
ORIGINAL RESEARCH ARTICLE
published: 03 February 2014

doi: 10.3389/fgene.2014.00012

Utility of network integrity methods in therapeutic target
identification
Qian Peng1,2*† and Nicholas J. Schork1,2*†

1 Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
2 Scripps Genomic Medicine, The Scripps Translational Science Institute, La Jolla, CA, USA

Edited by:

Frank Emmert-Streib, Queen’s
University Belfast, UK

Reviewed by:

Teresa N. De Villavicencio Díaz,
Center for Genetic Engineering and
Biotechnology, Cuba
Peter Langfelder, University of
California, Los Angeles, USA

*Correspondence:

Qian Peng and Nicholas J. Schork,
Department of Molecular and
Experimental Medicine, The Scripps
Research Institute, 3344 North
Torrey Pines Court, Suite 300, La
Jolla, CA 92037, USA
e-mail: qpeng@scripps.edu;
nschork@scripps.edu
†Present address:

Qian Peng and Nicholas J. Schork, J.
Craig Venter Institute, La Jolla, CA,
USA

Analysis of the biological gene networks involved in a disease may lead to the identification
of therapeutic targets. Such analysis requires exploring network properties, in particular
the importance of individual network nodes (i.e., genes). There are many measures that
consider the importance of nodes in a network and some may shed light on the biological
significance and potential optimality of a gene or set of genes as therapeutic targets.
This has been shown to be the case in cancer therapy. A dilemma exists, however, in
finding the best therapeutic targets based on network analysis since the optimal targets
should be nodes that are highly influential in, but not toxic to, the functioning of the entire
network. In addition, cancer therapeutics targeting a single gene often result in relapse
since compensatory, feedback and redundancy loops in the network may offset the activity
associated with the targeted gene. Thus, multiple genes reflecting parallel functional
cascades in a network should be targeted simultaneously, but require the identification of
such targets. We propose a methodology that exploits centrality statistics characterizing
the importance of nodes within a gene network that is constructed from the gene
expression patterns in that network. We consider centrality measures based on both graph
theory and spectral graph theory. We also consider the origins of a network topology, and
show how different available representations yield different node importance results. We
apply our techniques to tumor gene expression data and suggest that the identification of
optimal therapeutic targets involving particular genes, pathways and sub-networks based
on an analysis of the nodes in that network is possible and can facilitate individualized
cancer treatments. The proposed methods also have the potential to identify candidate
cancer therapeutic targets that are not thought to be oncogenes but nonetheless play
important roles in the functioning of a cancer-related network or pathway.
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1. INTRODUCTION
Treating many forms of cancer effectively is notoriously difficult
as most tumors have complex cellular dysfunctions replete with
compensatory and redundancy mechanisms that contribute to
tumor growth despite some aspect of the tumor being targeted
for destruction by an anti-cancer therapeutic agent. Thus, while
many cancer treatments seem effective when first administered,
relapses often occur, particularly in later stages of tumor develop-
ment. This general “robustness” of biological networks in tumor
cells presents true challenges for cancer treatments and cures,
especially if treatments administered only target a single gene.
To reduce the likelihood of resistance and the risk of relapse, it
may be important to target multiple pathways and oncogenes
simultaneously, but the best way to do this has not been estab-
lished (Hughes, 2007; Petrelli and Giordano, 2008; Dar et al.,
2012).

While many tumors have certain pathologies and dysfunc-
tional pathways in common, the specific mechanisms contribut-
ing to the growth of any one tumor are often distinctive and
subtle. However, the identification of these mechanisms and
the characterization of their contributions to individual tumor

growth and treatment resistance can be greatly aided through
the use of modern genomic assays and pathway analyses. Assays
such as DNA sequencing, RNA sequencing, copy number varia-
tion assays, and proteomic profiling can reveal phenomena such
as damaging mutations in oncogenes, resistance gene amplifi-
cations, and abnormal silencing of tumor suppressor genes. In
conjunction with these assays, network and pathway analyses
methods can reveal connections between different perturbations
in tumors and may suggest interactions between genes that, if
targeted simultaneously with different therapeutic compounds,
could disrupt the network integrity of the tumor cells and lead
to more effective interventions.

The best way to assess connections between multiple perturba-
tions in tumors that could be targeted simultaneously is an open
question. However, analyses of the principal properties, behavior
and structures associated with biological networks within tumors
may lead to the identification of more optimal therapeutic tar-
gets. Of the measures that one could consider in evaluating the
properties of a tumor gene network, those focusing on network
integrity are of particular interest. Network integrity analysis can
lead to the identification of central gene nodes or gene hubs within
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Network Inference

• Q: What types of biological networks have been inferred in the paper?
• A: We use gene expression data in conjunction with cancer-related signaling pathways to infer tumor–specific net-

works. The extracted tumor-specific networks help us further infer critical nodes (genes) and potential therapeutic
targets for specific types of tumors or tumor cells.

• Q: How was the quality/utility of the inferred networks assessed?
• A: We compare and contrast the predictions with those derived using canonical pathways. We further compare

the predictions on various normal tissues, tumor types and tumor cells. We also assess the results using multiple
pathway/network databases.

• Q: How were these networks validated?
• A: Many of the targets predicted from the networks have supporting evidences in the literatures: they are either

implicated as oncogenes or known targets of cancer treatments.

the network that contribute to the maintenance and growth of
a tumor in critical ways (Jeong et al., 2001; Ágoston et al., 2005;
Perumal et al., 2009; Horvath, 2011; Li et al., 2011). For exam-
ple, genes that are critical to the formation and growth of tumors
have been observed to code for proteins that have increased levels
of connectedness with other genes as well as greater centrality (i.e.,
occupying a more central place in the network rather than being
on the periphery of the network) than genes that do not con-
tribute to tumor growth and formation (Jonsson and Bates, 2006;
Sun and Zhao, 2010; Xia et al., 2011). However, it has also been
shown that most disease genes do not necessarily code for proteins
that are hubs within a network, suggesting that some network
characteristics may be better indicators of optimal therapeutic
gene targets than others (Goh et al., 2007). In addition, most
network analyses have been performed on comprehensive and
generic interaction information rather than on networks or path-
ways specific to individual tumors, calling into question which
type of network topology or representation an analysis should be
pursued with. It is noteworthy, however, that network centrali-
ties have also been used to derive integrated gene signatures for
breast cancer (Wang et al., 2011) and, in the context of signaling
pathways, centrality-based analysis approaches have been used to
identify enriched pathways from gene expression data (Gu et al.,
2012), suggesting that different data types and approaches may
provide complementary insights.

We assess the properties and characteristics of a cancer net-
work topology based on gene expression data across a variety
of tumors with subsequent analyses confined to specific types
of tumors or tumor cells. We contrast the results of the use of
different measures of network integrity on the ability to iden-
tify therapeutically meaningful gene targets in cancer networks.
Our ultimate goal was to determine if it is possible to make
compelling claims about the existence of gene targets that might
be optimal for therapeutic intervention based on the network
characteristics. We rank genes (i.e., nodes in the network) and
edges based on their influences on network function and topol-
ogy defined by various measures, and illustrate that centrality
analysis on signaling pathways may provide additional insights
to that based on protein-protein interaction (PPI) networks. One
of the potential uses of network topology analyses like those
we pursued is to identify targets that are not necessarily known
to be directly cancer-related but may influence tumor growth

nonetheless. Thus, in addition to common measures of network
centrality which focus on cancer-related genes, we also investigate
the utility of centralities based on spectral graph theory, includ-
ing spectral gap centrality, that consider network function in a
broader context and that have not been explored in the context of
biological networks to date.

