
REVIEW
published: 31 March 2015

doi: 10.3389/fenvs.2015.00025

Frontiers in Environmental Science | www.frontiersin.org 1 March 2015 | Volume 3 | Article 25

Edited by:

Naser A. Anjum,

University of Aveiro, Portugal

Reviewed by:

Brahma B. Panda,

Berhampur University, India

Ashwani Pareek,

Jawaharlal Nehru University, India

Dibyendu Talukdar,

Raja Peary Mohan College (Affiliated

to University of Calcutta), India

*Correspondence:

Prachi Pandey,

International Center for Genetic

Engineering and Biotechnology, Aruna

Asaf Ali Marg, New Delhi,

Delhi 110067, India

prachipndy@gmail.com

Specialty section:

This article was submitted to

Environmental Toxicology, a section of

the journal Frontiers in Environmental

Science

Received: 18 January 2015

Accepted: 13 March 2015

Published: 31 March 2015

Citation:

Pandey P, Singh J, Achary VMM and

Reddy MK (2015) Redox homeostasis

via gene families of

ascorbate-glutathione pathway.

Front. Environ. Sci. 3:25.

doi: 10.3389/fenvs.2015.00025

Redox homeostasis via gene families
of ascorbate-glutathione pathway

Prachi Pandey 1, 2*, Jitender Singh 2, 3, V. Mohan Murali Achary 2 and Mallireddy K. Reddy 2

1 Plant Microbe Interaction Lab, National Institute of Plant Genome Research, New Delhi, India, 2 Plant Molecular Biology,

International Center for Genetic Engineering and Biotechnology, New Delhi, India, 3 School of Life Sciences, Jawaharlal Nehru

University, New Delhi, India

The imposition of environmental stresses on plants brings about disturbance in their

metabolism thereby negatively affecting their growth and development and leading to

reduction in the productivity. One of the manifestations of different abiotic and biotic

stress conditions in plants is the enhanced production of reactive oxygen species (ROS)

which can be hazardous to cells. Therefore, in order to protect themselves against toxic

ROS, plant cells employ the anti-oxidant defense system. The ascorbate-glutathione

pathway (Halliwell-Asada cycle) is an indispensible component of the ROS homeostasis

mechanism of plants. This pathway entails the antioxidant metabolites: ascorbate,

glutathione and NADPH along with the enzymes linking them. The ascorbate-glutathione

pathway is functional in different subcellular compartments and all the enzymes of this

pathway exist as multiple isoforms. The expression of different isoforms of the enzymes

of ascorbate-glutathione pathway is developmentally as well as spatially regulated.

Moreover, various abiotic and biotic stress conditions modulate the expression of the

enzyme- isoforms differently. It is the intricate regulation of expression of different isoforms

of the ascorbate-glutathione pathway enzymes that helps in the maintenance of redox

balance in plants under various abiotic and biotic stress conditions. The present review

provides an insight into the gene families of the ascorbate-glutathione pathway, shedding

light on their role in different abiotic and biotic stress conditions as well as in the growth

and development of plants.

Keywords: reactive oxygen species, abiotic stress, redox homeostasis, ascorbate-glutathione pathway, isoforms,

gene families

Introduction

When plants are exposed to various biotic and abiotic stresses, they exhibit characteristic increase
in the production of reactive oxygen species (ROS) like singlet oxygen (1O2), superoxide (O

•−

2 ),
hydrogen peroxide (H2O2) and hydroxyl radical (OH•) (Mittler et al., 2004). These ROS are
capable of causing uncontrolled oxidation of various cellular components that can lead to oxida-
tive damage of the cell (Asada, 1999; Dat et al., 2000). Thus, enhanced production of ROS
during stress can be hazardous to cells. ROS have also been acknowledged as central play-
ers in complex signaling cascades as they act as signals for the activation of various stress-
responsive and defense pathways (Knight and Knight, 2001; Mittler et al., 2011). Apart from
playing important roles in stress signaling, ROS like H2O2 are also involved in plants’ growth
and developmental processes like differentiation of cellulose rich cell wall, mediation of aleuronic
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cell death and stimulation of somatic embryogenesis (Neill et al.,
2002; Slesak et al., 2007). Additionally, the transient accumu-
lation of H2O2 following pathogen infection leads to localized
programmed cell death or hypersensitive (HR) response and
stimulates crosslinking of cell wall proteins, thereby preventing
pathogen spread in the plant (Grant and Loake, 2000; Kuzniak
and Skłodowska, 2005). Considering the ambivalent role of ROS,
a delicate balance between their production and scavenging is
of utmost importance for proper growth and development of
plants.

Plants have an efficient anti-oxidant defense system which
scavenges the excess ROS produced in the cell under different
oxidative stress conditions. The anti-oxidant safe guard system
in plants comprises of non-enzymatic and enzymatic compo-
nents (Noctor and Foyer, 1998; Scandalios, 2005). The non-
enzymatic components include the major cellular redox buffers:
ascorbate (AsA) and glutathione (γ-glutamyl-cysteinyl-glycine,
GSH) as well as tocopherol, flavonoids, alkaloids, and carotenoids
(Arora et al., 2000; Grace and Logan, 2000; Foyer and Noctor,
2003; Gomathi and Rakkiyapan, 2011). The enzymatic compo-
nents of the anti-oxidative defense system consist of a number
of anti-oxidant enzymes such as superoxide dismutase (SOD),
catalase (CAT), guaiacol peroxidase (GPX) and the enzymes of
ascorbate-glutathione (AsA-GSH) cycle namely, ascorbate per-
oxidase (APX), monodehydroascorbate reductase (MDHAR),
dehydroascorbate reductase (DHAR), and glutathione reductase
(GR) (Mittler et al., 2004; Scandalios, 2005). AsA-GSH cycle
forms the main H2O2-detoxification system operating in cytosol,
chloroplasts and mitochondria of plant cells (Noctor and Foyer,
1998; Shigeoka et al., 2002; Mittler et al., 2004). Since the discov-
ery of the AsA-GSH cycle in themid-1970s, the enzyme-catalyzed
reactions of this pathway have been studied intensively (Noctor
and Foyer, 1998; Asada, 1999; Polle, 2001). Studies with mutants
and transgenic plants over- or under-expressing enzymes or
metabolites of the AsA-GSH pathway have proved very well the

FIGURE 1 | Schematic representation of the AsA-GSH pathway.

