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A disruptive approach to therapeutic discovery and development is required in order to
significantly improve the success rate of drug discovery for central nervous system (CNS)
disorders. In this review, we first assess the key factors contributing to the frequent clinical
failures for novel drugs. Second, we discuss cancer translational research paradigms that
addressed key issues in drug discovery and development and have resulted in delivering
drugs with significantly improved outcomes for patients. Finally, we discuss two emerging
technologies that could improve the success rate of CNS therapies: human induced
pluripotent stem cell (hiPSC)-based studies and multiscale biology models. Coincident
with advances in cellular technologies that enable the generation of hiPSCs directly from
patient blood or skin cells, together with methods to differentiate these hiPSC lines into
specific neural cell types relevant to neurological disease, it is also now possible to combine
data from large-scale forward genetics and post-mortem global epigenetic and expression
studies in order to generate novel predictive models. The application of systems biology
approaches to account for the multiscale nature of different data types, from genetic to
molecular and cellular to clinical, can lead to new insights into human diseases that are
emergent properties of biological networks, not the result of changes to single genes.
Such studies have demonstrated the heterogeneity in etiological pathways and the need
for studies on model systems that are patient-derived and thereby recapitulate neurological
disease pathways with higher fidelity. In the context of two common and presumably
representative neurological diseases, the neurodegenerative disease Alzheimer’s Disease,
and the psychiatric disorder schizophrenia, we propose the need for, and exemplify the
impact of, a multiscale biology approach that can integrate panomic, clinical, imaging, and
literature data in order to construct predictive disease network models that can (i) elucidate
subtypes of syndromic diseases, (ii) provide insights into disease networks and targets and
(iii) facilitate a novel drug screening strategy using patient-derived hiPSCs to discover novel
therapeutics for CNS disorders.

Keywords: stem cell-based screening, systems biology and network biology, drug discovery screening, complex
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INTRODUCTION
The disease burden on society is increasing at a dramatic rate.
Focusing specifically on central nervous system (CNS disor-
ders), the prevalence is growing at an alarming rate, with
one in sixty-eight in the U.S. having some form of autism
(Baoi, 2014), 1.8 million estimated to suffer from schizophre-
nia (SZ), and Alzheimer’s Disease (AD) affecting more than
five million in the U.S. today, with projections of a 40%
increase in the number of AD cases in the next 10 years
(Hebert et al., 2013). The costs of these diseases are stagger-
ing, both in financial and human terms. In 2002, the overall
estimated cost of SZ was $62.7 billion with 36% attributed
directly to health care expenses, though most costs are non-
health care related, such as decreased productivity. By 2050, if

healthcare costs for AD remain unchanged, the entire Medicare
budget will be consumed by the treatment of those with AD
(Alzheimer’s Association, 2014).

Considerable effort and resources are being expended on drug
discovery research aimed at developing novel therapeutics that
would address the unmet medical need across a broad spec-
trum of diseases. However, less than one out of every eleven
drug discovery programs makes it to market (Cummings et al.,
2014). The success rate for CNS disorders is even lower. Though
many factors may contribute to the high rate of attrition, the
major drivers for CNS disorders, are inadequate efficacy or
margins of safety (Kola and Landis, 2004). In this review, we
will exemplify the issues of CNS drug discovery and provide
a perspective for changing the current paradigms within the

www.frontiersin.org December 2014 | Volume 5 | Article 252 | 1

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/about
http://www.frontiersin.org/Journal/10.3389/fphar.2014.00252/abstract
http://community.frontiersin.org/people/u/177036
http://community.frontiersin.org/people/u/187466
http://community.frontiersin.org/people/u/143696
http://community.frontiersin.org/people/u/177235
mailto:eric.schadt@mssm.edu
http://www.frontiersin.org/
http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery/archive


Schadt et al. Systems based drug discovery paradigms

context of the neurodegenerative disease, AD, and the psychiatric
disorder, SZ.

For SZ, existing treatments target a very limited number of
putative mechanisms, which treat some of the symptoms of SZ
in some of the patients some of the time. Although several new
pharmacologic interventions have been tested clinically in the last
decade, none have shown medically relevant efficacy required for
approval by regulatory authorities. Similarly, the field of ther-
apeutic development to slow the progression of AD is littered
with clinical failures of multiple pharmacological mechanisms
and treatment modalities. These failures have had somewhat
sobering effect on the field, particularly since many of the interven-
tions were founded on human genetics- and pathology-informed
amyloid hypothesis. A bright spot and beacon of hope may
be the field of cancer therapeutics, where personalized treat-
ments with far superior efficacy than traditional chemotherapies
have been developed successfully. It behooves us to understand
the primary reasons for the emerging successes in cancer treat-
ments in order to adapt the paradigm to drug discovery for CNS
disorders.

We will begin this review by discussing key factors that have
likely contributed to the clinical failures for novel drugs, discuss the
cancer research paradigms that have led to drugs with superior effi-
cacy and diagnostic tests, and offer a perspective on the application
of emerging technologies and tools that could improve the success
rate of novel therapies. Specifically, we will focus on two poten-
tially game-changing paradigms: (1) advances in human induced
pluripotent stem cell (hiPSC)-based disease models and (2) multi-
scale predictive modeling. Together, these approaches can enable a
more integrative biology approach to deriving insights into disease
mechanisms, upon which drug screening and development may
be founded in the near future. Although these approaches may be
adapted broadly to many CNS indications, this review will focus
primarily on SZ and AD.

CHALLENGES FOR DRUG DISCOVERY IN NEUROSCIENCE
First, the selection of a target for novel drug therapies requires
an in-depth understanding of disease biology, from the etiological
factors to pathophysiological mechanisms, and their relationship
to disease progression and duration. It is insufficient to move for-
ward with only the knowledge that a particular target is expressed
in the brain or that a specific DNA variant is associated to a neu-
rological disease. For common, complex trait diseases, a more
systems oriented view is emerging in which human diseases are
demonstrated to be emergent properties of biological networks,
not the result of changes to single genes (Schadt, 2009; Schadt
et al., 2009; Califano et al., 2012). Hence, rather than repeating the
mistakes of the past, it is imperative to understand the biological
context in which the susceptibility gene/gene networks and gene
products operate to give rise to the disease, before beginning high
throughput drug discovery screens. As the next step, we will need
insights into the effect of the implicated gene network on cellu-
lar/physiological pathways in order to determine whether a novel
therapy should augment or suppress, either fully or partially, the
function of the disease-associated network.

