics. Maron et al. (2007) have stressed
on the relevance of metaproteome analysis in identification of
new functional, stress related genes and in relating genomic
diversity with the functionality of the microbes inhabiting
complex environments. Mass spectrometry (MS) has emerged

Frontiers in Plant Science | www.frontiersin.org 4 June 2016 | Volume 7 | Article 955

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00955 June 28, 2016 Time: 17:12 # 5

Kaul et al. Tools for Understanding Plant Interactions

as the unchallenged leader in the field, becoming the dominant
technological platform for almost all proteomic measurements.
Metaproteomics exploits the power of high performance MS
for extensive characterization of the complete suite of proteins
expressed by a microbial community in an environmental
sample. Total proteins can be extracted from microenvironment
either by direct or indirect lysis (Maron et al., 2007). Using direct
lysis strategy total protein content can directly be extracted from
plant endosphere under different natural and stress conditions
and the protein fingerprint so obtained can be analyzed to study
the impact on metabolite production potential of endophytes.
Conversely, using indirect lysis method, total protein content can
be extracted from preisolated endophytes under different stress
conditions and comparison of the protein fingerprints obtained
after 2,D-gel electrophoresis analysis, can be used to reveal the
role of endophytes under different stress conditions (Bhuyan
et al., 2015). Otherwise, total protein content of host plants in
presence and absence of endophytes can also be assessed to
identify actual specific proteins involved in interactions between
the two. Lery et al. (2011) found 78 differentially expressed
proteins between sugarcane-Gluconacetobacter interaction model
and control cultures using Mass-spectrometry based proteomic
analysis of the same. Proteome based studies are incomplete
without genomic information. Moreover protein extraction and
sample preparation is a difficult step in proteomic studies due to
the presence of interfering substances like alkaloids, polyphenols,
thick polysaccharides, lipids, organic acids, and other secondary
metabolites. More information regarding the metagenomes
of microbial communities from different environments is
needed for the effectiveness of this technique in characterizing
endophytic microbial communities.

METAPROTEOGENOMICS

Metaproteogenomics links the proteome and the genome
of the environmental samples and allows identification of
more proteins (functions) than proteomics alone. It involves
combinatorial study of metagenome and metaproteome of
same sample. Knief et al. (2012) have used metaproteogenomic
approach to study microbial communities in the phyllosphere
and rhizosphere of rice. The results showed that despite the
presence of nifH genes in both microenvironments, expression
was found in rhizosphere only. If such an approach could be
applied to study the endosphere, more significant data regarding
the endophyte functionality can be collected. Characterization
of the metaproteogenome is expected to provide data linking
genetic and functional diversity of microbial communities.
Proteins involved in plant endophyte interactions that could
not be studied in cultivated isolates are new targets for
functional studies. Plant associated bacterial protein secretion
system can be successfully used for determining plant bacterial
interactions (Downie, 2010). Delmotte et al. (2009) have
successfully used community proteogenomics to identify the
unique traits of phyllosphere bacteria. Bacterial proteogenomic
pipeline and other tools are available for proteogenomic analysis
studies (Uszkoreit et al., 2014). The technique offers insights

into possible strategies adopted for endophytic lifestyle. The
combined metagenome and metaproteome analysis would allow
one to overcome the limitations of protein identifications as in
metaproteomic approach due to non-availability of closely related
reference genomes.

MICROARRAY-BASED TECHNIQUES

Microarray technique has equipped the modern genome based
studies with the tools for genome specific gene expression studies,
endophyte gene profiling, exploration of host plant–symbiont
interactions and many others for transcriptome analysis (Felitti
et al., 2006). Barnett et al. (2004) used the dual genome Symbiosis
Chip based tool to study symbiotic interactions. Symbiosis chip
based studies allow simultaneous analysis of gene expression in
both partners of the association and can easily be used to study
the endophyte host interactions. Barnett et al. (2004) studied the
coordinate differentiation and response generated from signal
exchange between the two symbiotic partners simultaneously viz.
α-proteobacterium Sinorhizobium meliloti and its legume partner
Medicago truncatula during nodule development. They designed
a custom Affymetrix Gene Chip with the complete S. meliloti
genome and ≈10,000 probe sets for M. truncatula.

