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The xylem-limited bacterium Xylella fastidiosa (Xf) causes Pierce’s disease (PD), an
important disease of grapevine, Vitis vinifera L. Grapevine rootstocks were developed
to provide increased resistance to root disease, but rootstock effects on cane and
vine diseases remain unclear. Grapevines that consisted of Cabernet Sauvignon or
Chardonnay grafted to 13 different rootstocks were inoculated with Xf and evaluated for
PD severity and Xf titer after 6 months. A subset of six rootstock/scion combinations
had xylem sap phenolic levels assessed in non-infected and Xf-infected grapevines.
Vigor also was analyzed by measuring root lengths and masses. Cabernet Sauvignon
grafted to 101-14MG, 1103P, 420A, or Schwarzmann had reduced PD severity compared
to Cabernet Sauvignon grafted to 110R, 5BB, or SO4. Chardonnay grafted to Salt Creek
or Freedom had reduced PD severity compared to Chardonnay grafted to RS3 or
Schwarzmann. Chardonnay grafted to RS3 had greater Xf titer than Chardonnay grafted
to 101-14MG, Freedom, or Salt Creek. No other differences in Xf titer among rootstocks
were observed. Of the six scion/rootstock combinations which had xylem sap phenolics
analyzed, Chardonnay/RS3 had the highest levels of most phenolics whereas Cabernet
Sauvignon/101-14MG had the lowest phenolic levels. However, Chardonnay/101-14MG,
which had mild PD symptoms, had greater sap levels of caftaric acid than other
scion/rootstock combinations. Sap levels of caftaric acid, methyl salicylate, a procyanidin
trimer, and quinic acid were greater in Xf-infected vs. non-infected grapevines. Chardonnay
on 101-14MG or Salt Creek had greater root mass than Chardonnay on RS3. Cabernet
Sauvignon on 101-14MG had greater root mass than Cabernet Sauvignon on 110R. These
results identified rootstocks with the capacity for reducing PD symptom progression.
Rootstocks also were shown to affect Xf titer, xylem sap phenolic levels, and plant vigor.
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INTRODUCTION
Grapevine cultivars are generally grown for specific fruit quali-
ties and are predominately selections of Vitis vinifera L., which is
propagated throughout the world. Unfortunately, a variety of dis-
eases, such as Pierce’s disease (PD), impact Vitis vinifera in many
warmer regions. PD is caused by a strain of the xylem-limited
bacterium Xylella fastidiosa Hopkins (Xf), which is thought to
have originated in Northern Mexico and the Southeastern United
States (Wells et al., 1987). In these places, wild grape species
are tolerant of the disease and do not exhibit symptoms when
infected with Xf (Keller, 2010).

However, the fruit of North American wild grape species often
have undesirable characteristics such a poor berry taste, berry
size, and vine growth habit. One solution to impart increased
disease tolerance to commercial grape plantings and to keep
desired fruit characteristics is to graft desirable grape cultivars
to rootstocks improved for disease/pest resistance (Christensen,
2003; Keller, 2010). The use of North American rootstocks to
graft to scion of European cultivars to has been credited with

saving the European vineyard industry from the root-feeding
insect phlloxera (Galet, 1996; Granett et al., 2001). Grafting also
can protect from nematodes and soil-dwelling pathogens such as
crown gall-causing Agrobacterium vitis (Anwar et al., 2002; Keller,
2010). Rootstocks that are considered “resistant” generally have
an increased tolerance to pathogen or pest attack through a vari-
ety of physical and chemical mechanisms that limit feeding and
pathogen progression (Granett et al., 2001; Keller, 2010).

However, the ability of rootstocks to impart increased toler-
ance against scion diseases is less understood. For some scion
diseases affecting grapevines or other grafted plants, different
rootstocks have resulted in reduced symptom progression or
pathogen titers (Gould et al., 1991; He et al., 2000; Cousins
and Goolsby, 2011). Cousins and Goolsby (2011) found the
scion/rootstock combination with the greatest pruning weights
also had fewer PD symptoms, which could imply that vine vigor
improves tolerance to Xf infection. Rootstocks might impact tol-
erance to pathogen infection by the ability to influence scion
vigor and nutrient uptake (Ruhl et al., 1988; Keller et al., 2001).
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Improved vigor and nutrient uptake could in turn provide greater
host resources needed for production of secondary metabolites
(including compounds called phenolics) and other components
of host defense against pathogens. Presumably, compounds pro-
duced by the rootstock also could translocate throughout the
scion via xylem sap. This also could impact the growth of Xf and
other xylem-limited pathogens.