Secondly, other than rare or orphan diseases that are caused
by Mendelian mutations, common CNS disorders are syndromic

diseases diagnosed primarily by non-specific and blunt clinical
diagnostic tools, often based on patient reported symptoms. Thus,
both the so-called clinically diagnosed SZ or AD patient pop-
ulation represents a diverse patient population with respect to
etiologies and associated pathophysiological mechanisms, giving
rise to similar sets of clinical symptoms but with distinct rates of
disease progression. The clinical diagnostic tools, such as the Diag-
nostic and Statistical Manual (DSM) criteria for mental disorders
or Mini-Mental State Examination (MMSE) for dementia, have
served us well and led to approval of several drugs. However, the
poor specificity and sensitivity of these tools require that they be
supplemented with objective, diagnostic biomarkers with which to
classify or enrich patient populations that are more homogenous
in either their etiological or pathophysiological factors, or disease
stage, being targeted by drugs.

Third, chronic diseases have an additional inherent issue related
to adaptive biological mechanisms that emerge with chronicity of
the disease or drug treatment. For neurodegenerative disorders,
there is also the complicated factor of loss of resiliency in surviv-
ing neurons affected by the disease process. Thus, interventional
strategies have to be designed to be specific to the stage of the
disease, and when possible, to target primary prevention. There-
fore, an understanding of adaptive molecular mechanisms as well
as objective biomarkers that can monitor the biologic processes
associated with the disease stage or progression and adaptive pro-
cesses induced by drugs or disease will be required to improve drug
discovery and development.

Finally, drug screening paradigms need to evolve so that disease
biology mechanisms are monitored in cellular and animal models
that more faithfully recapitulate human disease biology. Simi-
larly, the systems biology/disease network approach will require
that end-points of drug screens may have to be multi-parameter
or phenotypic in nature, rather than those based on ease or
throughput considerations alone. Thus, we must facilitate the
development of cell-based systems derived from patients with
disease as well as normal controls, in which the cell types are
directly relevant to those implicated in human disease, so that
we may garner insights into disease biology and design effec-
tive screening paradigms. Given that the large-scale generation
and integration of panomic data has enabled the construction
of complex gene networks that provide a new framework for
understanding the molecular basis of disease (Ideker et al., 2002;
van’t Veer et al., 2002; Schadt et al., 2003; Barabasi and Oltvai,
2004; Bystrykh et al., 2005; Ghazalpour et al., 2005; Schadt, 2005;
Lum et al., 2006; Wang et al., 2006; Chen et al., 2008; Emils-
son et al., 2008; Zhu et al., 2008), it is now possible to take
a data driven, network-based view of diseases, which in turn
enables the elaboration of a network-based view of drug dis-
covery and development, one that is fundamentally different
from current methods (Chen et al., 2008; Emilsson et al., 2008;
Yang et al., 2009; Zhong et al., 2010a,b; Califano et al., 2012; Zhu
et al., 2012; Zhang et al., 2013a; Kidd et al., 2014; Figure 1). Sys-
tems biology approaches seek to presume less knowledge, capture
more information, and interpret the information in a more data
driven way.

The four points discussed above require translational
approaches that begin with patient-centered research to derive
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FIGURE 1 | Schematic for how multiscale biology can lead to therapeutic development. A network-driven framework to integrate diverse types of data
that lead to multiscale models of disease that can then be used to elucidate disease mechanisms, stratify patient populations, and develop novel therapeutics.
PDX, patient-derived tumor grafts; iPSCs, induced pluripotent stem cells.

insights into disease biology. Of all the major therapeutic areas,
cancer drug discovery research has led the way in translating the
explosion of human genomic data into new therapeutics despite
each clinically diagnosed malignancy being a heterogeneous mix-
ture. Hence, we begin by reviewing the cancer drug discovery
paradigm.

CANCER AS AN EMERGING MODEL OF MODERN DAY DRUG DISCOVERY
Drug hunters have been able to take advantage of two unique
features of cancer biology. Firstly, the accessibility of tumor
tissues facilitate their study through genomic and phenotypic
approaches as well as provide patient-derived pre-clinical in
vitro and in vivo model systems, which are being shown to
more faithfully recapitulate important aspects (notably uncon-
trolled proliferation) of the disease, and in many cases can
be formatted for high throughput screening (Cheung et al.,
2011b; Barretina et al., 2012; Dar et al., 2012; Garnett et al.,
2012; Hirabayashi et al., 2013). This has resulted in a sec-
ond distinguishing feature of cancer biology: although cancer
encompasses a large diversity of distinct malignancies, each can
be defined by an even larger diversity of driving mutations.
Importantly, the driver mutations are not random, but instead
reflect different core biological processes and signaling pathways
central to the onset and progression of the tumors and thereby

provide a rich source of new drug targets. Thus the taxon-
omy of cancers is being redefined on the basis of molecular
markers.

Multi-center genome sequencing endeavors (Stratton, 2011)
have revealed 100s of cancer causing mutations, discoveries which
shed welcome light on vital nodes in the otherwise largely cryptic
underlying disrupted networks (Eifert and Powers, 2012; Alexan-
drov et al., 2013; Cancer Genome Atlas Research Network, 2013,
2014; Cancer Genome Atlas Research Network et al., 2013a,b;
Kandoth et al., 2013; Zhang et al., 2014a). These growing lists
of cancer genes become immediate opportunities for therapeu-
tic intervention. When the encoded product of an oncogenic
mutation belongs to a conventionally druggable protein class,
this information can lead to very rapid development of novel
and effective drugs. For example, translocations fusing EML4 to
the tyrosine kinase gene, ALK, were discovered in lung cancer
biopsies in Rikova et al. (2007), Soda et al. (2007). The EML4-
ALK fusion protein results in a constitutively activated catalytic
domain and is a key driver of the uncontrolled proliferation
of cancer cells with this lesion. So it was postulated that ALK-
directed tyrosine kinase inhibitors might be able to nullify the
oncoprotein. Crizotinib, a tyrosine kinase inhibitor already in
clinical testing for MET kinase-driven tumors, was known to
inhibit also ALK kinase and trials were therefore extended to
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target EML4-ALK-positive non-small cell lung cancer (NSCLC)
patients. Efficacy results in these patients were dramatic, lead-
ing to FDA approval of crizotinib in 2011, an unprecedented
short duration (less than 4 years) after the first reports of the
fusion in patients. Cancer sequencing projects have revealed driv-
ing mutations in genes encoding other druggable oncoproteins
and, much like crizotinib, drugs targeting several of these have
shown considerable promise in clinical trials for patients whose
tumors bear the relevant mutation (Table 1) although, as described
below, the development of resistance has plagued each of these
drugs.