The first step of the pathway is the detoxification of H2O2 by APX

catalyzed peroxidation of AsA which generates MDHA. MDHA is either

reduced back to AsA by MDHAR or it undergoes non-enzymatic

disproportionation to AsA and dehydroascorbate (DHA). The DHA

molecules are reduced to AsA by DHAR using GSH as the reductant.

GSH is regenerated from the oxidized glutathione dimers (GSSG) by

NADPH-dependent GR. The green ovals indicate the various enzymes

catalyzing the different steps of the pathways (indicated by the blue

arrows). APX, Ascorbate peroxidase; MDHAR, Monodehydroascorbate

reductase; DHAR, Dehydroascorbate reductase; GR, Glutathione

reducatse, AsA, Ascorbic acid; GSH, Glutathione; GSSG, oxidized

glutathione dimer; MDHA, Monodehydroascorbate; DHA,

Dehydroascorbate.

co-relation between this pathway and stress tolerance (Gill and
Tuteja, 2010). The AsA-GSH cycle not only combats oxidative
stress, but also plays an important role in other plant develop-
mental processes (Chen and Gallie, 2006; Eastmond, 2007).

Each enzyme of the AsA-GSH pathway has various sub-
cellular isoforms, which differ from each other with respect
to their spatial and temporal expression. Moreover, these iso-
forms are differentially regulated by different types of stresses.
For example, it has been found that under salt stress, vari-
ous Oryza sativa APX (OsAPX) isoforms are differentially reg-
ulated. While some of them are characteristically up-regulated,
the others are down-regulated at the same time (Texeira et al.,
2006; Yamane et al., 2010). This suggests that the expression
of different isoforms of the AsA-GSH pathway enzymes is
under intricate regulation. However, the mechanisms underly-
ing the regulation of these isoforms are not completely under-
stood. The present review provides an overview of gene families
encoding AsA-GSH pathway in plants and imparts an insight
into their role in conferring tolerance to various abiotic and
biotic stresses. A brief discussion on the functional importance
of this pathway in growth and development of plants is also
provided.

The Ascorbate-Glutathione (AsA-GSH)
Pathway

The AsA-GSH pathway is composed of four enzymes namely,
APX,MDHAR, DHAR and GR (Figure 1) and two anti-oxidants,
AsA and GSH. APX, which is the first enzyme of the cycle,
detoxifies H2O2 by bringing about the peroxidation of AsA
and yielding monodehydroascorbate radical (MDHA). MDHA is
either directly reduced back to AsA by MDHAR or undergoes
non-enzymatic disproportionation to AsA and dehydroascorbate
(DHA). The next step of the cycle involves DHAR mediated
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reduction of DHA into AsA using GSH as the reductant
(Figure 1). DHA can undergo irreversible hydrolysis to 2, 3-
diketogulonic acid, if not reduced by DHAR. Thus, DHAR helps
in regeneration of AsA and plays an important role in maintain-
ing the cellular AsA pool (Gallie, 2012). Like AsA, the regen-
eration of GSH is also important. GSH is regenerated from the
oxidized glutathione dimers (GSSG) by NADPH-dependent GR
(Gill and Tuteja, 2010). The concentration of AsA and GSH
varies in different subcellular compartments of the cell (Table 1).
Both the redox buffers are known to accumulate in certain cellu-
lar compartments under different abiotic stress conditions. The
compartment specific role of both the buffers under abiotic stress
conditions has been discussed exhaustively in recent reviews
(Foyer and Noctor, 2011; Gest et al., 2013; Zechmann, 2014), and
we do not focus on this aspect in the present review. The AsA-
GSH cycle not only detoxifies toxic H2O2 but also contributes
toward the maintenance of cellular AsA and GSH pools in dif-
ferent compartments of the cell. Existing in all the organelles, the
AsA-GSH pathway protects the cell from the toxic effects of ROS
generated under a variety of abiotic and biotic stresses (Anjum
et al., 2010, 2014; Gill and Tuteja, 2010) (Figure 2).

Ascorbate Peroxidase

APX (EC 1.11.1.11) is the first enzyme of the AsA-GSH path-
way. It catalyzes the conversion of H2O2 to H2O and O2 using
AsA as specific electron donor (Asada, 1999). APX, thus, pre-
vents the accumulation of toxic levels of H2O2 in the cell.
APX belongs to class I peroxidase family of proteins which are
characterized by the presence of heme prosthetic groups. APXs
are extremely sensitive to the concentration of AsA, which is
reflected by the rapid decline in their activity at very low con-
centration (less than 20µM) of AsA (Shigeoka et al., 2002).
The enzyme has been identified in a number of higher plants,
algae and cyanobacteria (reviewed in Caverzan et al., 2012).
APX gene family comprises of different isoenzymes with differ-
ent characteristics. Till date, five APX isoforms namely, cytoso-
lic, mitochondrial, peroxisomal/glyoxysomal and chloroplastic
have been identified in plants (Dąbrowska et al., 2007). In
Arabidopsis thaliana, the reported eight isoenzymes of APX can
be categorized into three groups: soluble cytosolic (APX1, APX2,

TABLE 1 | Concentrations of AsA and GSH in different subcellular

compartments of cell.