The remainder of the manuscript is organized as follows.
Section 2 describes several centrality measures based on both
graph theory and spectral graph theory, as well as the con-
struction of network centralities based on gene expression data.
Section 3 contrasts the critical nodes (i.e., genes) and edges
defined and determined by different measures in cancer PPI sub-
networks and pathways, pathways from different sources, and
pathways conditioned on specific tissues and tumor cell lines.
Section 4 summarizes the main observations and issues, and
makes recommendations. We note that some of the terminol-
ogy used in the literature and ways of referring to network
components are often ambiguous. We use network and pathway
interchangeably, although network often corresponds to the actual
topology associated with a biological pathway. Also, when refer-
ring to nodes in a network (pathway) we are referring to individual
genes and their place in the topology associated with a network
(pathway).

2. MATERIALS AND METHODS
2.1. CRITICAL NODES IN A NETWORK
Network centralities are important structural attributes of a net-
work. They can be exploited in analyses evaluating network
robustness and reflect how much a network is connected and,
importantly, how network functionality might be affected locally
or globally if certain nodes or connections in the network are dis-
rupted. There are many types of centrality measures (Freeman,
1978/1979; Koschützki and Schreiber, 2008; Horvath, 2011) and
they are often used in different contexts. In biological network or
pathway analysis, potential drug targets are expected to be highly
influential nodes such that perturbing these nodes will have a
major effect on network integrity and the flow of information
through that network. These nodes might correspond to genes
that affect many other genes in the network, or they could be asso-
ciated with network fragility in the sense that if they are perturbed
the network cannot function as a whole. Such highly influential
nodes in a network or pathway might also be toxic to the entire

Frontiers in Genetics | Bioinformatics and Computational Biology February 2014 | Volume 5 | Article 12 | 2

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Peng and Schork Target identification through network integrity

network and lead to a complete inability of the network to func-
tion if perturbed. Such complete dysfunction might induce more
harm than good if it is a network that normal, non-tumor cells
require in order to function properly. In this light, it might be bet-
ter to target nodes or genes that influence the most critical nodes
in a network and not the actual critical nodes themselves. Among
the various measures of network centrality that have been pro-
posed in the literature, we primarily focused on the four measures
described briefly below.

2.1.1. Degree centrality
The simplest and the most common measure of node importance
in the context of a specific network topology is degree centrality.
Consider a network defined as a simple graph G = (V, E) with
n = |V | nodes and |E| edges. The degree of node v ∈ V is the
number of edges incident to v. Mathematically, the graph G can
be represented as an adjacency matrix A(G), defined as

Aij =
{

1 if i, j ∈ V , {i, j} ∈ E,
0 otherwise,

where 1 ≤ i, j ≤ n. Note that in discussions of the adjacency
matrix, we will often refer to node vi as node i and use these two
notations interchangeably. The degree centrality of node i is then
defined as cd(i) = ∑

j aij and reflects how well a node is connected
as well as its likely direct influence on its neighbors.

2.1.2. Betweenness centrality
The betweenness centrality is defined as the frequency with which
a node is on the shortest path between two other nodes (Freeman,
1978/1979). It reflects the likely control of communication between
other nodes by the node in question. There are definitional and
operational differences between two types of betweenness central-
ity measures: node betweenness and edge betweenness. Betweenness
for node k is defined as following,

cb(k) =
∑
i<j

gikj

gij

where gij denotes the number of shortest paths between nodes i
and j, and gikj denotes the number of shortest paths between i, j
through node k. Betweenness for edge e is similarly defined as,

eb =
∑
i<j

giej

gij

where giej denotes the number of shortest paths between nodes i, j
through edge e. In contrast to the local effect of degree centrality,
betweenness captures local connectivity as well as a node’s global
importance to the network. A node or edge of high betweenness
essentially serves as a gatekeeper that could control the flow of
information across the network.

2.1.3. Eigenvector centrality
The eigenvector centrality is defined as the centrality of a node
that is proportional to the sum of the centralities of the nodes

it is connected to Bonacich (1972). The eigenvector centrality of
node i is

ce(i) = 1

λ

∑
j

aijce(j)

where λ is the largest eigenvalue of the adjacency matrix A. It
reflects how well a node is connected to the well-connected nodes
and how differences in node degrees propagate through a net-
work. Both Google’s PageRank measures and Katz centrality are
variants of the eigenvector centrality.

2.1.4. Spectral gap centrality
Another measure derived from spectral graph theory was pro-
posed by Wehmuth and Ziviani (2011). As it is based on the
spectral gap of sub-networks, we will refer to it as spectral gap
centrality. The diagonal degree matrix of G, denoted D(G), is
defined as

Dij =
{

dk if i = j = k,
0 otherwise,

where dk is the degree of node k. The normalized Laplacian
matrix (Chung, 1997) of graph G, denoted L(G), is defined as

Lij =

⎧⎪⎨
⎪⎩

1 i = j,
− 1√

didj
{i, j} ∈ E,

0 otherwise.

All eigenvalues of L(G) are between 0 and 2, i.e., 0 = λ1(L) ≤
λ2(L) ≤ · · · ≤ λn(L) ≤ 2. If G is a single connected component,
λ2(L) (referred to as the spectral gap) is the smallest non-zero
eigenvalue and is less than 1 if the graph is not complete. λ2

approaches 0 as the graph becomes less connected. The critical
nodes are nodes with high spectral gap centrality. The spectral
gap centrality of node i is defined as

ch
s (i) =

{
λi

2
log2(di)

di > 1,

∞ di = 1.

where λi
2 is the spectral gap of the h-neighborhood of node i, i.e.,

the subgraph induced by all nodes within h edges from node i, and
di is the degree of node i. The lower the value ch

s (i), the more crit-
ical the node i is to the network. The spectral gap centrality thus
reflects the neighborhood connectivity, and captures both degree
and betweenness to some extent depending on the value of h.

The four centrality measures are chosen primarily for their
representative characteristics of networks, their direct relevance
to potential biological functions that we are interested in, and
the intuitive interpretation of the results. Among other mea-
sures that might be of interest, closeness (Sabidussi, 1966) and
radiality (Valente and Foreman, 1998) centralities reflect how
quickly a node can reach another, which represents a different
type of functionality. Closeness centrality requires network to
be strongly connected which is often not the case for pathways.
PageRank (Page et al., 1999) and Katz status index (Katz, 1953)
are variants of eigenvector centrality. Another class of centralities
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are motif-based (Koschützki and Schreiber, 2008), which repre-
sent functional substructures, thus are more likely employed in
specific contexts.