Some of the most frequently mutated cancer genes, however,
including oncogenes such as MYC and RAS, as well as tumor
suppressor genes, do not encode readily druggable proteins. In
principle, it may simply be a matter of following the known sig-
naling pathways from the cancer gene product until we reach a
tractable drug target, but the further we stray from the mutated
node the more likely the intervention will not be effective due
to redundancies and divergent branches in the relevant networks.
Inhibitors of the druggable GPCR target, Smoothened, have shown
encouraging promise in cancers with loss of function mutations in
the tumor suppressor PTCH,which encodes an upstream regulator
of Smoothened (Berman et al., 2002; Rudin et al., 2009; Von Hoff
et al., 2009). Similarly, MEK inhibitors have proven effective in
treating BRAF-mutant melanoma, where the defective oncogene
is directly upstream of, and activates, MEK in the MAPK pathway.
Conversely, however, MEK inhibitors have not thus far proven very
effective in treating cancers with mutations that activate the onco-
protein, RAS, just one extra step further upstream of RAF in the
canonical pathway. What has become evident now is that a com-
prehensive understanding of the entire defective network, rather
than a single canonical pathway, is necessary to identify new drug
targets for cancers harboring these undruggable oncogenes and
tumor suppressors (Solit et al., 2006; Lito et al., 2014; Schmit et al.,
2014; Sun et al., 2014).

Molecular networks can be interrogated with empirical
approaches that take advantage of the fact that cells from cancer
biopsies can be propagated as established cell cultures, as rodent
xenografts, or as patient-derived tumor grafts (PDX). Genetically

Table 1 | Driver genes identified from cancer sequencing studies have

led directly to drug targets and subsequent therapeutics that have

shown significant promise in clinical trials.

Genotype Drug Reference

PML-RARα translocation ATRA Dermime et al. (1993)

HER2 amplification Trastuzumab Cobleigh et al. (1999)

KIT mutation Imatinib Demetri et al. (2002)

EGFRL858R Gefitinib, erlotinib Paez et al. (2004)

BRAFV600E Vemurafenib Joseph et al. (2010)

EML4-ALK Crizotinib McDermott et al. (2008)

RET Vandetanib Wells et al. (2010)

BCR-ABL Imatinib Druker (2008)

ROS Foretinib Davare et al. (2013)

characterized cancer cell lines and tumor grafts have been estab-
lished from human disease specimens and generally preserve the
genomic features observed in the disease. In many cases, mutated
oncogenes and tumor suppressors that drive disease in animal
models are also known to be critical for the growth and survival, in
culture, of human cancer cell lines with the same mutations. This
offered the opportunity to use proliferation assays as a facile but
disease biology-relevant phenotypic assay on human cancer cell
lines to identify vulnerabilities particular to the network reconfig-
ured by specific mutations. A large number of in vitro and in vivo
screens based on this principle have reported potential new targets,
which take advantage of synthetic lethality, non-oncogene addic-
tion and co-lateral vulnerabilities in cancer (Whitehurst et al.,
2007; Turner et al., 2008; Luo et al., 2009a,b; Astsaturov et al., 2010;
Rehman et al., 2010; Cheung et al., 2011b; Muellner et al., 2011;
Kumar et al., 2012; Muller et al., 2012; Toyoshima et al., 2012;
Riabinska et al., 2013; Mair et al., 2014). Such approaches have
revealed vulnerabilities in cancer cells whose primary driving
mutations are not directly druggable. For example PARP inhibitors
were demonstrated to be synthetic lethal in vitro with mutations
in the tumor suppressors BRCA1 and BRCA2 (Farmer et al., 2005;
McCabe et al., 2005) and clinical testing has established the same
genetic dependence on tumor sensitivity to the PARP inhibitor
olaparib in patients (Fong et al., 2009).

Using high throughput screening methodologies coupled with
statistical methods, large panels of genetically characterized tumor
cell lines can be assembled to identify gene–drug interactions in
an unbiased manner and thereby identify either drugs or drug–
drug combinations effective for the treatment of cancers with
the relevant mutation (Barretina et al., 2012; Garnett et al., 2012).
In an analogous manner, tumor cell panels are being tested to
identify the context of dependencies on the entire human tran-
scriptome using a hairpin dropout whole genome RNAi screen
(Cheung et al., 2011b).

These developments over the last decade have demonstrated
that the ‘one gene – one drug’ paradigm is leading to progress
in the treatment of multiple cancers and is likely to continue to
bear some fruit as new mutations and drugs emerge. However,
it is also clear that the efficacy of new targeted therapeutics in
cancer is too often short-lived due to the eventual, sometimes
rapid, emergence of drug resistance due to adaptive biological
processes induced by the disease or drug treatment (Yauch et al.,
2009; Barber et al., 2013; Das Thakur and Stuart, 2013; Lord
and Ashworth, 2013; Niederst and Engelman, 2013). The mecha-
nisms of resistance to the modern cancer pharmacopeia are being
deciphered. Hence, one approach to tackle the drug resistance
problem is to continue along the same path, looking to exploit
new vulnerabilities that emerge in the resistant clones (O’Hare
et al., 2011; Cortes et al., 2012; Yadav et al., 2012; Friboulet et al.,
2014; Hata et al., 2014; Traer et al., 2014). Resistance to imatinib, a
very effective inhibitor of BCR-ABL for the treatment of chronic
myelogenous leukemia, most often occurs due to point muta-
tions in the target kinase that prevent drug binding. Three drugs,
designed specifically to inhibit these imatinib-resistant enzymes,
have since been approved and CML is now a well-managed disease
for the majority of patients (O’Hare et al., 2011). However, in the
case of resistance to epidermal growth factor receptor (EGFR) and
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BRAF inhibitors, distinct mechanisms of resistance can emerge
in different clones from the same primary tumor – a situation
that likely will not be feasibly solved with gene–drug pairs, even
if drugs directly targeting the new mutations that arise in each
metastasis could be discovered. Instead, the disrupted networks
need to be more completely understood to identify downstream
or parallel pathways common to all the resistant clones. Here
again, cell lines and PDX models derived from drug-resistant
tumors can be used to screen for drugs or by RNAi methods,
to identify targets that will be effective in dealing with multi-
ple mechanisms of resistance (Huang et al., 2012; Konieczkowski
et al., 2014; Sun et al., 2014). High throughput, unbiased drug–
drug combination screens are also feasible, at least in vitro, to
identify drug cocktails that are predicted to more effectively treat
and prevent the emergence of drug resistance (Bajrami et al., 2012;
Roller et al., 2012).