Previously, xylem sap components were shown to affect bac-
terial pathogen growth, proliferation, aggregations, and biofilm
formation (Cheng et al., 2009; Cruz et al., 2012; Shi et al., 2013).
In particular, phenolic compounds have been shown to inhibit
growth of Xf in vitro (Maddox et al., 2010). Phenolic levels may
increase to some degree in response to infection by Xf (Wallis and
Chen, 2012; Wallis et al., 2013). This is important because phe-
nolics also have been repeatedly associated with host resistance
to bacterial and other diseases (Derckel et al., 1999; Goetz et al.,
1999; Hammerschmidt, 2004; Pezet et al., 2004; Gutha et al., 2010;
Rusjan et al., 2012).

The objective of this work was to observe whether different
rootstocks could affect PD symptom progression, Xf growth, or
levels of defense-associated phenolic compounds. Greater pheno-
lic levels could be due to either differences in genotype or vigor,
and therefore rootstock vigor was assessed as well. Two different
scion cultivars were examined to observe if rootstock effects on
PD and Xf were consistent when scion varied. This work eluci-
dated the ability of rootstocks to impart increased tolerance to
XF infection and reduce PD symptom progression. Furthermore,
the ability of rootstocks to affect xylem sap phenolic levels was
observed.

MATERIALS AND METHODS
PLANT MATERIAL
Sixteen vines each were obtained from a local nursery
for Chardonnay grafted to six commonly utilized rootstocks
(Table 1). Likewise, an addition 16 vines each were obtained from
a local nursery for Cabernet Sauvignon grafted to 10 different
rootstocks (Table 1). All of these grapevines were planted in pot-
ting media and arranged in a randomized, complete block design
(with two spatial blocks) in a climate-controlled greenhouse that
had a 14 h light cycle.

EVALUATION OF PD AND Xf
In April 2012, eight plants of each scion/rootstock combina-
tion were thrice inoculated ∼5 cm above the rootstock with the
Stag’s Leap strain of Xf using the pin-prick method described
by Hopkins (2001). The remaining vines were mock-inoculated
with water. In brief, Xf grown on periwinkle wilt agar media was
suspended in 2 mL of water (for 1.0 × 108–1.0 × 109 CFUs/mL),
and a 23-gauge needle was used to prick holes on the stem
(Hopkins, 2001). These holes then had droplets of bacterial sus-
pension placed on them, which was absorbed to inoculate the
plant. Two weeks after initial inoculation, a second inoculation
was conducted to improve infection success (Wallis and Chen,
2012).

Inoculated grapevines were assessed for PD symptom sever-
ity in October, 6 months after initial inoculation treatment, using
a 0–5 scale, with “0” representing no disease symptoms, “1” less

Table 1 | Scion and rootstock combinations used in this study, with

information about the wild Vitis spp. in the background of the

rootstocks provided.

Scion Rootstock Background

Cabernet
Sauvignon

1103 Paulsen (1103P) V. berlandieri × V. rupestris

110 Richter (110R)* V. berlandieri × V. rupestris

101-14 Millardet et de
Grasset (101-14)*

Vitis riparia × V. rupestris

1616 Couderc V. solonis × V. riparia

3309 Couderc V. riparia × V. rupestris

O39-16 (3916) V. vinifera × V. rotundifolia

420A Millardet et de
Grasset (420A)

V. berlandieri × V. riparia

5BB [Kober] V. berlandieri × V. riparia

Schwarzmann V. riparia

SO4 V. berlandieri × V. riparia

Chardonnay 110 Richter (110R)* V. berlandieri × V. rupestris

101-14 Millardet et de
Grasset (101-14)*

Vitis riparia × V. rupestris

Freedom V. champinii × V. solonis ×
V. riparia

RS-3 (RS3)* SC × Schwarzmann

Salt Creek [Ramsey] (SC)* V. champinii

Schwarzmann V. riparia

Alternative rootstock names are given in brackets, and abbreviations used are

given by parenthesis. Scion/rootstock combinations with an * were selected for

xylem sap phenolic and vigor analyses.

than 25% diseased leaf area, “2” between 26 and 50% diseased
leaf area and minor dwarfing (reduced growth and internodes),
“3” between 51 and 75% diseased leaf area and moderate dwarf-
ing, “4” over 76% diseased leaf area and severe dwarfing, and “5”
representing dead plants (Wallis and Chen, 2012).

Bacterial titers were assessed according to the methods
described by Chen et al. (2005). Xf DNA was extracted from
100 mg of pulverized petiole tissue collected at the end of the
experiment using a DNeasy Plant Mini Kit (Qiagen, Valencia,
CA). Titers were then determined by qPCR using primers from
Chen et al. (2005), SYBR Green Mastermix (BioRad, Hercules,
CA), and performing the qPCR reaction on an Option 2 Real
Time PCR System (BioRad). Standard curves of known amounts
of Xf DNA were used to convert calculated titers to ng Xf DNA/g
fresh weight.