Organelles [Ascorbate] (mM) [Glutathione] (mM)

Mitochondrion 10.4 14.9

Chloroplast 10.8 1.2

Nucleus 16.3 6.4

Peroxisome 22.8 4.4

Cytosol 21.7 4.5

Vacuole 2.3 0.08

The intracellular AsA and GSH levels in young rosette leaves of Arabidopsis thaliana

plants determined using AsA and GSH specific immunogold labeling (Gest et al., 2013;

Zechmann, 2014).

and APX6), microsome–membrane bound (APX3, APX4, and
APX5) and chloroplastic (sAPX and tAPX) (Dąbrowska et al.,
2007; Panchuk et al., 2002) (Table 2). Similarly, the identifica-
tion of APX gene family in Lycopersicum esculentum revealed the
presence of seven APX genes: three cytosolic, two peroxisomal,
and two chloroplastic (Najami et al., 2008). In O. sativa, eight
members of the APX gene family have been reported; encod-
ing two cytosolic, two peroxisomal, three chloroplastic, and one
mitochondrial isoforms (Texeira et al., 2004, 2006). Mitochon-
drial APX isoforms have also been reported in Solanum tubero-
sum and Pisum sativum (Jimenez et al., 1997; Leonardis et al.,
2000).

The APX isoforms are stress sensitive and are regulated by
nearly all kinds of abiotic and biotic stress conditions (Shigeoka
et al., 2002). The expression of APX isoforms can be activated
by specific factors such as pathogen attack, mechanical pressure,
injury, ultraviolet (UVB) radiation, water deficiency, salt stress,
low or high temperature, atmospheric pollution, and excess metal
ions (reviewed in Shigeoka et al., 2002; Dąbrowska et al., 2007).
The stress conditions also modulate the kinetic properties of the
enzyme. For example, the exposure of A. thaliana wild type and
flavonoidmutant (tt5) plants to UVB radiation led to a significant
decrease in KAsA

m as well as synthesis of new isoforms of cytoso-
lic APX (Rao et al., 1996). The over-expression of APX has been
shown to confer tolerance to various abiotic stresses (Xu et al.,
2008; Sun et al., 2010; Sato et al., 2011). For example, Jatropha
curcas plants over-expressing a chloroplastic APX were found
to be salt tolerant (Liu et al., 2014). Similarly, over-expression
of the peroxisomal APX from the halophyte Salicornia brachiata
conferred salt and drought stress tolerance to transgenic Arachis
hypogea plants (Singh et al., 2014). Transgenic L. esculentum
plants over-expressing cytosolic APX exhibited improved toler-
ance to chilling, salinity, heat and UVB stress (Wang et al., 2005,
2006). A. thaliana vtcmutants deficient in AsA are reported to be
hypersensitive to drought stress (Pastori et al., 2003; Faize et al.,
2011).

Monodehydroascorbate Reductase

MDHAR (EC 1.6.5.4) recycles MDHA molecules into AsA. The
exposure of plants to environmental stress conditions like high
light leads to very quick oxidation of AsA to MDHA in chloro-
plast (Polle, 2001). It is, therefore, necessary for the survival
of plants that MDHA is reduced back to regenerate AsA. In
chloroplast, MDHA is reduced to AsA by photoreduced ferre-
doxin at a high rate and this is likely to constitute the main
pathway of AsA regeneration in the vicinity of the thylakoid
membrane. Away from the thylakoid membrane, reduction of
MDHA can occur via two enzymes in the AsA-GSH pathway;
DHAR and MDHAR (Asada, 1999). MDHAR reduces MDHA
directly by using NAD(P)H as an electron donor. Alterna-
tively, two molecules of MDHA can react non-enzymatically to
generate AsA and DHA. The majority of MDHA is, however,
found to be reduced by MDHAR (Polle, 2001). MDHAR enzyme
activity is found across the entire plant and animal kingdom.
Plant MDHARs exhibit high level of sequence similarity with
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FIGURE 2 | Schematic representation of the AsA-GSH pathway in

different sub-cellular compartments. cAPX, cMDHAR, cDHAR, and

cGR represent the chloroplastic isoforms; ctAPX, ctMDHAR, ctDHAR,

and ctGR stand for the cytoplasmic, mAPX, mDHAR, and mGR

indicate the mitochondrial isoforms and pAPX, pMDHAR, pDHAR, and

pGR represent the peroxisomal isoforms. H2O2 can freely diffuse

between the different organelle as indicated by broken arrows. ETC,

Electron transport chain; AsA, Ascorbic acid; GSH, Glutathione; GSSG,

oxidized glutathione dimer; MDHA, Monodehydroascorbate; DHA,

Dehydroascorbate.

prokaryotic flavoenzymes. MDHAR activities are reported to
be present in algae (Haghjou et al., 2009), bryophytes (Lunde
et al., 2006) and in all higher plants (Yoon et al., 2004; Leter-
rier et al., 2005). Higher plants’ MDHARs belong to a multi-
gene family constituting several sub-cellular isoforms. MDHAR
activity has been detected in several cell compartments, such as
chloroplasts, mitochondria, peroxisomes and cytosol (Jimenez
et al., 1997; López-Huertas et al., 1999; Mittova et al., 2003;
Kavitha et al., 2010). In A. thaliana, six isoforms of MDHAR
are present among which two are peroxisomal, two are cytosolic
and one is dually targeted chloroplastic/mitochondrial isoform
(Lisenbee et al., 2005) (Table 2). The L. esculentumMDHAR fam-
ily consists of three isoforms (Stevens et al., 2007). A total of
three cytosolic isoforms of MDHARs have been reported in the
moss Physcomitrella patens (Lunde et al., 2006). Physcomitrella
apparently lacks any chloroplastic isoform indicating that

AsA reduction in the plant exclusively occurs in cytosol
(Drew et al., 2007).

