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In daily life, we make decisions that are associated with probabilistic outcomes (e.g., the
chance of rain today). People search for and utilize information that validly predicts an
outcome (i.e., we look for dark clouds to indicate the possibility of rain). In the current
study (N = 107), we present a two-stage learning task that examines how participants
learn and utilize predictive information within a probabilistic learning environment. In the
first stage, participants select one of three cues that gives predictive information about
the outcome of the second stage. Participants then use this information to predict
the outcome in stage two, for which they receive feedback. Critically, only one of the
three cues in stage one gives valid predictive information about the outcome in stage
two. Participants must differentiate the valid from non-valid cues and select this cue
on subsequent trials in order to inform their prediction of the outcome in stage two.
The validity of this predictive information, however, is reinforced with varying levels of
probabilistic feedback (i.e., 75, 85, 95, 100%). A second manipulation involved changing
the consistency of the predictive information in stage one and the outcome in stage
two. The results show that participants, with higher levels of probabilistic feedback,
learned to utilize the valid cue. In inconsistent task conditions, however, participants
were significantly less successful in utilizing higher validity cues. We interpret this
result as implying that learning in probabilistic categorization is based on developing
a representation of the task that allows for goal-directed action.

Keywords: learning, probabilistic feedback, search behavior, selective attention, exploration, exploitation

INTRODUCTION

When searching for resources (e.g., time, food, money, information), people are often confronted
with an exploitation-exploration dilemma. For example, a businessman in a foreign city might eat
at the same restaurant each evening because the food is consistently good. On the other hand,
if the first restaurant varied the quality of their food from evening to evening, the diner might
be tempted to visit a different restaurant. This exploitation-exploration dilemma illustrates the
balance between searching for resources and then utilizing those resources once found (Cohen
et al., 2007). In addition to other factors (e.g., motivation; Markman et al., 2005; Maddox et al.,
2006), a variety of research fields in cognitive psychology investigating search behavior, such as
associative learning, categorisation, and decision-making, have identified uncertainty (Daw et al.,
2005, 2006) as a key factor that influence the adoption of an exploitation or exploration strategy.

Exploitation can be thought of as the process of using previously obtained information
to acquire known rewards (Dam and Körding, 2009). Decision makers are adept at utilizing
information that is highly predictive of a positive outcome in order to maximize reward (Bröder,
2000; Rieskamp and Otto, 2006). In one study, participants were asked to predict the more
creditworthy company from two unnamed companies (Rieskamp and Otto, 2006) based on a list of
company attributes (e.g., efficiency, financial resources, financial flexibility). The probability with
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which each attribute correctly predict superior creditworthiness
was also shown to participants. Rieskamp and Otto (2006)
showed that decisions were based on attributes with the highest
validity that discriminated the two companies (e.g., company
A is superior to company B on efficiency). This indicates that
participants utilize cues that are highly predictive of the desired
outcome at the expense of other cues.

How decision makers learn to utilize attributes has been
studied in a variety of related domains such as category
and multiple cue probability learning with a focus on the
role of selective attention (for a review see Kruschke and
Johansen, 1999). In general, predictive attributes are utilized most
often, and attention to predictive attributes increases over time
with experience. Within a probabilistic learning environment,
however, predictive attributes do not necessarily correctly predict
the desired outcome on all trials. This reduces the utilization
of predictive attributes and promotes the utilization of non-
predictive or irrelevant attributes. As a consequence, attention
to predictive attributes may be reduced within a probabilistic
environment.

Little and Lewandowsky (2009) showed that learning a
probabilistic task resulted in a broadening of selective attention
that improved recall of the attended attributes. In their
Experiment 2, participants classified stimuli varying along four
perceptual features (X, Y, Z, and C). Two attributes (X and Y)
determined the correct classification via an XOR rule. The
non-diagnostic features Z and C were correlated with each
other across all trials. Participants utilized the XY pair more
when feedback was deterministic (i.e., 100% validity) than
probabilistic (i.e., 75% validity). To examine selective attention,
participants completed a feature completion task following initial
category learning in which missing properties of the stimulus
were predicted from a category label and a partial stimulus.
Little and Lewandowsky (2009) found better prediction in the
probabilistic than in the deterministic group, who displayed only
near chance feature completion accuracy. This supports the idea
that probabilistic feedback shifts attention away from diagnostic
features (i.e., increasing exploration) resulting in better memory
for non-diagnostic features in the probabilistic than in the
deterministic condition.