PHENOLIC ANALYSES
Although ∼10 g of shoot samples from all plants were collected
and kept frozen, a subset of scion/rootstock combinations was
selected for phenolic analyses due to the difficulty of obtain-
ing adequate xylem sap and performing chemical analyses. The
six chosen grapevine scion rootstock combinations were selected
based on the clearest differences in PD severity and/or the hav-
ing the same rootstock in common for each scion cultivar. The
following were thus used for phenolic analyses as well as to deter-
mine differences in root vigor: Chardonnay grafted to 101-14,
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110R, RS3, and SC; and Cabernet Sauvignon grafted to 101-14
and 110R.

Sap was collected from the selected grapevines and analyzed
for phenolic content using methods described in Wallis et al.
(2008) and Wallis and Chen (2012). In brief, at the end of the
experiment ∼10 g of green shoot segment were collected roughly
20 cm from the initial inoculation site, placed into 15 mL cen-
trifuge tubes, flash frozen in liquid nitrogen, and stored at −20◦C
until processed. After a brief time to thaw, shoot segments were
prepared for xylem sap extraction by peeling away the outer bark
and phloem layer. Shoot segments were then cut to fit into two
1.5 mL microcentrifuge tubes that had ∼10 glass beads on the
bottom. These tubes were centrifuged at 15,000 X g for 10 min
held at 4◦C. Average sap yield was 50–100 μL per tube (total yield
of ∼100–200 μL), although not every plant had sufficient xylem
sap recovered.

High-performance liquid chromatography (HPLC) was per-
formed on xylem sap according to the methods of Wallis and
Chen (2012). In brief, a Shimadzu (Columbia, MD, USA) LC-
20AD system equipped with a Shimadzu XR-ODS C18 column
and a PDA-20A photodiode array detector ran a binary gra-
dient using 0.2% acetic acid (Sigma-Aldrich, St. Louis, MO,
USA) in water for Solvent A and 0.2% acetic acid in methanol
(Thermo-Fisher Scientific, Pittsburgh, PA, USA) for Solvent B.
Quantification of compound peaks was made at 280 nm, with no
peaks observed that did not absorb at least partially at 280 nm.
Sap samples were diluted 1:1 (v/v) in water and a volume of 50 μL
was injected for HPLC analyses. Compound peaks were previ-
ously identified by matching UV/Vis spectra and masses obtained
with a Shimadzu LCMS-2020 as performed by Wallis and Chen
(2012). Commercial standards were used for definitive identifica-
tions by retention time matching. Standard curves were derived
using catechin, quercetin, caftaric acid, or ferulic acid (all from
Sigma) to convert identical and similar compounds into μg/mL
amounts (Wallis and Chen, 2012).

ROOT MASS AND LENGTH MEASUREMENTS
At the end of the experiment, the grapevines selected for phe-
nolic analyses (Chardonnay on 101-14, 110R, ES3, and SC; and
Cabernet Sauvignon on 101-14 and 110R) also had roots isolated
by cutting and removal all aboveground portions of the plant
at the soil surface. Potting media was removed from around the
roots, the roots were washed, and then had root length measured.
Roots were then placed into a dryer for 7 days at 38◦C, after which
dry weights were recorded.

STATISTICAL ANALYSES
SPSS ver. 19.0 (IBM, Armonk, NY, USA) was used for all data
analyses with α set to 0.05. The SPSS EXPLORE feature was
used to check for normality via residual plots for Xf titer and
phenolic data. Due to disease severities being on a 0–5 scale,
the non-parametric Kruskal–Wallis test was used to determine
overall differences in disease severity due to rootstock for each
scion cultivar, with Mann–Whitney U-tests were used to iden-
tify differences pairwise. Mann–Whitney U-tests also were used to
observed if differences due to scion existed in the three rootstocks
common to both (101-14, 110R, and Schwarzmann).

Multivariate analyses of variance (MANOVA), with Pillai’s
trace as the test statistic, were performed to examine the effects
of infection status and/or scion/rootstock combination on over-
all phenolic content of sap (block effects were not significant
and removed from analyses). Following MANOVA, follow-up
ANOVA on individual compounds and subsequent post-hoc
LSD tests were performed to separate scion/rootstock combi-
nations. In total, three different MANOVA analyses were per-
formed. The first analyzed non-infected grapevines only to
observe effects of scion/rootstock on constitutive levels of sap
phenolics. The second analyzed infected grapevines only to
observe effects of scion/rootstock on induced levels of sap
phenolics. Finally, all grapevines were included in MANOVA
to observe the effects of infection status, scion/rootstock
combination, and the interaction of both on sap phenolic
levels.

Analyses of variance (ANOVA), with rootstock as the inde-
pendent variable, were used to determine differences in bacterial
titer, length to root mass ratios and total root mass, followed by
post-hoc Least Significant Difference (LSD) mean separation tests
when required. Pairwise t-tests were used to observe differences
due to scion in rootstocks common to each (110R, 101-14, and
“Schwarzmann”).