Other ways to address the rapid ability of cancer cells to evolve
drug resistance are emerging. Targeting cancer by avoiding the
cancer cells altogether and instead developing drugs that target
the other physiologic processes essential to cancer progression
has shown considerable promise. Thus discovery of drugs target-
ing angiogenesis, inflammation, and immune checkpoints does
not benefit from the wealth of smoking gun targets informed
by somatic mutation data in tumor cells, and preclinical models
of these aspects of disease are more complex than proliferation-
based assays. But exciting progress has been made, nevertheless,
with spectacular results in some cases (Robert et al., 2011; Topalian
et al., 2014) and unbiased screening approaches are being explored
in the search for new targets in each of these areas (e.g., Zhou
et al., 2014). In addition, work done in fruit fly to demonstrate
multifactorial targeting of tumors by simultaneously hitting mul-
tiple pathways that serve as key drivers of the cancer has not only
demonstrated that targeting of individual signaling pathways in
a given cancer will have short-lived efficacy, but that multifac-
torial targeting of the tumor can greatly diminish chances that
tumor cells will evolve to defeat the cocktail of drugs that get
used in these cases (Cagan, 2013; Das and Cagan, 2013). Here,
the use of PDX models provides a more holistic way of study-
ing how tumors may evolve in response to different types of
therapy. In this way, a more systems oriented approach can be
employed in which PDX models are used as patient avatars to
establish the most effective combination of treatment specific
to that individual’s tumor. These more progressive approaches
that seek to model a patient’s tumor in systems that can be
rapidly screened for therapies that will be most effective for that
individual, represent the new generation of precision medicine
strategies that hold promise in transforming how we diagnose
and treat disease (National Research Council (US) Committee
on A Framework for Developing a New Taxonomy of Disease,
2011).

These same model systems can be used to reveal the adap-
tive processes the can follow drug treatment, and often dampen
drug efficacy, and to therefore suggest combination therapies
that counteract them. For example, BRAF inhibitors can be very
effective in melanoma patients with BRAF mutant tumors, but
have been much less effective in BRAF mutant colorectal can-
cer and in Ras mutant tumors. Activation of c-Raf caused by

BRAF inhibitors in tumors with activated Ras has been shown,
paradoxically, to stimulate, rather than inhibit MAPK pathway
signaling and is suspected of causing new skin cancers that have
been observed as a frequent side effect of BRAF inhibitors (Hall-
Jackson et al., 1999; Hatzivassiliou et al., 2010; Heidorn et al., 2010;
Poulikakos et al., 2010). This model predicts that nullifying sig-
naling downstream of c-Raf with MEK inhibitors should prevent
the skin lesion side effect and also improve efficacy. The com-
bination of the MEK inhibitor, trametinib, and BRAF inhibitor,
dabrafenib, was approved for the treatment of melanoma in 2014.
In BRAF mutant colorectal cancer it has been learned that negative
feedback pathways are stimulated by the constitutive activation
of the MAPK pathway conferred by BRAF activating mutations
and that these pathways act to diminish signaling through the
EGFR. A consequence of inhibition of BRAF, therefore, is reacti-
vation of EGFR mediated signaling which diminishes drug efficacy
(Corcoran et al., 2012; Prahallad et al., 2012). Based on these dis-
coveries, clinical trials are underway testing combined inhibition
of BRAF and EGFR in colorectal cancer (NCT01750918). Sim-
ilarly MEK inhibitors are only poorly effective in KRAS mutant
cancers. RNAi-based screens were used to identify new targets
that, in concert with MEK inhibition, augment the antiprolifera-
tive activity of MEK inhibitors in KRAS mutant colorectal cancer
cell lines, revealing that c-Raf knockdown, or c-Raf inhibitors,
were able to potentiate the activity of MEK inhibitors in KRAS
mutant tumor cells (Lito et al., 2012; Lamba et al., 2014). Approved
Raf kinase inhibitors, such as dabrafenib and vemurafenib, are
ineffective inhibitors of c-Raf and so clinical testing of this hypoth-
esis will have to await the emergence of true c-Raf inhibitor
drugs. These approaches are beginning to reveal the adaptive
processes the can follow drug treatment, and often dampen
drug efficacy, and suggest combination therapies to counteract
them.

To summarize, the transformative success of the cancer drug
discovery and development may be attributable to four key fac-
tors: (i) de-risking target selection through identification of driver
mutations or disease networks through multi-center studies on
patient-derived tumor specimens, (ii) reducing patient hetero-
geneity by implementing molecular definition of disease taxonomy
rather than clinical diagnosis alone, (iii) addressing drug resis-
tance by targeting disease networks associated adaptive processes
induced by drug and/or disease, and (iv) incorporating cellu-
lar and animal models with greater predictive validity in drug
screens.

MULTI-CENTER GENETIC STUDIES AND USE OF hiPSCs TO DERIVE
INSIGHTS INTO DISEASE BIOLOGY
Tracking with the great advances in cancer drug development that
have benefitted from the genomics revolution, forward genetics
strategies to elucidate the complexity of human disease have been
accelerated as the cost of assaying nucleic acid sequences con-
tinues to drop exponentially and ever bigger cohorts of diseased
individuals are assembled. Whether performing a genome-wide
association study or whole exome/genome sequencing studies in
case/control cohorts or families segregating diseases of interest, the
quest has been to identify specific genes, pathways and networks
that are critical for disease onset, progression and severity and
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thereby rationalizing the selection or prioritization of molecular
targets or pathways for drug discovery.

A genetics case study for schizophrenia
Schizophrenia is a complex and heterogeneous disorder with an
estimated heritability of about 80% (Sullivan et al., 2003). Much
like cancer, many types of DNA variations, [single nucleotide poly-
morphisms (SNPs), copy number variations (CNVs), and small
exonic missense and nonsense mutations) as well as epigenetic
and/or environmental factors contribute to the risk of SZ. The
genetic risk factors for SZ include both rare variants conferring
large relative risks (e.g., CNVs) as well as common SNP vari-
ants, the latter (Schizophrenia Working Group of the Psychiatric
Genomics Consortium, 2014) with modest individual effect sizes
(Purcell et al., 2009).

Copy number variations are ubiquitous in the population
(McCarroll et al., 2008); it is now widely held that in addition to
a number of fairly uncommon syndromes, they also contribute to
more common disorders such as SZ. In fact, though linkage stud-
ies have been unsuccessful in identifying highly penetrant genes
(Ng et al., 2009), a large body of work (reviewed Malhotra and
Sebat, 2012) defined the following principles across >10,000 SZ
samples: (1) genome-wide rates of large (>100 kb), rare (<1%)
CNVs are elevated, (2) rates of de novo CNVs are elevated 2–50
fold, (3) CNVs generally contain many genes and confer large
relative risks (2–50), (4) specific sites of CNVs are often also
found in multiple additional neurological diseases, and (5) CNVs
are enriched in neuronal functions, particularly those that are
involved in synaptic activity and neurodevelopmental processes.
CNVs represent a polygenic burden of rare disruptive muta-
tions, one that is particularly enriched in gene sets including the
voltage-gated calcium ion channel and the post-synaptic density
(Purcell et al., 2014).