In order to protect against the deleterious effects of ROS, the
AsA pools are required to be maintained in a reduced state.
Thus, ascorbate reductases like MDHARs, which are responsi-
ble for the reduction of AsA have considerable roles in stress
tolerance. The activity of MDHAR proteins as well as MDHAR
gene expression has been found to be differentially affected by
various stress conditions. The increase in MDHAR activity has
been reported in stress conditions like salinity, high light, UV
radiation, boron toxicity and low temperature (Mittova et al.,
2003; Cervilla et al., 2007). Transgenic studies have also con-
firmed the vital role of this enzyme in conferring tolerance to var-
ious abiotic stresses. For example, over-expression of A. thaliana
MDHAR in Nicotiana tabacum enhanced tolerance of trans-
genic plants to ozone, salt and dehydration stress (Eltayeb et al.,
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TABLE 2 | AsA-GSH pathway gene families in A. thaliana and O.sativa and their role in abiotic and biotic stress tolerance.

Gene Localization O. sativa A. thaliana Role in abiotic and biotic stress References

APX Cytoplasm LOC_Os03g17690

LOC_Os07g49400

At1g07890

At 3g09640

Over expression confers tolerance to

cold, salt stress and bacterial wild fire

disease. Knockdown causes

hyper-responsiveness to pathogen

attack

Mittler et al., 1999; Wang et al.,

2005; Faize et al., 2012

Peroxisome LOC_Os04g14680

LOC_Os08g43560

LOC_Os09g36750

At4g35000 Over expression confers salt and

drought tolerance

Singh et al., 2014

Chloroplast Stroma LOC_Os12g07830

LOC_Os12g07820

LOC_Os04g035520

At4g08390 Over expression

confers salt tolerance

Liu et al., 2014

Thylakoid LOC_Os02g34810 At1g77490

MDHAR Peroxisome LOC_Os02g47790

LOC_Os09g39380

LOC_Os02g47800

At3g27820

At3g52880

Knockdown leads to enhanced

resistance to P. stritiformis

Feng et al., 2014

Chloroplast

stroma/Mitochondria

LOC_Os08g05570 At1g63940 Over expression confers heat, salt

and oxidative stress tolerance

Li et al., 2010; Eltelib et al., 2012

Cytoplasm LOC_Os08g44340 At5g03630

At3g09940

Over expression

confers salt tolerance

Sultana et al., 2012

DHAR Chloroplast LOC_Os06g12630 At5g16710 Over expression confers salt and cold

stress tolerance

Li et al., 2012

Cytoplasm LOC_Os05g02530 At1g75270 Over expression confers aluminum

stress tolerance

Yin et al., 2010

GR Cytoplasm LOC_Os02g56850 At3g24170 Over expression confers oxidative

stress tolerance

Aono et al., 1991

Chloroplast/Mitochondria LOC_Os03g06740

LOC_Os10g28000

At3g54660 Over expression confers oxidative

and cold stress tolerance

Aono et al., 1991; Foyer et al.,

1995

The table enlists the representative members of the gene families encoding AsA-GSH pathway with their corresponding locus names, localization details and role in abiotic and biotic

stress tolerance.

2007). The over-expression of Acanthus ebracteatus cytoplasmic
andMalpighia glabra chloroplastic MDHAR genes improved salt
stress tolerance in O. sativa and N. tabacum, respectively (Eltelib
et al., 2012; Sultana et al., 2012). Similarly, over-expression of
chloroplasticMDHAR from L. esculentum andAvicenniamarina,
respectively, was shown to confer resistance to high temperature
and methyl viologen-mediated oxidative stress in transgenic L.
esculentum (Li et al., 2010) and to salt stress in transgenic N.
tabacum plants (Kavitha et al., 2010).

Dehydroascorbate Reductase

AsA, which is a major anti-oxidant in plants, is oxidized to
DHA via successive reversible electron transfers with MDHA as
a free radical intermediate. DHA, so produced, is reduced to AsA
by DHAR with GSH as an electron donor (EC 1.8.5.1). DHAR
is the key enzyme to regenerate AsA. DHARs have been iso-
lated and characterized from higher plants like A. thaliana, N.
tabacum and agricultural crops such as oleracea, O. sativa and
Pennisetum glaucum (Urano et al., 2000; Shimaoka et al., 2000;

Ushimaru et al., 2006; Pandey et al., 2014). In A. thaliana five dif-
ferent DHARs (At1g19550, At1g19570, At1g75270, At5g36270,
At5g16710) have been identified, with their presence either in an
organelle (chloroplast or mitochondrion) or in the cytosol (Chew
et al., 2003) (Table 2). Recently the At1g19570 isoform has been
found to be associated with peroxisomes (Kataya and Reumann,
2010). Two different DHAR isoforms have been discovered in
Spinacia oleracea leaves with one isoform located in chloroplasts
whereas the other being present in the sub-cellular compartment
other than chloroplasts (Shimaoka et al., 2000). DHAR activity
has also been found in mitochondria, chloroplasts and peroxi-
somes of both leaf and root cells of the cultivated L. esculentum
(M82) and its wild salt-tolerant relative, L. pennellii (Lpa) (Mit-
tova et al., 2000). Two DHAR genes encoding for cytosolic and
chloroplastic DHARs have also been identified in Eucalyptus spp.
(Teixeira et al., 2005).

DHAR also plays an important role in abiotic stress tolerance
and its expression is activated by a number of abiotic stress fac-
tors (Ali et al., 2005; Lu et al., 2008; Fan et al., 2014). Moreover,
enhanced tolerance to various abiotic stresses was observed in

Frontiers in Environmental Science | www.frontiersin.org 5 March 2015 | Volume 3 | Article 25

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Pandey et al. Ascorbate-glutathione pathway and stress tolerance

plants over-expressing DHAR (Kwon et al., 2003; Ushimaru et al.,
2006; Wang et al., 2010). For example, the over-expression of A.
thaliana cytosolic DHAR has been shown to impart tolerance
to aluminum stress in transgenic N. tabacum plants (Yin et al.,
2010). In yet another report, it was shown that the over expres-
sion of DHAR which led to enhanced AsA accumulation con-
ferred oxidative and salt stress tolerance to L. esculentum plants
(Li et al., 2012). The simultaneous expression of chloroplastic O.
sativa DHAR and E. coli GR in N. tabacum plants resulted in
enhanced tolerance to salt and cold stress (LeMartret et al., 2011).