Spearman ρ correlations were performed to find correlations
between symptom severity scores with Xf titer, root mass, or levels
of individual phenolic compounds found in xylem sap. Pearson
correlations were used to find associations between Xf titer, levels
of sap compounds, and root mass.

RESULTS
ROOTSTOCK EFFECTS ON PD SYMPTOMS
Disease severity was significantly different due to rootstock for
Cabernet Sauvignon (H = 18.423; P = 0.031; N = 67), with
plants on 110R rootstock having greater PD severity than those
on Schwarzmann, 101-14, 420A, 1103P, and O39-16 (Figure 1A).
Disease severity also was significantly different due to rootstock
for Chardonnay (Kruskal–Wallis H = 11.878, P = 0.036; N =
39), with plants having RS3 and Schwarzmann rootstocks hav-
ing more severe PD symptoms than plants having SC or Freedom
rootstocks (Figure 1B). Comparing scion effects on PD severity
when on the same rootstock (101-14, 110R, or Schwarzmann),
only when Schwarzmann was used as a rootstock did PD sever-
ity differ due to cultivar (Mann–Whitney U = 2.000; P = 0.003;
N = 14), with greater severity in Cabernet Sauvignon than
Chardonnay.

ROOTSTOCK EFFECTS ON Xf TITER
Xf titers did not significantly differ among Cabernet Sauvignon
grapevines grafted to different rootstocks (F = 1.152; P = 0.348;
N = 55) (Figure 2A). Xf titers were significantly greater (F =
3.013; P = 0.030; N = 30) in Chardonnay grapevines grafted to
RS3 than those grafted to 101-14, Freedom, or SC (Figure 2B).
There were no significant differences (P > 0.05) in Xf titer due
to scion when comparing Cabernet Sauvignon and Chardonnay
grafted to the same rootstock (101-14, 110R, or Schwarzmann).

For Cabernet Sauvignon grapevines there was no significant
relationship between disease severity and Xf titer (ρ = −0.118;
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FIGURE 1 | Disease severity of (A) Cabernet Sauvignon or (B) Chardonnay scion on various rootstock cultivars. Letters represent differences pairwise
by Mann–Whitney U-tests. Bars indicate SE. See text for full descriptions of rootstocks.

P = 0.389; N = 55). However, for Chardonnay grapevines, dis-
ease severity ratings were positively associated with Xf titer
(Spearman ρ = 0.435; P = 0.016; N = 30).

SELECTED ROOTSTOCK EFFECTS ON XYLEM SAP BIOCHEMISTRY
Twenty phenolic compounds were identified and quantified in
xylem sap (Table 2).

Constitutive levels of sap phenolics, i.e., levels from non-
inoculated grapevines, were affected by scion/rootstock combina-
tion according to MANOVA (Pillai’s Trace � = 3.534; F = 1.687;
P = 0.011; N = 35). Subsequent ANOVA analyses revealed that
levels of 15 of 20 phenolic compounds were different due
to scion/rootstock combination, with only the two procyani-
din B isomers, procyanidin C isomer 2, flavonoid glycoside
2, and quinic acid dimer not significantly (P > 0.05) affected
by rootstock combination (Table 3). LSD tests revealed that
most phenolic levels were greater in Chardonnay/RS3 than
all other combinations, whereas phenolic levels were generally
lower in Cabernet Sauvignon/101-14 than other combinations
(Table 3).

Induced levels of sap phenolics, i.e., levels from Xf-infected
grapevines, also were affected by scion/rootstock combina-
tion according to MANOVA (� = 3.636; F = 1.599; P =
0.025; N = 33). However, only procyanidin B isomer 2 (F =
3.292; P = 0.019) and caftaric acid (F = 3.388; P = 0.017)

significantly differed due to scion/rootstock combination accord-
ing to follow-up ANOVAs. Procyanidin B isomer 4 occurred
at lower levels in both Cabernet Sauvignon combinations than
Chardonnay grafted to 101-14, RS3, or SC. Caftaric acid occurred
at lower levels in both Cabernet Sauvignon combinations and
Chardonnay grafted to 110R than Chardonnay grafted to 101-14
or RS3.