Genomic interspecies microarray hybridisation technique
has proved to be useful in the characterisation of previously
untouched genomes, provided that the genome of a close
relative has already been fully sequenced (Dong et al., 2001).
Microarray technique allows the identification of a number
of genes in an uncharacterised genome without the need for
genome sequencing. This technique finds more applications
with sequencing of endophytic genomes (Table 1). Genes have
been discovered efficiently in maize endophyte K. pneumonia
342 by hybridizing the DNA from KP342 to a microarray
containing 96% of the annotated ORFs from Escherichia coli K12
(Dong et al., 2001). Microarray studies can be used to study
the transcriptional changes induced by entry of endophytes in
plants. These studies provide a new insight into the biology of
endophyte host interaction and represent a step forward toward
identification of host genes required for successful endophyte
infestation. Felitti et al. (2006) described the potential of Epichloe
and Neotyphodium endophyte cDNA microarrays (NchipTM

and EndochipTM microarrays) for genome wide transcriptome
analysis. Microarray analysis of transcriptome of endophytic-
Pseudomonas infected Arabidopsis revealed the upregulation of
phytohormone production and nodule formation genes whereas
ethylene responsive genes were found to be downregulated
(Wang et al., 2005). Reference selection is a critical step in
microarray studies as non-specific references may generate
ambiguous results. However, non-availability or limited access
to the specific gene expression/profiling databases have restricted
such studies.

System biology science embraces four key technologies
viz. genomics, transcriptomics, proteomics, and metabolomics.
All the approaches along with their “meta-omic” partners
(including metagenomics, metatranscriptomics, etc.) are in a
state of expeditious expansion. While the individual type of
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data are useful, they are even more valuable when used
in combination. Genomic information introduces just to
the potential wealth hidden in a microenvironment in the
form of molecular machinery but the actual expression and
function remain unknown. On the other hand, transcriptome
studies reveal genome expression under different environmental
conditions without considering protein level regulation like post
translational modifications, protein turnover, etc., Significantly,
proteomic studies disclose functional gene products exploited
by microbes for life processes. However, proteomic studies
are consummated only after collating measured protein data
(derived from proteomic studies) with predicted protein data
(derived from genomic studies) (Hettich et al., 2013). However,
transcriptomic and proteomic studies are ineffective without
genome based studies. Moreover, complementing metagenomics
data with the metatranscriptomic and metaproteomic data would
generate complete view of the activities and potential of the
endophytes. All techniques are interdependent and the data
generated from one complement the another. Thus, combined
analysis of data generated from different modern “omics” tools
would prove to be helpful in solving the riddle of endophytism.

CONCLUSION

Deep understanding of endophyte host interactions is the need
of the hour in order to realize the use of endophytes as
plant probiotics. By using a multidisciplinary approach, factors
inevitable for both the establishment as well as maintenance of
symbiotic association between the two can be better understood.
Such studies are also important to elucidate that how the
endophytes confer stress tolerance and growth promotion to

its host plant. The complementary information generated from
modern “omics” studies (discussed above) in association with
other system biology techniques are inevitable to build up
models to predict and explain endophyte mediated processes.
This will also prove to be quite useful in revealing and better
understanding of the network of the complex interactions
of endophytes with the host plant and also other associated
microbes. Plant–pathogen interaction studies can be used as
a base model to understand plant–endophyte relationship.
Advanced techniques can be used with the same accuracy for
bacterial as well as fungal endophytes to reveal the genetic
and metabolic potential, as well as ecology and evolution of
endophytes. This can make us understand the role of such diverse
microbial communities in the plant microbiome as well as in
natural ecosystem, so that their biotechnological potential can be
harnessed more efficiently and sustainably.
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