2.2. THE ORIGINS AND RELEVANCE OF NETWORK AND PATHWAY
TOPOLOGIES

The question of which centrality measure yields a better pre-
diction for therapeutic targets is only one of many important
questions associated with biological network analyses. A more
fundamental question is which biological network to interrogate.
Network analysis can be applied to protein-protein interaction
(PPI) networks, often derived empirically through experimen-
tation, or biological pathways that have been described over
the years. The choice of a particular pathway is also compli-
cated, since there are multiple versions and subcomponents of
pathways to choose from. One option is to derive a protein-
protein interaction subnetwork from the genes of relevance to a
particular, e.g., phenotype that are grounded in a pathway. An
alternative is to analyze the pathway topology directly without
considering the elements associated with a protein-protein inter-
action subnetwork. Different choices of a network or pathway
representation—even if chosen to address the same overarching
questions—will undoubtedly yield different results due to intrin-
sic differences between PPI subnetwork definitions and pathways.
In addition, the same pathway defined from different database
sources, or compiled based on different readings or reviews of
the literature, may also yield different results due to topological
differences between the network representations. Further com-
pounding these issues is the fact that all genes in a pathway are
not equally expressed in all tissues. Thus, networks constructed
from one set of resources or experiments may not represent the
true network topologies associated with different tissues. For the
identification of critical nodes and genes to be relevant to a par-
ticular biological setting, tissue-specific network configurations
might need to be considered. Obviously, if a gene is not expressed
in a particular tissue of interest, for example, the node in another
tissue-derived gene expression-based network corresponding to
that gene and its associated edges must perforce be deleted from
the network, thus altering the network topology.

To evaluate the effects of different network representations
and different network centrality measures on the identifica-
tion of critical nodes in that network, we analyzed MAPK and
EGFR signaling pathways and configurations obtained from dif-
ferent sources. We treated these signaling pathway representations
as true networks. We obtained pathway information from the
KEGG (Kanehisa and Goto, 2000) and WikiPathways (Pico et al.,
2008) databases. We obtained a human PPI network from the
STRING (Mering et al., 2003) database. In order to have the path-
way representations comparable to PPI network representations,
we treated them as undirected graphs. Note that the PPI subnet-
work from a pathway is a subgraph of the entire PPI network
limited to the nodes corresponding to the intersection between
genes implicated in the pathway and those present in the PPI
network.

To compare and contrast tissue-specific pathways (based on
the genes expressed in that tissue) and more generic, non-
expression-based pathways, we analyzed cancer-related pathways

based on expression patterns obtained from the NCI60 tumor
cell lines (Scherf et al., 2000). To determine expression patterns
in the NCI60 cell lines, we applied the Gene expression bar-
code algorithm (McCall et al., 2011) to the Affymetrix gene
expression data of each cell line, which yielded an expression
state (i.e., expressed/unexpressed) for each gene in each cell
line. In addition, we analyzed pathways conditioned on a set
of gene expression states and levels obtained from normal tis-
sues. RNA-Seq data for eleven human tissues were obtained
from RNA-Seq Atlas (Krupp et al., 2012). A threshold on gene
expression value RPKM (reads per kilobase of transcript per mil-
lion mapped reads (Mortazavi et al., 2008)) was used to filter
genes such that genes with expression levels having an RPKM<

0.5 were considered unexpressed. Tissue or cell-specific pathway
information was obtained by removing genes (i.e., nodes in the
network) corresponding to unexpressed genes from the default
pathway.

For each pathway (represented as a network) and each net-
work centrality measure, the nodes (i.e., genes) within them were
ranked in two ways: (i) by their centrality values; (ii) by the order
that they were removed based on an iterative procedure to identify
their importance in the network. This iterative procedure worked
by removing top-ranked nodes based on centrality value (along
with edges incident to the node), reassessing the nodes in the
network and repeating this process until all nodes were assessed.

3. RESULTS
3.1. THE EGFR AND MAPK PATHWAYS IN CANCER
We ultimately analyzed two different pathways known to have
pronounced roles in oncogenesis: The epidermal growth fac-
tor receptor (EGFR) pathway and the mitogen-activated protein
kinase (MAPK) pathway. Both EGFR and MAPK signaling path-
ways are well-studied and comprehensively curated, making them
ideal for our comparison of various methods for assessing node
importance and therapeutic target potential. We briefly describe
each below.

EGFR, also called ErbB1, is a member of the ErbB family
of receptor tyrosine kinases. The EGFR pathway is one of the
most important pathways regulating cell growth, differentiation
and survival (Holbro and Hynes, 2004). Abnormally high lev-
els of the EGFR protein are frequently found on the surface of
many types of cancer cells, facilitating the excessive cell division
that is the hallmark of cancer. The defective regulation of the
EGFR signal transduction pathway is also known to be associated
with oncogenesis. EFGR and its signaling components therefore
offer promising therapeutic targets for various cancers (Citri and
Yarden, 2006; Scaltriti and Baselga, 2006).

The MAPK superfamily includes well-conserved kinase genes
known to be involved in various cellular functions including cell
growth, proliferation, differentiation, migration and apoptosis.
They are regulated by four distinct groups of genes in mammals:
ERK1/2, JNK, p38 and ERK5. While ERK1/2 and ERK5 pathways
are relatively insulated, JNK and p38 kineses share many of their
activators, thus the two cascades are more entangled (Chen et al.,
2001; Yang et al., 2003). It has been well-established that aberra-
tions in MAPK signaling play critical roles in cancer development
and progression (Dhillon et al., 2007).
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3.2. PPI SUB-NETWORK VERSUS SIGNALING PATHWAY ANALYSES
The EGFR network we derived from WikiPathways [EGFR sig-
naling pathways (Pico et al., 2008; Kandasamy et al., 2010)] has
235 nodes and 249 edges. The average node degree is 1.06, and
the graph density (i.e., the fraction of possible edges) is 0.01. The
PPI subnetwork induced by EGFR pathway has 119 nodes and
4638 edges. Its average node degree is 39, and the graph den-
sity is 0.66. We applied the different centrality measures discussed
above to each network and ranked the nodes (genes) on the basis
of these measures. Tables 1, 2 list the top-ranked genes (ranked
between 1 and 10 for at least one measure) obtained from the
PPI subnetwork and the EGFR pathway, respectively. The left five
columns reflect degree centrality, node betweenness, eigenvector
centrality, spectral gap centrality with h = 2 and spectral gap cen-
trality with h = 3; the right five columns provide corresponding
measures with top-ranked nodes removed and the remaining sub-
graphs re-evaluated iteratively. The upper triangular matrix at the
bottom half of the table gives Spearman’s rank correlation coeffi-
cients assessing the relationship between the results of each pair
of metrics. This is computed using the actual rankings of all genes
listed in the table, including those ranked beyond ten.

As shown by Spearman’s ρ in Table 1, the rankings from differ-
ent metrics are highly correlated among genes in the PPI subnet-
work. This can be explained by the properties of the network. The
PPI network, like many biological networks (Lima-Mendez and
van Helden, 2009), has the following properties: (i) High-degree
nodes tend to be connected with other high-degree nodes; (ii)

The network diameter (i.e., the length of the longest of the short-
est paths between any two nodes) is usually small. A subnetwork
shares these properties if it is induced on nodes of high degrees.
Genes corresponding to high-degree nodes in a PPI network usu-
ally have systemwide effects and are involved in multiple pathways
including cancer-related pathways (Han et al., 2004; Barabási
et al., 2011). Spectral gap centralities in such a subnetwork are
largely dominated by node degrees, and eigenvector and between-
ness centralities also track the degrees for the high-degree nodes.
Consequently, different centrality metrics on a pathway-induced
PPI subnetwork are unlikely to yield significant insights beyond
what is already coded in node degrees. As noted, although high-
degree nodes in a PPI network may serve as effective drug targets,
they are also likely to be toxic if perturbed in severe ways, due
to their system-wide influence, i.e., their likely being involved in
many cellular functions as they influence many pathways simulta-
neously. In this light, Wang et al. (2013) showed that the number
of side effects of a drug is positively correlated with the degree
and betweenness centralities of that drug’s targets in the protein-
protein interaction network. This observation was found to be the
case for both cancer and non-cancer drugs.