MANOVA analyses on both non-infected and infected
plants revealed significant effects on sap phenolic levels due
to scion/rootstock combination (� = 2.502; F = 2.053; P <

0.001; N = 68) and infection status (� = 0.795; F = 7.188; P <

0.001; N = 68). The interaction between scion/rootstock com-
bination and infection status was non-significant (� = 1.849;
F = 1.203; P = 0.136; N = 68). Subsequent ANOVA analyses
revealed that only six compound were not significantly affected
by scion/rootstock combination: two procyanidin B isomers, two
procyanidin C isomers, flavonoid glycoside 2, and quinic acid
dimer (Table 4). Cabernet Sauvignon grapevines generally had
lower levels of many of the phenolics than Chardonnay grafted
on RS3 or SC (Table 4). Infection status significantly (P < 0.05)
affected levels of procyanidin C isomer 1 (with greater levels in
Xf-infected plants), procyanidin C isomer 3 (with greater lev-
els in non-infected plants), procyanidin B isomer 3 (with greater
levels in non-infected plants), caftaric acid (with greater lev-
els in Xf-infected plants), methyl salicylate (with greater levels

Frontiers in Plant Science | Plant Physiology December 2013 | Volume 4 | Article 502 | 4

http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology/archive


Wallis et al. Rootstock effects on Pierce’s disease

FIGURE 2 | Xf titer found present in (A) Cabernet Sauvignon or (B) Chardonnay scion on various rootstock cultivars. Letters represent differences
pairwise by LSD tests. Bars indicate SE. See text for full descriptions of rootstocks.

in Xf-infected plants), and quinic acid (with greater levels in
Xf-infected plants).

In Xf-infected plants, only sap levels quinic acid were sig-
nificantly positively associated with PD symptoms (ρ = 0.346;
P = 0.049; N = 33). Also in Xf-infected plants, sap levels
of procyanidin B isomer 2 (ρ = 0.392; P = 0.027; N = 32),
quinic acid dimer (ρ = 0.514; P = 0.003; N = 32), and quinic
acid (ρ = 0.439; P = 0.012; N = 32) were positively associ-
ated with Xf titer. No other significant correlations were
observed.

SELECTED ROOTSTOCK EFFECTS ON ROOT MASS AND LENGTH
The dry root masses of plants consisting of Chardonnay grafted to
101-14 and SC were significantly greater (F = 3.549; P = 0.033;
N = 24) than those of plants in which Chardonnay was grafted
to RS3 (Figure 3). Likewise, plants in which Cabernet Sauvignon
was grafted to 101-14 had significantly greater (F = 10.714; P =
0.008; N = 12) dry root masses than plants which had Cabernet
Sauvignon grafted to 110R (Figure 3). Root length did not signif-
icantly (P > 0.05) differ due to rootstock for either Chardonnay
or Cabernet Sauvignon plants. Neither root mass nor length were
significantly (P > 0.05) correlated with PD severity. However,
both root mass (ρ = −0.391; P = 0.040; N = 28) and root
length (ρ = −0.433; P = 0.019; N = 29) were negatively cor-
related with Xf titer. Root dry mass was positively associated

with levels of epicatechin gallate (ρ = 0.400; P = 0.035; N = 28),
procyanidin B1 (ρ = 0.410; P = 0.030; N = 28), procyanidin B2
(ρ = 0.465; P = 0.013; N = 28), procyanidin B isomer 1 (ρ =
0.395; P = 0.038; N = 28), procyanidin B isomer 4 (ρ = 0.629;
P < 0.001; N = 28), and procyanidin C isomer 2 (ρ = 0.476;
P = 0.010; N = 28). Root mass also was negatively associated
with quinic acid dimer levels (ρ = −0.410; P = 0.030; N = 28).
Root length was negatively associated with quinic acid levels
(ρ = −0.396; P = 0.033; N = 29). No other significant associa-
tions were observed.

DISCUSSION
Based on these results, rootstock selection had effects on
grapevine scion tolerance to Xf infection. Particular rootstocks,
such as 101-14 and 420A, appeared to reduce PD symptom
development over the 6 month experiment. However, all of the
grapevines remained susceptible to Xf infection and exhibited
some PD symptoms. Only Chardonnay on RS3 had significantly
greater Xf titers than Chardonnay on other rootstocks. Xf titers
did not differ in Cabernet Sauvignon grapevines grafted to differ-
ent rootstocks.

SC and Freedom might become preferred rootstocks for
Chardonnay growers if PD is a concern. However, further evalu-
ation is needed of these rootstocks. For those growing Cabernet
Sauvignon, 101-14, 420A, 1103P, and Schwarzmann warrant
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consideration if PD is a concern, but these also need to be
evaluated further. In particular, Schwarzmann had high PD
severity when Chardonnay was used as the scion. Of the root-
stocks that were grafted to both scions, 101-14 was observed

Table 2 | Compounds quantified from xylem sap for this study, with

criteria for putative identifications provided.