While individually penetrant CNVs are only found in a minor-
ity of patients (perhaps 5–10%), common DNA variants (minor
allele frequency >5%) are significant contributors to the heri-
tability of SZ, accounting for ∼30% of the variance in liability (Lee
et al., 2012). It is now widely held that SZ risk also involves 1000s of
common alleles of very small effect (Purcell et al., 2009). The ear-
liest convincing evidence for a contribution to common variants
in SZ included the major histocompatibility complex (MHC; Pur-
cell et al., 2009; Shi et al., 2009; Stefansson et al., 2009), subsequent
work also implicated the microRNA (miR)-137 as well as four of its
targets (Ripke et al., 2011). Recent GWAS of ∼38,000 SZ patients
and ∼115,000 controls by the Psychiatric Genomics Consortium
Schizophrenia Group have now identified 108 genome-wide sig-
nificant loci, most of which are novel, but individually have small
effects (relative risk ranging from 1.09–1.17; Schizophrenia Work-
ing Group of the Psychiatric Genomics Consortium, 2014). In
fact, it was recently estimated that more than 6300 common
SNPs collectively account for at least 32% of the genetic risk for
SZ (Ripke et al., 2013). Interestingly, these loci have begun to
implicate pathways: in addition to at least one target of current
neuropharmacology (the dopamine receptor DRD2), for the first
time, critical glutamatergic genes such as GRM3 and GRIN2A, and
calcium channel subunits (CACNA1C and CACNA1l) have been
associated with SZ.

Studying de novo point mutations is also a powerful tool;
it was recently shown that small de novo mutations affecting
one or a few nucleotides are overrepresented among glutamater-
gic post-synaptic proteins (Fromer et al., 2014). The location
of rare disruptive loss-of-function mutations, enriched in glu-
tamatergic and calcium signaling, have been shown to overlap
with SZ-associated CNV (Purcell et al., 2014). Similarly, com-
mon and rare variants can overlap: a novel variant at 16p11.2
(rs4583255[T]; odds ratio = 1.08) substantially increases risk of
psychosis (Steinberg et al., 2014).

However, genetic data on their own are not sufficient to gar-
ner insights into disease biology for several reasons. Although
disease-associated loci are identified, the causal genes are not
always known. Even when the genes implicated are known, an
understanding of the functional relevance of the genetic vari-
ant, whether it is an activating or inhibitory variant, has to be
experimentally derived to design drug discovery strategy. For SZ,
the functional implications of the DNA variants in glutamater-
gic genes or calcium channels remain to be elucidated. Both
animal model and clinical studies indicate that SZ is associated
with hyper-glutamatergic neurotransmission, at least early in the
disease (reviewed by Poels et al., 2014). It is critical to know
whether disease-associated GRM3 or GRIN2A SNPs predispose
to SZ by increasing glutamatergic neurotransmission at a vul-
nerable developmental stage. The importance of such functional
data is exemplified by the recent failure of two glutamate target-
ing ligands in Ph3 trials. First, a GRM2/3 agonist, LY2140023,
from Eli Lilly and Company, which is predicted mechanistically
to reduce glutamatergic neurotransmission. Although, in a Phase
2 study, this compound significantly reduced the symptoms of
SZ (Patil et al., 2007), it failed to do so in subsequent larger
Phase 3 studies (Adams et al., 2013, 2014). Similarly, on January
21, 2014, Roche announced that the GlyT1 inhibitor, bitoper-
tin, failed to meet its primary end-points in two Phase 3 trials
in SZ. What then is the significance of glutamatergic pathway
replicably associated to SZ by genetic studies? From the clini-
cal studies we cannot conclude whether the targets were wrong
or the patient population was wrong. One key factor to con-
sider is patient heterogeneity. Thus only a minority of patients
carry DNA variants in glutamatergic genes (Schizophrenia Work-
ing Group of the Psychiatric Genomics Consortium, 2014) but
the drug studies did not stratify patients on the basis of gene vari-
ants or glutamatergic imaging or physiological markers. Using
the cancer example, two paradigms need to be adopted to lever-
age the genomic data. First, to refine the taxonomy of SZ and
other CNS disorders on the basis of molecular markers. This will
allow identification of patient populations most likely to respond
to a drug mechanism. Second, use model systems to understand
functional biological implications of gene variants, as detailed
below.

hiPSC as a model system to translate genetic findings into
functional insights
In order to understand the complex network interactions con-
tributing to the entire genetic risk in any given patient, and
between patients, one must be able to study the full genetic back-
ground, even without knowing all the risk alleles contributing to
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the disease. Today, hiPSC-based models for many CNS disorders
have been established, by reprogramming patient somatic cells into
hiPSCs, and subsequently differentiating these stem cells into dif-
ferent types of neurons (Dimos et al., 2008; Park et al., 2008; Baek
et al., 2009; Ebert et al., 2009; Hotta et al., 2009; Lee et al., 2009;
Soldner et al., 2009; Marchetto et al., 2010; Nguyen et al., 2011;
Pasca et al., 2011). This type of technology has made it possible to
connect genetic data to biological insights, elucidating molecular
and physiological changes in different neural cell types, something
that was incredibly difficult or even impossible prior to hiPSCs.

A number studies of psychiatric disorders have reproducibly
demonstrated that even small patient hiPSC cohorts can reveal
robust and repeatable neural phenotypes, meriting further inves-
tigation. For example, many groups have generated hiPSCs
from Rett Syndrome patients, and consistent with post-mortem
patient studies, all have reported that neuronal soma size is
reduced compared with controls. Additionally, other disease-
relevant phenotypes such as reduced spine density, decreased
neuronal spontaneous calcium signaling and decreased sponta-
neous excitatory and inhibitory post-synaptic currents have been
reported (Marchetto et al., 2010; Ananiev et al., 2011; Cheung
et al., 2011a). Timothy syndrome (TS) is caused by a mutation
in the L-type calcium channel Ca(v)1.2 and associated with heart
arrhythmias and ASD. TS hiPSC derived cortical neural progen-
itor cells (NPCs) and neurons show aberrant calcium signaling,
(Pasca et al., 2011) ameliorated by treatment with roscovitine,
a cyclin-dependent kinase inhibitor and atypical L-type-channel
blocker (Pasca et al., 2011). Though early proof-of-concept studies
of hiPSC neuronal pathology focused on diseases character-
ized by both the loss of function of a single gene product
and rapid disease progression in early childhood (Ebert et al.,
2009; Lee et al., 2009; Marchetto et al., 2010), many groups have
recently extended these studies to complex genetic psychiatric
disorders.