In contrast to an analysis of the PPI network, the different cen-
trality measures produced different node rankings when applied
to the pathway information, as described in Table 2. Thus, while
some nodes ranked high in multiple metrics indicating their
overall importance, there are groups of nodes that rank high
based on one or another measure, especially with respect to the

Table 1 | Top ranking genes in EGFR PPI subnetwork by various centrality measures.

Gene cd cb ce c2
s c3

s cr
d

cr
b

cr
e c2r

s c3r
s

AKT1 1 1 1 1 1 1 1 1 1 1

EGF 2 3 2 2 2 2 3 2 2 2

EGFR 3 2 3 3 3 3 2 3 3 3

GRB2 4 5 4 4 4 4 5 5 5 4

MAPK1 5 4 5 5 5 5 4 4 4 5

RAC1 6 7 6 6 6 6 8 6 6 6

CDC42 7 6 7 7 7 7 6 8 7 7

MAPK3 8 10 8 8 8 8 10 7 8 8

STAT3 9 9 9 9 9 9 9 9

ERBB2 10 8 10 10 10 7 10 10

FOS 9 9

PTEN 10 10

cd 0.92 0.97 1 1 1 0.9 0.96 0.99 1

cb 0.87 0.92 0.92 0.92 0.99 0.85 0.93 0.92

ce 0.97 0.97 0.97 0.83 0.99 0.97 0.97

c2
s 1 1 0.9 0.96 0.99 1

c3
s 1 0.9 0.96 0.99 1

cr
d 0.9 0.96 0.99 1

cr
b 0.8 0.9 0.9

cr
e 0.97 0.96

cr2
s 0.99

cd , degree centrality; cb, node betweenness; ce, eigenvector centrality; c2
s , c3

s , spectral gap centrality h = 2, 3. cr
{d,b,e,s},c

{2,3}r
s , node ranking are obtained by

consecutively removing the top ranked nodes. The bottom matrix is Spearman’s rank correlation coefficients.
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Table 2 | Top ranking genes in EGFR pathway by various centrality measures.

Gene cd cb ce c2
s c3

s cr
d

cr
b

cr
e c2r

s c3r
s

SRC 1 2 5 1 2 3 2 5

STAT3 2 1 3 2 2 1 2

EGFR 4 3 1 6 7 7 1 10

HRAS 6 3 8 5 9 4 6

MAPK1 7 9 4 7 6 6 3 4

MAPK3 8 9 9 2

GRB2 9 1 7 1 8 1 5 5 1

MAPK7 10 10 8

SOS1 2 6 3

RAF1 4 5 3 4

REPS2 5

ASAP1 6 4

MAP2K1 7 4 3

MAP2K2 10 6

STAT1 2

JAK2 4

JAK1 5

PIAS3 6

COX2 7

GRIM19 8

PLCG1 9 8 9

GAB1 8

PLD1 10

CBLC 9

MAPK8 10

SH3KBP1 7 7

JUN 9

JUND 10

cd 0.34 −0.27 0.76 0.68 0.87 0.53 0.76 0.66 0.69

cb −0.35 0.65 0.78 0.3 0.44 0.26 0.4 0.39

ce −0.29 −0.25 −0.19 −0.31 −0.24 −0.16 −0.21

c2
s 0.81 0.53 0.5 0.49 0.71 0.51

c3
s 0.65 0.44 0.49 0.48 0.7

cr
d 0.65 0.8 0.48 0.79

cr
b 0.6 0.54 0.45

cr
e 0.35 0.5

cr2
s 0.51

Spearman’s rank correlation coefficients are computed on genes in the table with their actual rankings (ranking > 10 not shown). Nodes that do not directly

correspond to genes are omitted.

betweenness and eigenvector centrality measures. High ranking
nodes based on the betweenness and eigenvector centrality mea-
sures appear to be exclusive to each other in the pathways we have
analyzed. The spectral gap centrality measure tends to capture a
few nodes ranked high by each of the other three metrics. Similar
results were observed when we analyzed the MAPK pathways, as
described in the next section.

We note that genes (nodes) ranked high exclusively by the
eigenvector centrality measure (i.e., STAT1, JAK2, JAK1, PIAS3,
COX2, GRIM19) are all neighbors (directly downstream or
upstream in the pathway) of STAT3, which plays a leading role
in cancer inflammation and immunity, and is a validated target

for cancer therapy (Yu et al., 2009). JAK-STAT signaling is a well
understood cascade as its aberrant activation has been implicated
in various types of leukemias, as well as solid tumors (Ferrajoli
et al., 2006; Sansone and Bromberg, 2012). In addition, it has
been established that STAT1 overexpression is associated with
anticancer drug resistance (Khodarev et al., 2012). Interestingly,
the FDA-approved drug ruxolitinib is a JAK1 and JAK2 inhibitor,
and more JAK inhibitors are in development (Verstovsek et al.,
2012). Also, PIAS3 overexpression has been shown to inhibit cell
growth and increase drug sensitivity in lung cancer (Ogata et al.,
2006), and several studies have indicated that COX2 inhibitors
(NSAIDs and celecoxib) have protective effects against colorectal
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cancers and breast cancers (Gupta and DuBois, 2001; Arun and
Goss, 2004; Brown and DuBois, 2005). Finally, Okamoto et al.
(2010) demonstrated that overexpression of GRIM19 in cancer
cells suppresses STAT3-mediated cancer growth.

As emphasized, the analysis of singular nodes that may be logi-
cal drug targets in a network is tremendously important in cancer
therapeutic development. However, targeting multiple signaling
pathways simultaneously is an essential strategy in managing can-
cer and reducing the possibility of an individual tumor developing
drug resistance. It is therefore important to identify critical genes
in multiple cascades within a network. By removing top-ranked
nodes that appear to be the most critical for drug response and
then re-evaluating the remaining subnetworks, additional critical
nodes that may act as redundancy and compensatory mechanisms
and contribute to drug resistance can be identified. Interestingly,
when the betweenness and spectral gap centralities are applied to
a network in such fashion, the first few critical nodes often reside
on different paths (cascades) in that network. This phenomenon
is not as pronounced for the node degree and eigenvector cen-
trality measures, as their values are affected primarily by a node’s
nearest neighbours in the network and the properties that these
neighboring nodes have. For example, consider cr

s as applied to
the EGFR pathway (Table 2): for h = 2, the top three nodes are
EGFR, SRC, and MAPK1 (ERK), belonging to two paths; for
h = 3, the top nodes are GRB2, STAT3 and MAP2K1 (MEK),
also on two cascades, the classical MAPK and Jak-STAT cascades.
We observed similar effects in the analysis of the MAPK pathway
as detailed in the next section. In this light, nodes ranked high
by cr

s alone, such as SH3KBP1, PLCG1, JUN, JUND, might also
serve as potential therapeutic targets. SH3KBP1 has been impli-
cated in cell death and shown to mediate down regulation of
EGFR (Soubeyran et al., 2002; Feng et al., 2011), and JUND has
been shown to reduce tumor angiogenesis (Gerald et al., 2004).
We consider the betweenness centrality measure in a separate
section.