Compound Retention time Absorbance maxima Mass

Caftaric acid* 5.858 275, 308 312
Catechin* 8.23 277 290
Epicatechin gallate* 10.093 277 442
Epicatechin* 11.094 277 578
Flavonoid glycoside 1 12.758 277 468
Flavonoid glycoside 2 17.175 277 778
Methyl salicylate dimer 8.828 278 600
Procyanidin B isomer 1 4.423 276 594
Procyanidin B isomer 2 5.143 275 594
Procyanidin B isomer 3 10.38 276 730
Procyanidin B isomer 4 14.422 277 578
Procyanidin B1* 7.281 277 578
Procyanidin B2* 9.32 277 578
Procyanidin C isomer 1 3.679 271 866
Procyanidin C isomer 2 7.65 277 866
Procyanidin C isomer 3 13.889 279 906
Procyanidin C isomer 4 15.704 278 906
Procyanidin C1* 10.72 277 866
Quinic acid dimer 1.658 265 380
Quinic acid* 2.366 265 192

Compounds with an * were confirmed by matching retention times with those

of obtained commercial standards.

to consistently have moderate to moderate-low PD symptoms.
Therefore, future field evaluations observing if rootstocks can
impart increased tolerance to Xf infection should include this
cultivar.

There was no evidence that having a particular wild Vitis spp.
in the background of a rootstock conferred increased PD toler-
ance to the scion. For instance, although both SC and Freedom
rootstocks, which had few PD symptoms develop, had Vitis
champinii in their background, so did RS3, which had severe PD
symptoms when Chardonnay was the scion. However, the par-
ent wild species used to develop rootstock cultivars still plausibly
have genes that could be associated with PD tolerance, and these
findings might be a result of such genes not being inherited by all
hybrids.

Regarding links between observed PD tolerance and other
traits that these rootstocks reportedly provide, greater resistance
to crown gall or drought, as reported by Keller (2010), did not
appear to have any relationship with our findings. However, both
SC and Freedom, which when used as rootstocks appeared to
reduce scion PD symptoms, were bred for nematode resistance
(Anwar et al., 2002), and this trait may be indirectly associated
with observed imparted scion tolerance to PD. Increased vigor
also was observed among the rootstocks which had the fewest PD
symptoms, both according to reported grafted scion vigor (Keller,
2010) and root vigor observations from this study. Root vigor also
was significantly negatively correlated with Xf titer. This was in
agreement with the observations made by Cousins and Goolsby
(2011), who also observed rootstocks with fewer PD symptoms
tended to have improved vigor.

Scion sap phenolics levels were examined to observe whether
they varied among rootstock selections, and whether or not such

Table 3 | Mean (±SE) sap levels (μg/mL) of phenolic compounds from non-infected grapevines with different scion/rootstock combinations.

Compound Cabernet Sauvignon Chardonnay F

101-14 110R 101-14 110R RS3 SC

Caftaric acid 35.3 ± 8.3 b 32.9 ± 4.5 b 77.6 ± 16.4 a 38.7 ± 8.0 b 49.6 ± 7.9 b 36.7 ± 7.3 b 3.031*
Catechin 292 ± 42 b 423 ± 76 b 408 ± 70 b 489 ± 30 ab 658 ± 66 a 413 ± 97 b 3.279*
Epicatechin 241 ± 86 b 524 ± 132 ab 549 ± 166 ab 646 ± 40 a 790 ± 84 a 568 ± 91 a 3.538*
Epicatechin gallate 155 ± 24 c 246 ± 48 bc 284 ± 36 ab 313 ± 46 ab 357 ± 37 a 305 ± 40 ab 3.661*
Flavonoid glycoside 1 16.8 ± 2.4 c 42.5 ± 11.0 bc 72.0 ± 32.8 abc 72.4 ± 10.9 abc 126 ± 33 a 79.1 ± 16.9 ab 3.592**
Flavonoid glycoside 2 24.4 ± 11.8 91.8 ± 31.0 48.0 ± 13.4 45.6 ± 3.2 57.1 ± 13.9 30.3 ± 5.1 2.285
Methyl salicylate 18.5 ± 3.3 c 26.5 ± 7.0 bc 40.4 ± 1.9 ab 38.6 ± 5.4 ab 42.7 ± 5.3 a 26.7 ± 4.0 bc 4.010**
Procyanidin B isomer 1 64.0 ± 9.9 77.4 ± 8.1 64.5 ± 11.6 76.4 ± 6.5 87.3 ± 9.5 78.4 ± 12.4 0.772
Procyanidin B isomer 2 65.8 ± 16.5 79.5 ± 17.0 89.6 ± 17.1 197 ± 80 116 ± 20 79.1 ± 14.9 2.459
Procyanidin B isomer 3 142 ± 24 b 255 ± 54 a 281 ± 37 a 295 ± 11 a 343 ± 26 a 296 ± 41 a 4.088**
Procyanidin B isomer 4 34.0 ± 6.5 d 70.0 ± 13.1cd 169 ± 45 ab 119 ± 10 bc 196 ± 30 a 126 ± 24 bc 7.196***
Procyanidin B1 177 ± 29 c 319 ± 67 bc 274 ± 33 bc 327 ± 17 bc 543 ± 52 a 418 ± 82 ab 5.287***
Procyanidin B2 113 ± 43 c 230 ± 55 bc 319 ± 59 abc 294 ± 65 abc 439 ± 59 a 350 ± 93 ab 3.212*
Procyanidin C isomer 1 53.1 ± 6.8 c 70.3 ± 11.8 bc 68.1 ± 9.5 bc 86.4 ± 7.1 ab 109 ± 9 a 96.4 ± 14.7 ab 3.980**
Procyanidin C isomer 2 122 ± 16 194 ± 50 150 ± 23 214 ± 41 301 ± 43 226 ± 60 2.186
Procyanidin C isomer 3 56.2 ± 12.9 c 180 ± 43 ab 142 ± 45 abc 185 ± 42 ab 223 ± 40 a 107 ± 18 bc 3.732**
Procyanidin C isomer 4 25.5 ± 7.1 b 69.1 ± 16.6 b 85.9 ± 15.4 ab 88.8 ± 9.0 ab 132 ± 38 a 66.6 ± 8.1 b 3.099*
Procyanidin C1 112 ± 27 b 225 ± 57 a 250 ± 46 a 257 ± 13 a 291 ± 25 a 275 ± 43 a 3.198*
Quinic acid 25.0 ± 3.3 b 26.4 ± 3.1 b 23.0 ± 5.8 b 43.2 ± 10.7 a 22.5 ± 3.7 b 15.1 ± 2.8 b 3.494*
Quinic acid dimer 25.0 ± 3.2 31.4 ± 2.4 28.0 ± 4.9 36.5 ± 8.6 37.4 ± 4.2 24.2 ± 3.2 1.974