Additionally, DHAR plays an important role in plant growth
and development (Chen and Gallie, 2006). The lack of DHAR
resulted in the quick loss of AsA from O. sativa plants and led to
slower rate of leaf expansion consequently affecting plant growth
and development (Ye et al., 2000).

Glutathione Reductase

GR (NADPH: oxidized glutathione oxidoreductase; EC 1.6.4.2)
maintains the cellular redox state by regenerating the reduced
form of GSH, thereby, maintaining the balance between
reduced GSH and AsA pools (Noctor and Foyer, 1998; Reddy
and Raghavendra, 2006). GR is a flavo-protein oxidoreduc-
tase ubiquitously present in both prokaryotes and eukaryotes
(Romeo-Puertas et al., 2006). The protein has been purified and
characterized from a variety of organisms (Rao and Reddy, 2008;
Achary et al., 2014). Although localized mainly in the chloro-
plasts, the enzyme is also found in cytosol (Edwards et al., 1990),
mitochondria and peroxisomes (Jimenez et al., 1997; Romeo-
Puertas et al., 2006).

Multiple isoforms of GR have been reported in a num-
ber of plants (Edwards et al., 1990; Lascano et al., 2001;
Contour-Ansel et al., 2006; Rao and Reddy, 2008; Trivedi et al.,
2013). Modulation in the expression profile of various GR iso-
forms have been known to occur under various stress con-
ditions (reviewed in Yousuf et al., 2012; Gill et al., 2013).
Transgenic N. tabacum plants over-expressing E. coli GR in
the cytoplasm and chloroplast exhibited enhanced GR activ-
ity and tolerance to methyl viologen-mediated oxidative stress
(Aono et al., 1991, 1993). Similarly, the over-expression of GR
in chloroplasts of N. tabacum plants led to enhanced accu-
mulation of GSH and AsA and the transgenic plants were
found to be more tolerant to high light and chilling stress
(Foyer et al., 1995). Overproduction of chloroplastic GR led
to reduced photoinhibition under chilling stress in transgenic
Gossypium hirsutum plants (Kornyeyev et al., 2003). Transgenic
N. tabacum plants with reduced expression of GR were shown
to display enhanced sensitivity to oxidative stress (Ding et al.,
2009).

AsA-GSH Pathway in Chloroplasts

The AsA-GSH cycle plays a critical role in maintaining ROS
homeostasis in chloroplasts. These organelles are devoid of cata-
lases and the AsA-GSH cycle acts as themajorH2O2 metabolizing
pathway in these photosynthetic organelles. The photoreduc-
tion of O2 in chloroplast via photosystem–I (PSI) leads to the

formation of superoxide ions, which rapidly dismutate to H2O2

spontaneously or by the action of superoxide dismutases (Asada,
1999). Chloroplasts contain relatively higher levels of AsA and
GSH as compared to the other sub cellular organelles (Noctor
and Foyer, 1998; Gest et al., 2013; Zechmann, 2014). Thus, the
AsA-GSH pathway in chloroplast is imperative in protecting it
from the deleterious effects of excess ROS production. Among
the four enzymes of the AsA-GSH pathway in chloroplasts, the
chloroplastic APX (chAPX) which consists of thylakoid (tAPX)
and stromal (sAPX) isoforms scavenges the H2O2 generated dur-
ing photosynthesis. The stromal and thylakoid-bound APXs have
been identified and purified from several plant species (Ishikawa
et al., 1996, 1998). tAPX is characterized by the presence of an
extended C-terminal sequence that makes it 5 KDa larger than
the sAPX (Asada, 1999). This sequence is responsible for bind-
ing of the protein to the membrane. sAPX has been shown to be
predominantly important for photo-protection in young leaves.
tAPX and sAPX isoforms are apparently functionally redundant
and contribute to oxidative stress tolerance in chloroplasts. A
sudden exposure to high light stress in tapx and sapx double
mutant of A. thaliana led to a characteristic decline in the photo-
chemical efficiency of PSII (Kangasjärvi et al., 2008). Likewise, the
over-expression of tAPX in N. tabacum plants helped in main-
taining photosynthetic efficiency of plants under high light and
low temperature stress, thereby, substantiating the role of chloro-
plastic APX in stress resistance (Yabuta et al., 2002). The MDHA
formed in the lumen by the oxidation of AsA disproportionates
to DHA and moves into the stroma through the thylakoid mem-
brane. MDHA produced by both stromal and thylakoid bound
APX isoforms is reduced by stromal MDHAR. MDHAR has not
been reported in the lumen of chloroplast (Obara et al., 2002).
Along with the regeneration of AsA from MDHA, chloroplastic
MDHAR also brings about the photo-reduction of dioxygen to
O•−

2 in absence of MDHA (Miyake et al., 1998; López-Huertas
et al., 1999). DHAR and GR activities convert the DHA translo-
cated from the lumen and the DHA generated in the stroma to
AsA (Asada, 1999).