3.3. DIFFERENT REPRESENTATIONS OF THE SAME NETWORK
There are often multiple sources for the same biological network
or pathway. Variations in the topology of a network associated
with different representations of that network can be attributed
to, among other things: what genes or proteins (nodes) are
included in the network; what types of interactions are included
(e.g., gene-protein, protein-protein, interactions derived from
correlations in expressions values of genes) and how they are rep-
resented as edges in the network; and how protein complexes
are represented. The MAPK pathway can be used to illustrate
this. The MAPK pathway from KEGG (Kanehisa and Goto,
2000) has 129 unique nodes and 161 edges (average node degree
= 1.25; graph density = 0.02), while the same pathway from
WikiPathways (Pico et al., 2008) is made of 186 nodes and 168
edges (average node degree = 0.90; graph density = 0.01). Note
that a pathway is not always represented as one connected com-
ponent. A main difference between the KEGG and WikiPathways
representations is that protein-gene complexes are shown as sin-
gle nodes in the former, while various components of the complex
appear individually in the latter, and additional nodes, referred to
as compound nodes subsequently, are used to group the complex

together. Although the different representations of the MAPK
pathway have biological appeal, since they exploit and incorporate
different data types and ways of integrating them, the resulting
topologies are quite different and obviously affect the ability to
identify critical nodes in that pathway. For instance, nodes con-
necting a complex (i.e., compound nodes) in WikiPathways often
have high degrees. Consequently, the significance of the individ-
ual nodes in the complex, as well as other nodes, will be affected
in the identification of critical nodes. Pathways involving differ-
ent data sources may be represented as compound graphs for
perhaps a clearer layout and to facilitate more modularized mod-
eling (Dogrusoz et al., 2005). However, it is unclear how best to
treat differences between pathway representations in a network
analysis, especially with respect to what makes the most biolog-
ical sense, as well as how to interpret the different results. We
considered analyses involving both the KEGG and WikiPathways
representations to highlight differences that may result from
their use.

Tables 3, 4 list critical nodes identified from the MAPK path-
way as derived from the KEGG and WikiPathways representa-
tions. While some nodes ranked high in one pathway but not the
other, most top-ranked nodes are shared. Their rankings, how-
ever, are rather different. Of the compound nodes in the MAPK
pathway from WikiPathways, CASP∗, PPP3∗ and PRKC∗ rank
high essentially because they are each connected to multiple indi-
vidual genes (7, 5, 5 genes, respectively) of a complex, thus having
relatively high degrees. While compound nodes highly affect the
degree centrality ranking, other measures, especially the spectral
gap centrality measures, are less affected (unless average node-
degree is high, as shown in the analysis of the PPI subnetworks),
making them more informative and reliable. In addition, the
spectral gap centrality measure, when applied with a higher h,
captures nodes with more global rather than local importance.
For instance, the top three nodes by cr

s (h = 3) in the KEGG
MAPK pathway representation are RAF1, ASK1 and MEKK1,
which are on the ERK1/2, p38, and JNK cascades respectively.
Similarly the top three nodes in WikiPathways MAPK pathway
representation are ERK, MEKK1 and MKK7, which are on the
ERK1/2 and JNK cascades. As shown in the previous section,
nodes captured by eigenvector centrality are especially interest-
ing, particularly if they are not captured by other measures, since
they are often connected to otherwise critical nodes, thus suggest-
ing that these nodes have the potential of being a direct influence
on the behavior of the network. For instance, the MKP (from
the DUSPs gene family) and PTP genes are ranked high by ce

alone and ranked 2 and 3 based on an analysis of the KEGG
MAPK pathway representation, and as the top two ce nodes in
the WikiPathways representation of the MAPK pathway as well.
These genes are known to be inhibitors of ERK, JNK and p38,
thus covering three out of four potential cascades or crucial
subcomponents of the MAPK pathway. Indeed, PTP genes have
emerged as drug targets for cancer (Jiang and Zhang, 2008), and
MKP-DUSP genes have been found to be involved in cancer pro-
gression and resistance, and have thus also become potential drug
targets (Bermudez et al., 2010).

The PPI subnetworks associated with the MAPK pathway,
based on both KEGG and WikiPathways representations, share
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Table 3 | Top ranking genes in MAPK pathway (KEGG) by various centrality measures.

Gene cd cb ce c2
s c3

s cr
d

cr
b

cr
e c2r

s c3r
s

MEKK1 1 2 7 4 4 1 4 2 9 3

JNK 2 6 1 3 9 2 2 1 4 4

ASK1 3 7 7 3 3 7 2

Ras 4 4 3 4 8 4 5

ERK 5 5 6 10 5 5 6 6 7 7

Elk1 6 4 10 8

p38 7 10 5 7 8 6 5 3 6

GRB2 8 9 6 7 5 10

MAPKAPK 9 8 6

MKK7 10 10 9 10

MEK2 1 1 2 1 1

Raf1 3 1 1

SOS 8 10

MKP 2

PTP 3

MKK4 8 2 2

Sap1a 9

MKK3 5 10 5

cJUN 6

TNFR 7 9

IL1R 9

TRAF2 3

TAK1 8

similar properties with those from EGFR pathways: (i) the aver-
age node degrees are high; (ii) the graph densities are roughly
2/3; (iii) the node degrees dominate the critical node rankings
of various metrics. As a result, the top-ranked nodes are the usual
suspects, such as AKT1, P53, and RAF1. And for brevity’s sake, we
do not provide detailed descriptions of the results of this analysis.

3.4. THE IMPORTANT ROLE OF BETWEENNESS CENTRALITY IN
NETWORK ANALYSES

Since attacking multiple networks and pathways therapeutically
in cancer is appropriate and necessary, it is imperative to find
the critical signaling and major parallel cascade subnetworks.
Betweenness centralities have the potential to reveal gatekeeping
nodes or edges that control the flow of signal transduction along
the cascades. In addition to node betweenness, edge between-
ness may reveal targets that confer distinct functional advantages.
It is noteworthy that although many genes/nodes in a network
can be linked to multiple functions, it may be the case that
only one of such links is disease-related (Zhong et al., 2009).
Thus, blocking or perturbing a node with multiple functions may
have unanticipated effects. The edge betweenness measure may
offer more information than node importance in this regard.
In addition, it could identify edges connecting major cascades
involved in multiple functions. Since it is known that some
cancer-related genes and proteins are difficult to target with
small molecules, for example the p53 gene, drugs targeting an
edge/interaction for which such genes are connected may offer
ways of indirectly targeting and influencing those genes (Arkin
and Wells, 2004).

Our analyses involving betweenness centrality with consecu-
tive removal of top-ranked nodes or edges is more revealing. For
instance, in Table 2, the following nodes with high betweenness,
GRB2, SOS1, HRAS, RAF1, MAP2K1, MAP2K2, and MAPK1 are
all on the same path. If the top-ranked node is removed and
betweenness is re-evaluated on the remaining network, we imme-
diately recognize the critical importance of nodes GRB2 and SRC,
which are involved in multiple signaling paths in the network.
Similarly, for analyses involving the edge betweenness centrality
for the EGFR pathway, while four out of the top five edges by eb

are on the same path, the top five edges by er
b are on four distinct

paths (Table 5).
This phenomenon of nodes and edges gaining or losing impor-

tance depending on the measure used is even more pronounced
in the analysis of the MAPK pathways (Tables 3, 6). The MAPK
pathways include four cascades: classical MAPK pathway (also
known as ERK1/2 pathway), JNK and p38 MAPK pathway, and
ERK5 pathway. The top three nodes by cr

b, MEK2, JNK, ASK1, are
on three of these cascades (Table 3). Table 6 suggests that while
four of the top five edges by eb are on the same ERK1/2 cascade,
the top three edges by er

b are each on one cascade: Raf1−MEK2
on ERK1/2, ASK1−MKK2 on p38, MKK−JNK on JNK, while the
fourth edge MEKK1−MEK2 connects the JNK and ERK1/2 paths

edges do indeed essentially capture the main paths in the MAPK
network. Note that the ERK5 cascade is presented as a separate
component and the subgraph is a linear graph. Consequently,
none of its nodes or edges ranked high in this particular
analysis.
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Table 4 | Top ranking genes in MAPK pathway (WikiPathways) by various centrality measures.