The F-test statistic is provided. Different letters next to the means indicate significant differences as determined by LSD tests.
*P < 0.05; **P < 0.01; ***P < 0.001.
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Table 4 | Mean (±SE) sap levels (μg/mL) of phenolic compounds from both non-infected and Xf-infected grapevines with different

scion/rootstock combinations.

Compound Cabernet Sauvignon Chardonnay F

101-14 110R 101-14 110R RS3 SC

Caftaric acid 43.2 ± 6.9 c 43.2 ± 7.3 c 81.8 ± 8.8 a 36.3 ± 5.4 c 64.4 ± 9.8 ab 47.9 ± 6.6 bc 5.374***

Catechin 335 ± 52 c 411 ± 58 bc 381 ± 64 bc 523 ± 80 ab 657 ± 49 a 481 ± 70 abc 2.945*

Epicatechin 293 ± 72 b 397 ± 81 b 487 ± 106 ab 493 ± 79 ab 665 ± 80 a 613 ± 64 a 2.913*

Epicatechin gallate 169 ± 26 b 205 ± 31 b 254 ± 35 ab 251 ± 32 ab 318 ± 30 a 316 ± 28 a 3.805**

Flavonoid glycoside 1 27.4 ± 7.2 c 37.4 ± 6.0 c 61.8 ± 18.6 abc 54.8 ± 9.1 bc 101 ± 23 a 80.3 ± 11.5 ab 3.793**

Flavonoid glycoside 2 35.5 ± 12.0 65.8 ± 18.0 36.5 ± 9.5 33.7 ± 5.6 41.7 ± 10.8 32.5 ± 6.2 1.452

Methyl salicylate 26.2 ± 5.5 b 29.7 ± 5.6 b 40.6 ± 5.5 ab 34.8 ± 5.2 ab 48.6 ± 5.9 a 35.5 ± 4.8 ab 2.516*

Procyanidin B isomer 1 67.0 ± 6.6 73.2 ± 6.12 69.2 ± 8.2 73.3 ± 5.5 79.2 ± 7.0 84.6 ± 8.6 0.852

Procyanidin B isomer 2 76.6 ± 13.3 96.3 ± 19.4 94.7 ± 16.3 124 ± 34 131 ± 22 96.4 ± 11.4 1.547

Procyanidin B isomer 3 165 ± 28 b 210 ± 34 b 235 ± 35 ab 226 ± 34 ab 300 ± 25 a 307 ± 32 a 2.917*

Procyanidin B isomer 4 40.7 ± 6.8 c 64.1 ± 9.5 c 160 ± 31 ab 124 ± 20 b 185 ± 25 a 146 ± 20 ab 8.761***

Procyanidin B1 200 ± 32 d 266 ± 43 cd 299 ± 52 bcd 341 ± 58 abc 452 ± 50 a 440 ± 50 ab 4.086**

Procyanidin B2 165 ± 42 c 240 ± 46 bc 328 ± 60 ab 319 ± 56 ab 385 ± 52 ab 440 ± 66 a 3.816**

Procyanidin C isomer 1 68.3 ± 10.4 c 75.3 ± 9.5 c 81.4 ± 10.3 bc 96.9 ± 12.0 abc 105 ± 7 ab 116 ± 14 a 3.392**