To date, SZ has lacked a human cell-based platform that incor-
porates the heterogeneity of this complex genetic disorder with
which potential therapeutic compounds might be identified by
high throughput screening.

hiPSC-based studies of schizophrenia
For a discovery made in 2006, that transient expression of just
four factors (OCT3/4, KLF4, SOX2, and c-MYC) is sufficient to
directly reprogram adult somatic cells into an induced pluripotent
stem cell (iPSC) state (Takahashi and Yamanaka, 2006; Takahashi
et al., 2007; Yu et al., 2007), Shinya Yamanaka was awarded the
2012 Nobel Prize in Medicine. With this revolutionary advance,
hiPSCs are now be routinely generated from patient skin or
blood cells, owing to the relative ease of tissue access, and are
believed to be capable of differentiating into every cell type found
in the adult (Maherali et al., 2007; Meissner et al., 2007; Taka-
hashi et al., 2007; Wernig et al., 2007; Yu et al., 2007). Because
hiPSCs can be derived from adult humans, after the develop-
ment of disease, hiPSCs represent a potentially limitless source
of human cells with which to study the onset and progres-
sion of neurological disease, even without knowing which genes
are interacting to produce the disease state in an individual
patient.

In previous publications, we directly reprogrammed fibrob-
lasts from four SZ patients into hiPSCs and differentiated these
disorder-specific hiPSCs into forebrain NPCs (Brennand et al.,
2014) and neurons (Brennand et al., 2011). Gene expression com-
parisons of our hiPSC-derived NPCs and 6-week-old neurons to
the Allen Brain Atlas indicate that our hiPSC neural cells, from
controls and patients with SZ, resemble fetal rather than adult
brain tissue (Brennand et al., 2014), indicating that hiPSC-based
models may not yet be suited for the study of the late features of
this disorder. SZ hiPSC NPCs show evidence of aberrant migra-
tion and increased oxidative stress (Brennand et al., 2014), while
SZ hiPSC neurons showed diminished neuronal connectivity in
conjunction with decreased neurite number, PSD-95 and gluta-
mate receptor expression. Key cellular and molecular elements
of the SZ phenotype were ameliorated following treatment of
SZ hiPSC neurons with the antipsychotic loxapine (Brennand
et al., 2011). Others have also reported that SZ hiPSC neural
cells show increased oxidative stress (Paulsen et al., 2011; Robic-
sek et al., 2013), aberrant responses to environmental stresses
(Hashimoto-Torii et al., 2014) and have reduced synaptic matura-
tion (Robicsek et al., 2013; Wen et al., 2014; Yu et al., 2014; Zhang
et al., 2014b).

Until recently, functional differences in SZ hiPSC neurons
had not been identified, likely owing to the heterogeneity in
hiPSC neuronal culture. Now, the first phenotypic characteriza-
tion of a single neuronal subtype (hippocampal dentate gyrus
granule neurons) shows reduced neuronal activity and spon-
taneous neurotransmitter release in SZ hiPSC-derived neurons
(Yu et al., 2014). This demonstration that functional deficits
can be detected in live human neurons in vitro convincing
shows that phenotypic assays (if not molecular comparisons)
must be conducted in specific and defined neuronal subpopu-
lations.

A growing body of evidence links SZ with abnormal func-
tioning of dopaminergic, GABAergic and glutamatergic neurons.
Although pharmacological modulation of dopamine transmis-
sion helps manage the positive symptoms of SZ for some
patients (Weinberger, 1987; Kessler et al., 2009), emerging evi-
dence indicates that aberrant dopamine transmission is most likely
downstream from dysfunctional GABAergic and glutamatergic
neurons of the prefrontal cortex (Wen et al., 2010; Demjaha et al.,
2013). hiPSCs can now be differentiated to cortical pyramidal
(Espuny-Camacho et al., 2013), interneuron (Maroof et al., 2013;
Nicholas et al., 2013) and midbrain dopaminergic fate (Cham-
bers et al., 2009; Kriks et al., 2011), providing multiple avenues
for studying SZ in precisely defined subpopulations of neurons.
Efficient protocols to differentiate hiPSCs into dopamine neu-
rons have been systematically optimized and yields now exceed
>80% (Chambers et al., 2009; Kriks et al., 2011). After neural
induction, DA specification occurs recapitulating the activation
of Sonic hedgehog (SHH) and Wnt/β-catenin signaling that pat-
terns dopaminergic neurons in the floor plate region of the
ventral midline. Recently published methods to generate GABAer-
gic neurons are similar, reiterating embryonic development of
the ventral telencephalon via the inhibition of WNT signals and
timed exposure to SHH signals (15,16). Differentiation to glu-
tamatergic fate occurs in the absence of bone morphogenetic
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protein (BMP), Wnt/β-catenin and TGF-β/activin/nodal path-
ways (Mariani et al., 2012; Shi et al., 2012). Protracted cortical
differentiation (50–70 days) seems to mimic human developmen-
tal temporal patterning, resulting in sequential specification of
cortical layer identity (Shi et al., 2012; Espuny-Camacho et al.,
2013).

The ability to rapidly induce neurons, rather than rely on pro-
tracted differentiation protocols, would clearly be advantageous
when considering systematic comparisons of 100s of SZ patients
or high throughput screening of 1000s of potential therapeutics.
Mouse (Vierbuchen et al., 2010) and human (Pang et al., 2011)
fibroblasts can be induced in less than 6 days into iNeurons, via
lentiviral (LV) overexpression of just BRN2, ASCL1, and MYTL1 –
with the addition of NEUROD1 in human cells. Though rapid, the
process is inefficient, occurring in just 2–4% of the original fibrob-
lasts, and generates relatively immature neurons unable to form
synapses on their own. The addition of key microRNAs improves
the process, resulting in mature neurons capable of forming fully
functional synapses in pure cultures (Ambasudhan et al., 2011; Yoo
et al., 2011). Yields remain at approximately 10%, with substantial
variability between fibroblast lines, and the temporal and spatial
identity of iNs, relative to the human brain, is unresolved. The abil-
ity to generate neuronal populations of a specific sub-type would
be ideal for cell-based studies. Already, using pools of cell type spe-
cific transcription factors, human fibroblasts can be induced into
midbrain dopaminergic neurons (Caiazzo et al., 2011). Though
faster than hiPSC reprogramming and subsequent neuronal dif-
ferentiation, of primary consideration is that this methodology
transforms precious primary patient-derived cells into terminally
differentiated neurons, limiting the cellular material available for
studies.