Gene cd cb ce c2
s c3

s cr
d

cr
b

cr
e c2r

s c3r
s

CASP* 1 7 2 8 1 1

DUSP*(MKP) 2 2 9 2 4

TGFBR1/2 3 10 3 10 7 5

IL1R1/2 4 1 1 4 1 5 1 5

PPP3* 5 4 9 8 7

K/N/MRAS 6 6 5 3 6 9

PRKC*(PKC) 7 6

GRB2 8 7 7 10 7

MAP3K1(MEKK1) 9 2 4 2 8 4 3 2

MAPK8-10(JNK) 10 4 7 9

TRAF2 3 6 3

MAP3K7(MKK7) 4 6 3

MAP3K7IP1 5

RAC1/2,CDC42 8 5 10 3

PTPN5/7,PTPRR(PTP) 9 1 3 5 2 2 2 6

MAP2K4(MKK4) 10 10

MAPK1/3/4/6(ERK) 3 1 5 1

PTPN5 5 8

MAPK12-14(p38) 8 10 8

MAPK13 9

PTPN7 10

NRAS 7 4

IKBKB/G,MAP3K14 9 10

MAPK1 8

KRAS 8

MAPK10 9

Nodes that do not correspond to genes directly are omitted.

Table 5 | High betweenness edges in EGFR pathway.

Rank eb (Edge) Path er
b

(Edge) Path

1 GRB2–SOS1 Classical MAPK GRB2–SOS1 Classical MAPK

2 SOS1–HRAS Classical MAPK SRC–PLCG1 Calcium

3 GRB2–REPS2 SRC–GAB2 SRC/GAB2/PI3K/AKT (Phagocytosis)

4 HRAS–RAF1 Classical MAPK RAF1–MAP2K1 Classical MAPK

5 RAF1–MAP2K1 Classical MAPK ASAP1–ARF6 PAG3/ARF6 (Phagocytosis)

3.5. PATHWAY ANALYSES CONDITIONED ON EXPRESSED GENES IN
TISSUES AND TUMOR CELLS

Not all genes are expressed in all tissues and cells. In tumor cells,
certain genes are amplified, others silenced, often abnormally so.
Not only do tumor cells differ from normal cells in this regard, but
they also differ from each other. As such, the same pathway man-
ifests differently in different cell types: if a gene is unexpressed,
the encoded protein should be considered non-functional, and
should be factually deleted from the pathway for an analysis.
While analyzing the default pathway topology yields invaluable
insights, tissue or cell-specific pathway topology needs be consid-
ered for network analysis to be more relevant. The best way to
construct appropriate networks for cell or tissue-specific analyses
is an open question, but might be achieved best by constructing

them de novo from relevant experimental data (Ranola et al.,
2013).

3.5.1. EGFR pathway restricted by gene expression levels in the
NCI60 cell lines

There are sixty unique cell lines of nine tumor types in
NCI60 database. We applied the gene expression barcode algo-
rithm (McCall et al., 2011) to the microarray gene expression
data of NCI60 cell lines to filter out unexpressed genes. The
gene expression barcode is essentially a normalization method
leveraging microarray data in the public domain to answer the
question: “given an individual microarray experiment of a cell
type, is a gene expressed or unexpressed in that cell?” Unexpressed
genes are deleted from the default pathway. For each NCI60 cell

www.frontiersin.org February 2014 | Volume 5 | Article 12 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Peng and Schork Target identification through network integrity

Table 6 | High betweenness edges in MAPK pathway (KEGG) .

Rank eb (Edge) Path er
b

(Edge) Path

1 Raf1–MEK2 Classical MAPK Raf1–MEK2 Classical MAPK

2 Ras–Raf1 Classical MAPK ASK1–MKK3 p38 MAPK

3 MEKK1–MEK2 MKK4–JNK JNK MAPK

4 MEK2–ERK Classical MAPK MEKK1–MEK2

5 SOS–Ras Classical MAPK MKK4–MKK7 JNK MAPK

line, between 40% and 60% of the 235 nodes in the default net-
work made from EGFR pathway were removed after this simple
analysis. We then evaluated the importance of nodes or edges in
each individual topology.

Figure 1A shows gene rankings for the spectral gap central-
ity measure cr

s (h = 2) averaged over cell lines for each tumor
type, where the top row labeled as def provides the rankings in
the default pathway. While all tumor types are different from
each other, the patterns of genes expressed and unexpressed in
them suggest that a network derived from these genes would be
very different from the default pathway. Essentially, each indi-
vidual cell line presents unique gene expression patterns as well.
This diversity requires pathway analyses specific for each individ-
ual tumor. Figures 1B,C show the gene rankings for individual
melanoma and breast cancer cell lines respectively. Figures 2, 3
show top-ranked nodes by eigenvector centrality and top-ranked
edges by betweenness for each tumor type as well as the individual
melanoma and breast cancer cell lines.

Melanoma cell lines can be clustered into three groups by
cr

s (h = 2) top-ranked genes, one with EGFR and RAF1 ranked
high exclusively, the other with MAPK1 at top rank, and the third
with a mixture of EGFR/RAF1/MAPK1 (Figure 1B). Eigenvector
centrality ce clusters melanoma cell lines quite differently from
cr

s (h = 2) (Figure 2B). Among breast cancer cell lines, MCF7
is unique when the measure cr

s (h = 2) is used to assess the
EGFR pathway with GRB2 and MAPK1 ranking highest, while
all the other cell lines have EGFR and/or RAF1 as top rank-
ing genes (Figure 1C). T47D appears unique by both ce and eb

(Figures 2C, 3C). Eigenvector centrality ce yields unique sets of
genes for each cell line except for genes STAT1/3 and CBL, each
shared by two cell lines as the top candidates (Figure 2C). CBL
protein family has been implicated in a number of human can-
cers and indeed shown to enhance breast tumor formation by
inhibiting tumor suppressive activity of TGF-β signaling (Kang
et al., 2012). The application of the edge betweenness measure
again clusters melanoma and breast cancer cell lines into two to
three groups, but in different ways than those derived with other
metrics (Figures 3B,C).