Procyanidin C isomer 2 140 ± 21 166 ± 31 207 ± 53 211 ± 33 269 ± 30 254 ± 37 2.088

Procyanidin C isomer 3 88.8 ± 22.3 147 ± 27 107 ± 32 129 ± 26 180 ± 31 105 ± 11 1.502

Procyanidin C isomer 4 42.2 ± 11.0 c 76.2 ± 18.4 bc 94.2 ± 18.3 ab 93.2 ± 12.6 ab 139 ± 25 a 93.6 ± 10.8 ab 3.766**

Procyanidin C1 141 ± 30 c 180 ± 34 bc 215 ± 36 ab 201 ± 28 bc 262 ± 23 ab 290 ± 29 a 3.168*

Quinic acid 28.1 ± 2.6 bc 33.8 ± 4.8 ab 24.3 ± 3.0 bc 39.7 ± 5.4 a 31.4 ± 4.8 abc 21.3 ± 2.9 c 2.992*

Quinic acid dimer 26.7 ± 2.8 44.8 ± 9.3 23.7 ± 2.9 31.9 ± 5.0 42.7 ± 7.7 27.9 ± 5.5 1.891

The F-test statistic is provided. Different letters next to the means indicate significant differences as determined by LSD tests.
*P < 0.05; **P < 0.01; ***P < 0.001.

FIGURE 3 | Root dry weights of Chardonnay or Cabernet Sauvignon

grafted to select rootstock cultivars. Letters represent pairwise
differences by LSD for each scion. Bars indicate SE.

variations in phenolics could be a potential mechanism behind
observed PD symptoms and Xf titers. Rootstock selections did
affect scion xylem sap levels of most phenolics. Specifically, sap
levels of almost every catechin or procyanidin were significantly
lower in grapevines grafted to 101-14, regardless of scion culti-
var. This was unexpected as 101-14 had fewer PD symptoms than
other cultivars, but previous work observed a complicated rela-
tionship between observed sap phenolic levels and Xf infection
(Wallis and Chen, 2012; Wallis et al., 2013).

Chardonnay grafted to 101-14 was observed to have greater
sap levels of caftaric acid, and this compound plausibly could
have by itself improved PD tolerance. Caftaric acid was one of
a few phenolic compounds (along with the defense-associated
hormone methyl salicylate and quinic acid) to be significantly
greater in infected vs. non-infected grapevines. This suggests
that caftaric acid was produced as part of an infection-induce
coordinated defense response to combat Xf infection. Previous
work by Goetz et al. (1999) observed that caftaric acid inhib-
ited a fungal pathogen-produced stilbene oxidase, which had
the putative function of detoxifying resveratrol and other plant-
produced antibiotic compounds (stilbenoids). It is possible that
caftaric acid might act in a similar manner in the case against
Xylella fastidiosa-detoxifying enzymes, but further investigation
is needed.

Yet, caftaric acid in this case was not significantly associated
with PD symptoms. Rather, the only phenolic significantly asso-
ciated with PD symptoms and Xf titers was quinic acid, which had
levels positively associated with PD symptoms and Xf titers.

Even if phenolic levels did not affect PD symptom progression
or Xf titers at all, changes in xylem sap chemistry due to root-
stock might affect grapevine scion tolerance to other diseases,
insect pests, or abiotic stresses such as drought. Future stud-
ies are warranted to further delve into the ability of rootstocks
to affect scion biochemistry and, in turn, examine the potential
effects this could have on grapevine scion tolerance to a vari-
ety of stressors. Further, levels of phenolics may change over the
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course of Xf infections (Wallis and Chen, 2012). Expanded stud-
ies may want to consider monitoring earlier shifts in phenolics
that occur during Xf infections, and how those relate to eventual
PD progression. This study was focused only on phenolic levels at
6 months post-infection, as symptoms of PD in this greenhouse
experiment did not begin to appear until about 5 months post-
inoculation and the objective was to relate existing phenolic levels
to PD symptom severity.

In conclusion, analysis of these results indicated that root-
stocks have potential to reduce PD progression in Xf-infected
scions. Regardless of mechanism, the use of particular rootstocks
to impart even a minor increase in PD tolerance to commer-
cial grapevines could provide significant long-term reductions in
losses due to PD. The use of PD-tolerance imparting rootstocks
may reduce the ability of Xf to move from initial inoculation sites
in vines to the canes. If Xf infections are limited to vines at the
end of the season, such infected vines might be removed during
pruning or the phenomena of “cold-curing” might eliminate the
infections (Lieth et al., 2011). Therefore, these results exhibit the
promise of using rootstocks to reduce PD severity in locations
where it is a major concern. However, before recommendations
can be made to growers regarding the selection of particular root-
stocks to improve PD tolerance, additional studies are warranted
including increasing the number of scions examined as well as
performing multiyear field trials.
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