AsA-GSH Pathway in Mitochondria

The presence and activity of AsA-GSH cycle enzymes in mito-
chondria of plant cells have been established, and this cycle plays
an important role in protecting mitochondrion against the toxic
ROS regularly produced in respiratory chain reactions (Leonardis
et al., 2000; Chew et al., 2003; Mittova et al., 2004; Lázaro et al.,
2013). The mitochondrial AsA-GSH cycle deals with both photo-
synthetic as well as stress-induced oxidative stress (Jimenez et al.,
1997). Themitochondrial AsA-GSH cycle also plays an important
role in eliminating the mitochondrial-derived radicals, thereby
protecting the heme of leghemoglobin in N2-fixing legume root
nodules (Iturbe-Ormaetxe et al., 2001; Loscos et al., 2008). The
mitochondrial APX is known to be membrane-localized in plants
(Leonardis et al., 2000; Iturbe-Ormaetxe et al., 2001). The best
collective evidence for the presence of MDHAR, DHAR, and
GR in mitochondria is from P. sativum leaves (Jimenez et al.,
1997) and Phaseolus valgaris nodules (Iturbe-Ormaetxe et al.,
2001).
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AsA-GSH Pathway in Cytoplasm

In A. thaliana, the cytosolic AsA-GSH pathway is characterized
by the presence of one cytosolic APX (APX1), with an addi-
tional stress inducible APX (APX2) (Panchuk et al., 2002), along
with the other enzymes (Mittler et al., 2004). It has been shown
that the cytosolic APX imparts cross compartment protection of
the other sub-cellular organellar APXs like mitochondrial APX,
thylakoidal and stromal APXs hinting toward the fact that cytoso-
lic AsA-GSH pathway plays an important role in protecting the
other organelles during periods of stress (Davletova et al., 2005).
Notably, cytosolic APX accounts for up to 0.9% of the total sol-
uble protein of nodules and is particularly abundant in infected
cells and nodule parenchyma of Medicago sativa (Dalton et al.,
1998).

AsA-GSH Pathway in Peroxisome

Peroxisomes are single membrane-bound subcellular organelles
being involved in production as well as the degradation of H2O2

and are sites for photorespiration, fatty acid β-oxidation, glyoxy-
late cycle and ureide metabolism (Corpas et al., 2001; Mano and
Nishimura, 2005). The four enzymes of the AsA-GSH cycle, APX,
MDHAR, DHAR and GR have been reported to be expressed in
peroxisomes of roots and leaves of P. sativum and L. esculen-
tum (Jimenez et al., 1997; Mittova et al., 2000; Leterrier et al.,
2005). The presence of reduced AsA and GSH, and their oxidized
forms, DHA and GSSG, respectively, was demonstrated by high
performance liquid chromatography (HPLC) analysis in intact
peroxisomes of P. sativum leaves (Jimenez et al., 1997). cDNAs
encoding peroxisomal APX have been isolated from Gossypium
spp. (Bunkelmann and Trelease, 1996), A. thaliana (Zhang et al.,
1997) and S. oleracea (Ishikawa et al., 1998). The deduced amino
acid sequence of peroxisomal APX has a high degree of identity
with cytosolic APX, but it has a C-terminal amino acid exten-
sion containing a single, putative membrane−spanning region
(Mullen et al., 1999). DHAR and GR were also found in the sol-
uble fraction of peroxisomes, whereas membrane bound APX
proteins have been shown to be present in P. sativum, Cucurbita
maxima, and L. esculentum (Yamaguchi et al., 1995; Bunkelmann
and Trelease, 1996; López-Huertas et al., 1999).

Role of Gene Families of AsA-GSH
Pathway in Abiotic Stresses

Drought Stress
Drought stress leads to the production of ROS (mainly H2O2)
in chloroplasts and mitochondria of plant cells (Dat et al., 2000).
Drought stress causes varied effects on the enzymes of the AsA-
GSH cycle, the response being dependent on the plant species,
the developmental and metabolic state of plant, and the duration
and intensity of the stress (Sofo et al., 2010). In majority of cases,
drought stress led to an increase in the activity of enzymes of
AsA-GSH cycle (Reddy et al., 2004; Sofo et al., 2005; Pukacka and
Ratajczak, 2006; Bian and Jiang, 2009). For example, desiccation
of recalcitrant seeds of Acer saccharinum was characterized by

increased O−

2 and H2O2 production, elevation in AsA and GSH
contents as well as increased activity of the AsA-GSH enzymes
(Pukacka and Ratajczak, 2006). Similarly, subjecting five Morus
alba cultivars to drought stress led to an increase in the activity of
AsA-GSH cycle enzymes (Reddy et al., 2004). During prolonged
drought treatment in Prunus spp, the activities of the AsA-GSH
enzymes were up-regulated, AsA/DHA ratio was decreased and
the ratio of GSH/GSSG was increased suggesting an important
role of the AsA-GSH pathway in combating drought stress (Sofo
et al., 2005). Polyethylene glycol (PEG) induced drought stress to
Cucumis sativus seedling roots led to increased activity of APX.
However, the activities of DHAR and MDHAR first decreased
(24 h) and then increased. The activity of GR was found to
decrease at all time points (Fan et al., 2014). Drought stress
differentially affected the antioxidant levels in the genotypes of
plants which were contrasting with respect to drought tolerance.
For example, the drought tolerant cultivars exhibited enhanced
antioxidant enzyme activity under drought stress in compari-
son with sensitive cultivars of Dendranthema grandiflorum (Sun
et al., 2013). The effect of drought stress on different isoforms of
AsA-GSH cycle genes is extremely variable among different plant
species. For example, drought stress was shown to decrease the
activity of cytosolic isoform of APX whereas it led to increased
activity of the chloroplastic isoform in Helianthus annuus. In the
same study, it was shown that drought stress did not affect the
activity of both the cytosolic and chloroplastic isoforms of APX
in Sorghum bicolor (Zhang and Kirkham, 1996).