3.5.2. Analysis of the EGFR pathway restricted to eleven normal
tissues

The RNA-Seq Atlas (Krupp et al., 2012) has RNA-Seq data for
eleven normal human tissues. Hebenstreit et al. (2011) suggests
that there are two major classes of gene expression levels in most
cells: lowly expressed, which are likely non-functional, and highly
expressed, which are likely to be biologically meaningful. The dis-
tribution of log2(RPKM) gene expression values across the eleven

human tissues is indeed bimodal, suggesting these two major
classes. Determining a simple threshold for defining unexpressed
genes, however, is still somewhat arbitrary. We considered a 0.5
RPKM value as a threshold for differentiating unexpressed vs.
expressed gene, which is not only often suggested as a conservative
threshold, but also seems reasonable in this dataset. Figures 4A,C
show the top ranked genes by spectral gap centrality cr

s (h = 2)

and top edges by the betweenness measure er
b for each tissue. With

the exception of liver, and to a lesser extent skeletal muscle, the
rankings of the most critical genes in the other nine tissues are
quite similar to those from the default pathway, and even more
similar to each other. The critical edges in tissues differ from those
from the default pathway, but they are very similar to each other
with the exception of those of skeletal muscle. Even though the
data set cannot be compared directly to the NCI tumor cell lines
for purely technical reasons, the general patterns of node impor-
tance are markedly different (see Figures 1, 3). With the use of
a threshold of 0.5 RPKM, around a quarter nodes are deleted
from the default EGFR pathway. To make the number of nodes
more comparable to the tumor cell lines, we set a more aggres-
sive threshold of 3 RPMK so that between 40% and 60% nodes
are filtered out. Figure 4B shows the result for cr

s (h = 2) (edge
betweenness er

b is omitted due to space limitation). Even though
there are considerable differences and variations, they are still
less varied than the tumor cell types (Figures 1A, 2A, 3A). We
note that expression patterns of a tissue could be the averaged
expressions over different cell types within the tissue.

3.5.3. Integrated breast cancer pathway restricted by NCI60 breast
tumor cells

The Integrated Breast Cancer pathway incorporates the most
important proteins for breast cancer. It has 190 unique nodes
and 348 edges (mean node degree = 1.83; graph density = 0.02).
Figure 5 shows the top ranking nodes and edges by different
measures for each NCI60 breast cancer cell line.

While BRCA1 ranked highest by cd (not shown), cr
s (h = 2, 3)

(h = 3 not shown) for cell lines MCF7, MDA_MB_231 and
BT_549, MAX (Myc associated factor X) ranked highest by cd and
cr

s (h = 3) for HS578T and T47D. It is known that MYC deregula-
tion contributes to breast cancer development and progression.
Loss of BRCA1 coupled with MYC overexpression leads to the
development of breast cancer (Xu et al., 2010) and recent evidence
has shown that MYC is druggable (Pourdehnad et al., 2013).

Smad2 ranked high by at least one measure for each cell
line. Smad genes are highly ranked by ce for all but MCF7 and
BT_549, for which STAT1 and AR emerged more important
(in addition to BRCA1). Although Smad2/3/4 signaling plays a
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FIGURE 1 | Top ranked genes by spectral gap centrality with node

removal cr
s(h = 2) of EGFR pathway conditioned on NCI60 cell line gene

expression. Ranks range from 1 (dark red) to 10 (blue), and > 10 (the darkest
blue). (A) Rankings are averaged for each tumor type: BR, breast; CNS,

central nervous system; CO, colon; LC, non-small cell lung; LE, leukemia;
ME, melanoma; OV, ovarian; PR, prostate; RE, renal. def, default pathway
with all nodes. (B) Gene ranking by cr

s(h = 2) for NCI60 melanoma cell lines.
(C) Gene ranking cr

s(h = 2) for NCI60 breast cancer cell lines.

tumor suppressor role, it also exhibits a pro-metastatic func-
tion in breast cancer (Kang et al., 2005). It is also believed that
Smad-dependent pathway is involved in TGF-β tumor suppres-
sor functions. Various TGF-β inhibitors are in development and
preclinical studies have shown their promises in cancer treat-
ments (Nagaraj and Datta, 2010).

Evidence has correlated up-regulation of STAT1 activity with
increased breast tumor progression and immune suppression in
tumor microenvironment, thus STAT1 inhibition is a promising
immune therapeutic target (Hix et al., 2013). Androgen receptor
(AR) is commonly expressed in breast cancers. It ranked high by
ce for cell lines MCF7 and BT-549. There is a history of target-
ing AR for therapy in breast cancer, although the efficacy of AR
targeted treatments is moderate (Garay and Park, 2012) probably
due to a lack of clear understanding of the AR signaling mecha-
nism. For MCF7 cell line though, inhibitory effects of androgens
targeting AR have indeed been shown in multiple studies (Greeve
et al., 2004; Macedo et al., 2006).

Notice that since the analysis of the breast cancer pathway is
conditioned on the gene expression patterns in each cell line,
major tumor suppressor genes such as P53 and BRCA2 are
deleted. The exome data of NCI60 (Abaan et al., 2013) cell lines
shows that each of the five breast cancer cell lines has between
one to four missense or silencing TP53 mutations, and two to five
missense or silencing mutations in BRCA2. Only MDA_MB_231
has a silencing BRCA1 mutation. If we analyze the default breast
cancer pathway instead of the pathways built only from genes
expressed in the cell lines, the top three gene nodes are P53,
AKT1 and BRCA1 based on the cd or ce measures, or CERK1,
SMAD2 and AKT1 by the cr

s (h = 2) measure, respectively. The
top two ranked edges based on the betweenness measure (with
edge removal) are the TGFR1-SMAD4 and P53-C9JNK1 edges.

4. DISCUSSION
The identification of genes that are optimal or logical therapeu-
tic targets in tumors based on genomic information is crucial for
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FIGURE 2 | Top ranked genes by eigenvector centrality ce of EGFR

pathway conditioned on NCI60 cell line gene expression. Ranks
range from 1 (dark red) to 10 (blue), and > 10 (the darkest blue).

(A) Gene ranking by ce for tumor types. (B) Gene ranking ce for
NCI60 melanoma cell lines. (C) Gene ranking ce for NCI60 breast
cancer cell lines.

individualizing cancer treatments. We explored the utility of net-
work centrality analysis of standard pathways and pathways based
on gene expression information in identifying potential thera-
peutic targets for a tumor. We also described the complexity of,
and issues associated with, such analysis. We considered ranking
genes in a network or pathway either by their centrality values or
by iteratively recording the top-ranked node and reevaluating the
remaining subnetwork with the highest ranked node removed.
When analyses are performed on PPI subnetwork created from
genes associated with a specific pathway, the top ranked genes
based on different node importance measures are highly posi-
tively correlated. We observed a similar phenomenon when PPI
subnetworks derived from genes that have been implicated in par-
ticular types of cancers were assessed, both when using the genes
in these PPI subnetworks alone and by expanding these subnet-
works by including nodes one or two edges from the seed genes
used to create the PPI subnetwork (data not shown). The high-
degree nodes in a PPI network are critical to the functioning of
that network, and thus are likely to be important drug targets.
However, such nodes are not likely to be specific to a particular
pathway and as such targeting them therapeutically could also be
potentially toxic to a patient.

When applied to a signaling pathway, various measures of cen-
trality yield different sets of important genes and the rankings
of these genes across different node importance measures are
much less correlated. This lack of correlation among node impor-
tance measures may provide more insight into the functioning
of a network or pathway since the different measures may be
capturing different aspects of information flow through the net-
work. However, a possible confounding factor in the analysis of
node importance in networks is that the same pathway may be
represented in different ways across different databases, leading
to different network topologies. It is unclear how to determine
which topology is the best representation of a pathway in such
cases.

In the context of different measures of node importance,
eigenvector centrality has the potential to reveal nodes that may
impact other highly influential nodes (for instance nodes of high
degree). These other nodes may reflect genes that could serve as
alternative therapeutic targets when the highest ranked nodes or
genes are hard to target or possibly be toxic to the system as a
whole if targeted therapeutically directly. Identifying these alter-
native important nodes using eigenvector centrality should be
done on the pathway without iteratively deleting nodes or those
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FIGURE 3 | Top ranked edges by betweenness with edge removal er
b

of EGFR pathway conditioned on NCI60 cell line gene expression.