In comparison to methods of growth factor-directed differenti-
ation, or fibroblast derived iNeurons, inducible LV overexpression
of NGN2 in hiPSCs rapidly induces pure populations of func-
tional excitatory neurons, with a transcript profile indicative of
cortical layer II/III neurons, in as little as in 21 days (Zhang
et al., 2013b). We predict that similar methods for rapid and
directed induction of a variety of pure neuronal subpopulations
will soon be ubiquitous. While one might fear that this pro-
gression toward faster and more defined neuronal induction will
bypass normal neural development, potentially limiting the ability
to observe early phenotypes such as neural migration, specifi-
cation or maturation, we note recent evidence that iNeurons
derived from patients with an autism-associated neuroligin-
3 (NLGN3) mutation perfectly recapitulated the molecular
and synaptic defects observed in the Nlgn3 mouse model
(Chanda et al., 2013).

To date, most hiPSC studies have been conducted on cells
derived from a handful of cases and controls, typically around
3–6 patient lines. However, efforts are underway to make the
process of converting somatic cells into stem cells more uni-
form, efficient, and cost-effective. Thus one can anticipate a
time in the near future where 100s of cell lines representing
100s of individual patients may be studied to understand dis-
ease biology for common disorders such as SZ. In concert with
functional genomics, high throughput electrophysiology, imaging
and integrative systems biology approaches, this platform could

provide insights into common and unique mechanisms of syn-
dromic diseases upon which new drug discovery paradigms may
be founded. Thus analogous to the oncology field, hiPSCs is poised
to provide a cellular model platform that could enable person-
alized medicine for psychiatric indications. Additionally, these
cell lines and associated phenotypes will form a powerful plat-
form for drug-screening assays with direct relevance to disease
biology.

MULTISCALE BIOLOGY APPROACH TO UNDERSTANDING DISEASE
BIOLOGY AND IDENTIFYING THERAPEUTIC TARGETS
Given the enormous amount of panomic data that have been gen-
erated to characterize common human diseases, this data can be
integrated in order to build predictive network models of nor-
mal and disease states, which can elucidate the key biological
drivers of the disease state. To fully understand complex neu-
rological diseases, we must link molecular biology to physiology
(Schadt, 2009; Schadt et al., 2009; Califano et al., 2012). Multi-
modal models can be used to identify disease signatures, by using
the networks to organize the signatures according to the sub-
networks (and the biological processes that they define), which
are associated with disease (Schadt et al., 2005, 2008; Chen et al.,
2008; Emilsson et al., 2008; Yang et al., 2009, 2010; Zhong et al.,
2010a,b; Zhu et al., 2010; Ambasudhan et al., 2011; Greenawalt
et al., 2011; Wang et al., 2012). Ultimately, integrating diverse,
large-scale data provides a path to predict which drug effects
might best counteract the molecular networks underlying disease
(Figure 2).

Building and applying multiscale network models
Integrative network models utilize panomic data to derive causal
relationships among 1000s of intermediate molecular traits and
between molecular and higher order physiological traits associ-
ated with disease (Barabasi and Oltvai, 2004; Zhu et al., 2012). In
this context, networks are represented graphically as nodes and
edges, where nodes represent individual molecular and clinical
features (gene expression levels, metabolite levels, protein states,
methylation levels, biochemical measures, and so on) and edges
represent the interactions among these variables. How molecular
traits and disease traits causally relate to each other can be modeled
using pairwise causality tests (Schadt et al., 2005; Millstein et al.,
2009) or probabilistic graphical models, such as RIMBANet (Zhu
et al., 2004, 2007, 2008, 2010, 2012), in which all available traits
are considered simultaneously. A number of studies performed
by us and others, in a variety of species, have demonstrated that
predictive networks like Bayesian networks can capture funda-
mental properties of complex systems in states that give rise to
complex phenotypes (Jansen et al., 2003; Lee et al., 2004; Zhu
et al., 2004, 2007, 2008, 2012; Schadt et al., 2008; Zhang et al.,
2013a). The available molecular data that informs on disease,
derived from different tissues in different states, providing the nec-
essary ingredients to reconstruct causal network models of disease
(Figure 1).

High dimensional panomic data will increasingly be generated
in hiPSC derived neurons, with 100s or even 1000s of samples
generated from disease cohorts now possible for (relatively) low
costs. This type of panomic data permits the construction of
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FIGURE 2 | Schematic for a network screening approach to drug

discovery. First, integration of multiscale data sets can be reduced to
a minimal gene reporter set specific to a disease of interest, in this
case, schizophrenia. Second, expression of this gene reporter set can

be used as a platform for high throughput screening of hiPSC neurons
generated from schizophrenia patients, in order to identify compounds
capable of ameliorating the gene expression signature in patient-derived
neurons.

interaction and differential connectivity networks, which char-
acterize the connectivity patterns of the molecular networks
in disease relevant cell types between those with and with-
out disease. Interaction networks and differential connectivity
measures, such as the module-centric differential co-regulation
(MDC) measure, provide for deeper insights into the molec-
ular processes involved in disease. For example, by applying
MDC to the molecular interaction networks generated from late-
onset AD brain regions compared to these same brain regions
in non-demented controls (Zhang et al., 2013a), we determine
that one module with a significant gain of connectivity in AD
patients was enriched for immune function and microglia. This
type of analysis, comparing disease cases to controls, can now
be carried out on hiPSC-derived cell types in order to generate
sets of genes from co-expression modules that are differentially
connected.

The network constructs discussed above provide a conve-
nient framework for understanding the core biological processes
involved in a given disease of interest, as well as for elucidating
the master regulators of disease. Individual signatures of disease,
or a given perturbation, can be projected onto the network mod-
els, in order to identify the sub-networks that best organize the
signatures according to biological processes. For example, gene
expression traits monitored in hiPSC-derived neurons can be iden-
tified as changed or not, in response to treatment with a given small
molecule compound. This signature would represent a complex
mixture of changes that reflect the proteins specifically targeted

by the compound, the primary response of genes to those specific
targets, downstream changes that result from changes in these
molecular states, changes induced by unintended targets, and so
on. By projecting this complex signature onto a more compre-
hensive multiscale network model, the signature can be broken up
into different coherent components that reflect different biologi-
cal processes and molecular functions associated with the action
of the drug on the cell system under study (Figure 3). The identi-
fied components represent sub-networks that can in turn elucidate
potential disease mechanisms defined by them. The master regula-
tors of these sub-networks can in turn be identified using key driver
analysis methods (Zhu et al., 2008, 2012; Tran et al., 2011; Zhang
et al., 2013a) that involve finding the largest connected graphs
containing the sub-networks, and then perturbing each node (or
combination of nodes) in this expanded sub-network in silico to
predict the network response. Those nodes that significantly alter
the state of the network are declared as key drivers or master reg-
ulators of the sub-network. We have previously demonstrated this
type of key driver analysis to identify networks and their corre-
sponding key drivers associated with inflammatory bowel disease
(IBD), AD, and other such common human diseases (Jostins et al.,
2012; Wang et al., 2012; Zhang et al., 2013a).