Salt Stress
In plants, salinity stress leads to cellular dehydration, which
enhances the production of ROS causing oxidative stress and
thereby leading to enhanced expression of ROS scavenging
enzymes. The expression levels of all enzymes of AsA-GSH path-
way have been shown to be affected by salt stress (Mittova et al.,
2004; Jebara et al., 2005). However, activities of AsA-GSH path-
way enzymes were found to be differentially altered by salinity
stress in the salt tolerant and sensitive varieties. For example, O.
sativa L. cv. Pokkali which is a salt-tolerant genotype, showed
enhanced activity of AsA-GSH cycle enzymes, whereas, the salt-
sensitive, O. sativa L. cv. BRRI dhan 29 exhibited decreased APX
activity, increased DHAR activity and unchanged MDHAR and
GR activity (Hossain et al., 2013). However, salinity stress in
Triticum aestivum and O. sativa resulted in increased activities of
MDHAR (Sairam et al., 2002; Vaidyanathan et al., 2003). All the
isoforms of MDHAR, viz. mitochondrial, peroxisomal, chloro-
plastic, and cytosolic have been found to be sensitive to salt stress.
For instance, salinity stress leads to increased activities of mito-
chondrial and peroxisomal MDHARs in Lycopersicon pennellii,
which is a salt tolerant wild variety (Mittova et al., 2003). An
increased GR activity has been reported in the roots and leaf of
Cicer arientinum under salt stress (Eyidogan and Oz, 2005).

Temperature Stress
High temperature in plants enhances the generation of ROS,
consequently inducing oxidative stress (Yin et al., 2008). Under
high temperature, RuBisCO can lead to the enhanced production
of H2O2 as a result of its oxygenase reaction (Kim and Portis,
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2004). Tolerance to heat stress has been ascribed to elevated
antioxidant enzymes’ activity in many crop plants (Rainwater
et al., 1996; Sairam et al., 2000; Sato et al., 2001; Rizhsky et al.,
2002; Vacca et al., 2004; Almeselmani et al., 2006). The AsA-
GSH pathway was found to be upregulated in response to heat
stress in Malus domestica as reflected by increased gene expres-
sion and activities of APX, DHAR and GR enzymes (Ma et al.,
2008). Under heat stress, the response of antioxidant enzymes
activity varied amongst different genotypes of plants. For exam-
ple, the analysis of gene expression of APX in a thermo-tolerant
and thermo-susceptible variety of Brassica spp, T. aestivum, and
Vigna radiata revealed increased activity of the enzyme under
heat stress in all the genotypes. However, the elevation in tran-
script level was found to be higher in case of thermo-tolerant
genotypes (Almeselmani et al., 2006; Rani et al., 2013). Heat
stress induced elevation in transcript level of APX has also been
reported in Poa pratensis by He and Huang (2007). Similar to
APX, GR activity was also found to be enhanced by 50% in
thermo-tolerant and 33% in thermo-susceptible genotypes of
Brassica spp under heat stress (Rani et al., 2013). Exposure of
N. tabacum cell suspension to elevated temperature (55◦C) also
resulted in increased GR activity (Locatto et al., 2009). However,
Ma et al. (2008) reported the initial increase and then decrease in
GR activity inM. domestica leaves during prolonged exposure to
heat stress. The activities of DHAR and GR were also found to be
increased under heat stress in temperature sensitive orchid Pha-
laenopsis (Ali et al., 2005). The activity of MDHAR was found to
be repressed under heat stress in the same study. This study also
indicated a differential effect of heat on the activity of the antioxi-
dant enzymes in roots and shoots. For example, the activity of GR
was doubled at 40◦C in leaf but was drastically reduced in roots
at the same temperature. The authors attributed the decrease in
GR activity in roots to reduced availability of NADPH (Ali et al.,
2005).

Similar to heat stress, low temperature stress also induces
H2O2 production in cells (Suzuki and Mittler, 2006) and is
known to up-regulate transcripts, protein level and activities of
different ROS-scavenging enzymes (Prasad et al., 1994; Saruyama

and Tanida, 1995; Sato et al., 2001). In Pinus spp, enhanced
freezing tolerance during cold acclimation was characterized by
elevated levels of APX, GR, MDHAR, and DHAR (Tao et al.,
1998). In leaves of Eupatorium adenophorum, the activity of
APX and GR increased with decreasing temperatures. However,
upon cold stress treatment to leaves of thermo-tolerant E. odor-
atum, the activity of APX reached a peak value at 15◦C and then
declined, whereas GR activity was not affected. MDHAR activity
in leaves of the cold-treated E. adenophorumwas not significantly
different from the controls, whereas the activity was found to be
decreased in leaves of E. odoratum. DHAR activity in leaves of the
two species was found to increase with both heat and cold stresses
(Lu et al., 2008).

Role of Gene Families of AsA-GSH Pathway in
Biotic Stress
The production of ROS constitutes one of the first responses
of plant cells to infection (Torres et al., 2006). The apoplastic
generation of ROS occurs mainly by enzymes like membrane
NADPH-dependent oxidase, cell wall peroxidase or polyamine
oxidases (Bolwell et al., 2002). ROS generated upon pathogen
attack can either enhance the harmful effect of infection or may
contribute to plant defense by causing hypersensitive response
(Levine et al., 1994). ROS can also serve as signal molecules for
the activation of local and systemic resistance (Grant and Loake,
2000; Kuzniak and Skłodowska, 2005). The ROS-mediated plant
defense response is further more complex and is dependent on
factors like the life style of pathogen (biotrophy/necrotrophy),
the type of plant–pathogen interaction (compatible/incompatible
interactions) and the stage of plant development (Govrin and
Levine, 2000; Huckelhoven and Kogel, 2003). For maintaining
ROS homeostasis, it becomes important to have an intricate and
tightly regulated balance between ROS production and removal.
Pathogen induced changes in antioxidant enzyme levels have
been shown in a number of plants (Table 3). For example, in
Hordeum vulgare leaves challenged with the powdery mildew
fungus, Blumeria graminis, the fungal infection led to a signif-
icant decrease in APX and GR activity in whole-leaf extracts

TABLE 3 | Representative examples of modulation of plant antioxidant activities by different pathogens.