Ranks range from 1 (dark red) to 5 (blue), and > 5 (the darkest blue).

(A) Edge ranking by er
b for tumor types. (B) Edge ranking by er

b for
NCI60 melanoma cell lines. (C) Edge ranking by er

b for NCI60 breast
cancer cell lines.

alternative nodes are not likely to be discovered. For instance,
while SRC, STAT3, EGFR and GRB2 ranked the highest in the
EGFR pathway by two or more measures, STAT1, JAK1/2, PIAS3,
COX2 and GRIM19, all being neighbors of STAT3, ranked within
top ten exclusively by the eigenvector centrality. Each of these
genes has been implicated in some type of cancers and some are
known targets of cancer treatments. As mentioned in Section 3.2,
Ruxolitinib, an FDA-approved drug for treatment of a type of
bone marrow cancer, is a JAK1/2 inhibitor (Mesa, 2010). NSAIDs
and Celecoxib are COX2 inhibitors and have protective effects
against colorectal and breast cancers (Gupta and DuBois, 2001;
Arun and Goss, 2004; Brown and DuBois, 2005). In addition,
Hide et al. (2011) showed that the combination of a PTGS2
(COX2) inhibitor and an EGFR inhibitor prevented tumorgenesis
of oligodendrocyte lineage-derived glioma-initiating cells. Finally,
Li et al. (2013) demonstrated that microRNA-26b might act as a
tumor suppressor in breast cancer by targeting PTGS2.

Nodes ranked high by the betweenness measure with iterative
node removal are often on parallel cascades in the pathway, which
are important for simultaneously targeting multiple pathways in
cancer treatment. The top three nodes identified in this fash-
ion in MAPK pathways, for example, are MEK2, JNK and ASK1,
which reside on ERK1/2, JNK and p38 cascades respectively. Edge
betweenness generates potential edge-specific, or edgetic targets,
which are more specific to a particular pathway and the nodes
implicated in these edges might provide an alternative for ther-
apeutic targeting if the highest ranked individual nodes are hard
to target. Similarly, edges identified as important by iterative edge
removal tend to reside on separate paths.

Although high degree nodes are very important to the func-
tioning of a network, they are also more prone to differ if local
changes in a network topology are made. The spectral gap cen-
trality measure, on the other hand, is less sensitive to local degree
changes, and is more reliable if slightly different network topolo-
gies are considered. The spectral gap centrality measure also
captures both degree and betweenness phenomena simultane-
ously, thus complementing betweenness measures when used in
isolation in an important way. This is particularly true in the con-
text of signaling pathways where the betweenness measures tend
to capture fragile nodes and edges. The choice of the parameter h
in the spectral gap centrality measure calculation is more compli-
cated and is likely best approached empirically. Smaller values of
h tend to capture local node importance while larger values of h
tend to capture more global node importance. For typical path-
ways and PPI networks, setting h = 2 or 3 is a reasonable choice.
The spectral gap centrality measure node rankings are also more
informative when computed with iterative node removal.

Ultimately, in the context of finding potential therapeutic tar-
gets for tumors, we firmly believe that network analysis should
consider cell or tissue specific pathways and networks and not
rely on generalized or tissue independent canonical pathways and
networks. In order to assess tissue-specific networks and path-
ways, we considered the use of the expression levels of genes
in tissues to filter out unexpressed genes. We did this by using
either gene expression barcodes based on available array data or a
RPKM threshold based on RNA-Seq data. When different mea-
sures of node importance are applied to tissue or cell-specific
pathways obtained in this way, the resulting top-ranked genes

www.frontiersin.org February 2014 | Volume 5 | Article 12 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Peng and Schork Target identification through network integrity

FIGURE 4 | Top ranked nodes of EGFR pathway conditioned on

eleven normal human tissues from RNA-Seq Atlas. Ranks range
from 1 (dark red) to 10 (blue), and > 10 (the darkest blue)
for (A,B); from 1 (dark red) to 5 (blue), and > 5 (the darkest

blue) for (C). (A) Node ranking by spectral gap centrality cr
s(h = 2)

with RPKM ≥ 0.5. (B) Node ranking by spectral gap centrality
cr

s(h = 2) with RPKM ≥ 3.0. (C) Edge ranking by betweenness er
b

with RPKM ≥ 0.5

varied significantly among different cell types. We found that
variations in node importance between different tumor types are
generally larger than those variations between different normal
tissues. This is to be expected given the complex rearrangements
and perturbations in tumors. For a particular tumor type, anal-
ysis of different tumor cell lines or subtypes results in different
nodes deemed crucial or important to a particular pathway. For
instance, when the integrated breast cancer pathway is restricted
by the five NCI60 breast tumor cell lines based on their respective
gene expressions, BRCA1 ranked highest by degree and spectral
gap centralities for cell lines MCF7, MDA_MB_231 and BT_549,

while MAX ranked highest by the same measures for cell lines
HS578T and T47D. SMAD2 ranked high by at least one central-
ity measure for each of the five cell lines. While SMAD genes
were highly ranked by eigenvector centrality for MDA_MB_231,
HS578T and T47D, STAT1 and AR appeared more important for
MCF7 and BT_549.

We recognize that there are limitations and caveats in our
analyses. As more and more RNA sequencing studies are being
pursued on tumors, a simple threshold used to differentiate
expressed and unexpressed genes in these tumors will be harder
to define. Thus, better methods need be explored to determine
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FIGURE 5 | Top ranked nodes and edges of integrated breast cancer

pathway conditioned on NCI60 breast cancer cell lines. Ranks range from
1 (dark red) to 10 (blue), and > 10 (the darkest blue) for (A,B); from 1 (dark

red) to 5 (blue), and > 5 (the darkest blue) for (C). (A) Node ranking by
spectral gap centrality cr

s(h = 2). (B) Node ranking by eigenvector centrality
ce. (C) Edge ranking by betweenness er

b .

which genes might need to be filtered out or included in a path-
way analysis. While capturing important relevant oncogenes or
genes impacting oncogenes in a pathway, filtering genes based on
whether they are expressed or unexpressed in a cell type naturally
filters out abnormally silenced genes, thus potentially excluding
malfunctioned tumor suppressor genes in analysis, such as the
p53 gene. This can be salvaged by analyzing the default path-
way to some extent. In this light, given the extremely complex
nature of cancers, finding critical genes in specific pathways is
just a tiny piece of a puzzle to determine how best to treat can-
cers. Not only will an analysis of critical nodes in a network
need be approached with caution, but it should also be used
in conjunction with other information, such as the analysis of
DNA sequence mutations, copy number variations and other
bio-markers. In addition, treating gene expression as a binary
factor to construct a network’s topology for use in an analysis
of node importance is admittedly a simplistic approach. Rather,
expression levels and rates of gene amplifications can also be
incorporated into network analysis. Also, in addition to analyzing
tumor cells alone, it will likely be more informative to com-
pare normal and tumor samples to better quantify tumor-specific
genomic perturbations. Ultimately, we believe our analyses shed

light on the utility of measures of node and edge importance in
an analysis of gene networks and pathways in tumor biology and
cancer treatment choice and hope that they may motivate further
research in this area.
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