Application of multiscale networks to high throughput screening
Multiscale models defining networks for a given neurological
disease can be used to construct gene expression assays for
high throughput screening (Figure 2). The effect of any given
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FIGURE 3 | Inflammatory bowel disease-associated gene set projected

onto a predictive network model. The yellow nodes and red edges
indicate the sub-network most significantly enriched for the signature gene
set. The right panel is an expanded view of the impacted sub-network. The
larger nodes represent key drivers that are >10-fold enriched for genes
associated with IBD, whereas the sub-network itself is roughly 4-fold
enriched.

perturbagen, whether a small molecule compound, natural prod-
uct, RNAi-based construct and so on, on a specific network of
interest can be assayed directly in cell-based systems (such as
hiPSC-derived neurons derived from SZ or AD patients), which
more accurately reflect the states of networks underlying disease.
Complementing the network-based screens that use molecular
network state as a readout, are cellular phenotyping assays that
also aid in the linking of molecular states of disease to pathophys-
iological states. Screening carried out in this way can lead to the
rapid identification of compounds that affect disease networks
in favorable ways, while simultaneously identifying compounds
that hit networks associated with toxicity or other adverse events
(Figure 2). In this way, compounds can be identified that target
specific subtypes of disease without targeting networks that can
lead to toxicity or adverse events.

Network constructs can be used to inform on molecular
responses to perturbations with small molecules or other per-
turbagens, where the networks enable a direct link between
molecular biology and pathophysiology. In a high throughput
screening context, where transcription or other molecular fea-
tures are the readout, in addition to cell-based phenotypes, the
aim is to identify molecular responses to the perturbagens that
are predicted to associate with physiological changes in favorable
directions, while simultaneously being predicted to have a minimal
adverse event profile. Networks can be integrated with molecular
screening data to identify those perturbagens from the screen that
have similar mechanisms of action, that impact key disease related
processes, or that impact key driver genes of diseases of interest.
We and others have previously made use of network models to
inform on perturbagen-induced molecular signatures as a means
of predicting and validating the impact a given gene or genes had
on molecular states and the pathophysiology of disease-associated
with those states (Mehrabian et al., 2005; Schadt et al., 2005; Chen
et al., 2008; Zhu et al., 2008, 2012).

This type of approach has been more generally applied to
repurpose existing drugs for novel indications. For example, IBD
signatures were derived from surgical specimens and intersected

with Connectivity Map data representing transcriptional readouts
across a number of cell lines in response to treatment with many
100s of drugs using a novel pattern-matching algorithm (Dudley
et al., 2011). From this search the anticonvulsant drug topiramate
was identified and experimentally validated as a novel treatment
for IBD (Dudley et al., 2011). Topiramate has primary indications
for seizure disorders and no history of efficacious use for IBD or
other inflammatory diseases. Using a chemically induced (2,4,6-
trinitrobenzenesulfonic acid) rodent model of IBD to evaluate
the activity of topiramate administered in the presence of an IBD
phenotype, a statistically significant reduction in gross pathophys-
iological and histopathological measures of severity of the induced
IBD phenotype in the population of animals receiving topiramate
compared to untreated vehicle controls was observed.

Returning one last time to novel successes in cancer ther-
apeutics, in a separate study, this same computational drug
repurposing strategy was applied to transcriptional profiles of
small cell lung cancer (SCLC; Jahchan et al., 2013). The sys-
tem identified imipramine (a tricyclic antidepressant), bepridil
(a calcium channel blocker), and promethazine (a phenoth-
iazine antihistamine) as having anti-SCLC activity. These pre-
dictions were experimentally validated, demonstrating anti-
SCLC activity across a number of in vitro and in vivo exper-
iments using human and animal model systems. The same
approach was used to identify and validate anti-neoplastic
activity of the anti-ulcer drug cimetidine against NSCLC
(Sirota et al., 2011).

While low cost sequencing assays have provided an unprece-
dented amount of data on genetic loci and variants associated
with common syndromic disorders, these loci by themselves are
not sufficient to garner the most informative insights into dis-
ease mechanisms upon which new drug discovery efforts may be
founded. Again, analogous to the oncology field, multiscale pre-
dictive models now provide a computational platform that has the
potential to significantly improve the success rate of neurological
drug discovery if integrated appropriately.

CONCLUSION
After considering the frequent clinical failures for novel drugs
together with the novel cancer research paradigms that have led
to improved drug discover, here we have discussed two trans-
formational technologies that have and will continue to provide
unprecedented insights into molecular mechanisms associated
with complex diseases of the brain, and thereby de-risk drug
discovery. First is the ability to generate on a large-scale hiPSCs
derived neurons; this cellular model recapitulates disease mech-
anisms in vitro, thereby enabling studies of: disease mechanisms,
genotype-phenotype relationships, and causative or risk factors.
Furthermore, hiPSC derived neurons offer the ability to engineer
assays that have direct relevance to disease biology, analogous
to proliferation assays on cancer cell lines. Second, advances in
biotechnology have enabled very low cost sequencing of nucleic
acids, leading to big data and identification of large ensembles of
gene loci and variants, which necessitated a revolution in com-
puting and big data analytics to more comprehensively integrate
very large-scale data and infer predictive models from it. Using
these methods, we have already identified novel insights into

Frontiers in Pharmacology | Experimental Pharmacology and Drug Discovery December 2014 | Volume 5 | Article 252 | 10

http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery/
http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery/archive


Schadt et al. Systems based drug discovery paradigms

disease mechanisms in AD, which are now the focus of drug dis-
covery in small and large pharmaceutical companies; we expect
that a similar approach will yield a better understanding into the
mechanisms and treatment of psychiatric disorders, such as SZ.
Together, these technologies can spawn a new generation of drug
screening paradigms where screening assays (either in vitro or in
silico) that capture far more of the relevant biology for common
human diseases may be performed. The prediction is that such
screens will significantly improve discovery of targets and drugs,
as well as diagnostic tests, to make personalized therapies a reality
for CNS disorders.
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