Pathogen Plant Effect of pathogen infection on the

enzymes of AsA-GSH cycle

References

Blumeria graminis Hordeum vulgare APX, GR activity decreased while MDHAR and

DHAR unaffected

Vanacker et al., 1998

Botrytis cinerea Lycopersicon

esculentum

Activity of chloroplastic APX, GR increased and

that of mitochondrial and peroxisomal isoforms

decreased

Kuzniak and Skłodowska, 2005

Alternaria sesami Sesamum

orientale

Activity of APX, MDHAR, and GR initial

increased and then decreased

Shereefa and Kumaraswamy, 2014

Piriformospora indica Arabidopsis

thaliana

Activity of cytosolic MDHAR and DHAR

increased

Vadassery et al., 2009

Mycosphaerella fragariae Fragaria ananassa Activity of APX, MDHAR, and GR increased. Ding et al., 2011

Fusarium oxysporum Cicer arientinum Increased activities of APX and GR Limones et al., 2002

Erwinia amylovora Malus domestica Decreased APX activity in chloroplasts Viljevac et al., 2009
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of resistant variety but caused no significant change in the sus-
ceptible one. However, there was no change in the activities
of MDHAR and DHAR (Vanacker et al., 1998). Kuzniak and
Skłodowska (2005) showed that Botrytis cinerea infection differ-
entially affected the AsA-GSH gene families in L. esculentum.
Upon infection, APX activity was found to increase in chloro-
plasts and decrease in mitochondria and peroxisomes 2 days after
infection (dpi). The activity of peroxisomal MDHAR increased
considerably at 1 dpi followed by subsequent decrease in activities
of all MDHAR isoforms. A significant reduction in the activity
of DHAR was observed in whole leaf extract at all time points.
The chloroplastic DHAR activity was not affected, whereas the
mitochondrial and peroxisomal DHAR activities were distinctly
decreased starting from the third day after pathogen challenge.
The GR activity on the other hand was found to increase in the
chloroplasts. The peroxisomal and mitochondrial GR activities
were repressed in response to infection by the pathogen. The
decline in the activity of mitochondrial and peroxisomal isoforms
points toward the “fungus-promoted precocious senescence” that
led to the disease development (Kuzniak and Skłodowska, 2005).
Similarly, Sesamum orientale plants, upon infection with the fun-
gus Alternaria sesami displayed an initial increase in the activity
of APX, MDHAR, and GR followed by a gradual decrease in
the corresponding activities (Shereefa and Kumaraswamy, 2014).
The expression of cytosolic MDHAR and DHAR was shown
to be upregulated in A. thaliana seedlings co-cultivated with
the root-colonizing endophytic fungus Piriformospora indica
suggesting an important role of the enzyme in the mainte-
nance of mutualistic plant- fungal interaction (Vadassery et al.,
2009). However, knockdown of T. aestivum MDHAR resulted
in improved resistance to Puccinia striiformis in wheat (Feng
et al., 2014) suggesting that plants with compromised activity
of the antioxidant enzymes have improved resistance against
pathogens.

Role of Gene Families of AsA-GSH Pathway in
Physiological and Developmental Processes of
Plants
Apart from the important role in protecting the plants from the
stress induced ROS, the enzymes of AsA-GSH pathway also play
a part in growth and development of plants. AsA and GSH have
been known to play important roles in organ developmental pro-
cesses of plants (Arrigoni and De Tullio, 2002). The peroxiso-
mal MDHAR in A. thaliana has been shown to be important
in mobilization of lipid reserves during early growth following
germination by removing H2O2 generated by β-oxidation (East-
mond, 2007). The transcript profiles of certain enzymes of the
pathway are known to be spatially and developmentally regu-
lated. Expression of A. thaliana cytosolic APX (APX1) in leaves
and roots is relatively high as compared to the cytosolic APX2
isoforms (Panchuk et al., 2005; Hruz et al., 2008). A. thaliana
apx1 mutant plants exhibit delayed development, late flowering

and altered stomatal responses (Pnueli et al., 2003). The study
of Correa-Aragunde et al. (2013) suggests the participation of
APX1 in the redistribution of H2O2 accumulation during root
growth and lateral root development in A. thaliana. The tran-
scripts of APX1 in Ipomoea batatawere detected clearly in leaves,

weakly in stems, and not in non-storage and storage roots. The
expression level appeared to be higher in mature leaves than in
immature leaves, suggesting its growth-stage specific expression
(Park et al., 2004). Expression of APX2, another cytosolic iso-
form was found to be limited to bundle sheath cells in leaves
exposed to excess light (Fryer et al., 2003). Like APX, DHAR also
plays an important role in developmental processes. It has been
reported that suppression of DHAR expression results in a pref-
erential loss of chlorophyll a and less CO2 assimilation, resulting
in decreased rate of leaf expansion, reduced foliar dry weight
and premature leaf aging. Furthermore, the over-expression of
DHAR which led to reduced lipid peroxidation in the transgenic
plants led to delayed leaf aging in O. sativa (Chen and Gallie,
2006).

Summary and Perspectives

Despite their deleterious effects, ROS at low concentrations play
crucial roles in stress perception, regulation of photosynthesis,
pathogen recognition, programmed cell death, and plant devel-
opment. The antioxidant enzymes of AsA-GSH pathway help in
maintaining ROS homeostasis in cells by avoiding the poten-
tial cytotoxicity of ROS and allowing them to function as sig-
nal molecules. Considering the different levels and intensities
of AsA and GSH production in the different organelles of cell
under normal and stress conditions, the regulation of antioxidant
enzymes also differs. There are different subcellular isoforms of
each of the antioxidant enzymes and each isoform differentially
responds to different stress and developmental cues. The mech-
anism of regulation of each isoforms by different stresses and
developmental stages is yet to be completely understood. Further
studies are required to decipher the complex regulation of expres-
sion of different isoforms of the AsA-GSH pathway enzymes in
order to bolster our understanding of ROS homeostasis in plants.
Understanding the intricate regulation of the various isoforms
under various stress conditions can facilitate deeper insights into
the stress tolerance mechanism of plants. This will also help in
designing better strategies for the development of plants with
improved abiotic and biotic stress tolerance.
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