In repeated choice tasks with probabilistic feedback in
which information about the underlying probabilities needs
to be acquired on a trial-by-trial basis, participants often
switch to an exploration strategy. For example, given a simple
choice between 70% chance of winning $1 and 30% chance
of winning $1, it is obvious to take the higher probability
option. People, however, might take the lower probability
option if the choice is repeatedly presented over a sequence
of decisions and if the probabilities are learned via experience
rather than explicitly stated (e.g., Gaissmaier and Schooler,
2008; James and Koehler, 2011). This behavior is called
probability matching as the probability with which an option
is selected matches actual probability of the outcome being
correct. Probability matching is sub-optimal since the long-term
payoff of selecting the better option probabilistically is lower
than if only selecting the better option (i.e., maximizing). The
shift from maximizing to probability matching is consistent

with exploratory behavior since reward is sacrificed in order
to find potentially superior options. Interestingly, participants
are more likely to adopt probability matching if they believe
there is an underlying pattern or causal structure within the
probabilistic environment (Gaissmaier and Schooler, 2008; James
and Koehler, 2011). Thus, whether an exploitation or exploration
strategy is adopted depends on the task structure and learning
environment.

In the current paper, we attempted to extend the conclusion
offered by Little and Lewandowsky (2009) and determine
the effect of parametrically varying probabilistic feedback on
utilization (i.e., the probability that an option is correct when
selected varied from 0.75, 0.85, 0.95, and 1.0; Little and
Lewandowsky (2009) only used the highest and lowest values).
We further manipulated the task structure by varying the causal
structure of the task. We seek to understand how the interaction
of probabilistic feedback and causal structure affect how easily
people learn to utilize and exploit valid cues.

The task described by Little and Lewandowsky (2009) does
not allow an online measurement of attention and attribute
utilization, rather the authors inferred greater attention to
irrelevant features from superior feature completion accuracy
in the probabilistic condition. Previous studies (i.e., Kruschke
et al., 2005; Rehder and Hoffman, 2005) have used eyetracking
to directly index attention during category learning tasks, and
showed that participants increase their attention to predictive
attributes. Specifically, eyegaze fixation has been shown to
follow probabilistic feedback (McColeman et al., 2011) with
more fixations to irrelevant cues in lower probabilistic feedback
conditions.

In our study, we designed a two-stage learning game to index
attribute utilization and attention in a probabilistic learning
environment. We created a variant of the Colonel Blotto game
(Gross and Wagner, 1950; Borel, 1953) in which there are
two artificial (computer-generated) players, each with a variable
number of tokens. Each player allocates tokens to three boxes,
and the overall winner is the player who wins two or more
boxes (usually the player with the most tokens in the box). The
participants in our experiment act as the ‘referee’ by selecting one
box to examine, and judging, based on the outcome of that box
alone, which of the two players they think won more boxes overall
(Figure 1). In the context of our initial example, the participant
is the diner and each of the “players” represents a restaurant that
varies on three attributes. The critical aspect of our task is that
two boxes represent invalid cues in that the winner of either
box is not correlated with the overall winner (i.e., 0.5 validity).
Conversely, the third box has a positive validity that varies across
four conditions from 0.75, 0.85, 0.95 to 1.0. Note, participants do
not know the total number of tokens given to each player on each
trial and how each player allocated their tokens to each box. Thus,
it is impossible for participants to deduce the winner of the other
two unselected boxes. The validity of each box is held constant,
and in order to solve the task, participants must learn that the
winner of one of the three boxes is more likely to win the round.

We chose to use this task in order to explicitly monitor which
information source was utilized on each trial rather than inferring
attentional distributions via model parameters (e.g., Little and
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FIGURE 1 | Schematic diagram of the task. (Top) At the beginning of a
trial, the participant must choose a box to examine from the three available
boxes. One of the boxes, chosen randomly for each participant, has validity
greater than 0.5; the remaining two boxes have validities equal to 0.5.
(Middle) After choosing a box, the participant is shown the token allocation of
each player and must choose the winning player (i.e., the player who had
more tokens in at least two of the three boxes). In the consistent condition,
the winning player is the player with more tokens in the valid box; in the
inconsistent condition, the winning player is the player with fewer tokens in the
valid box. (Bottom) After choosing a player, the participant is shown feedback
indicating whether her response was correct or incorrect. The winning player
was determined randomly according to the validity of the valid box.

Lewandowsky, 2009). Here we can simply count the number
of times each box was chosen. We expect to find a positive
correlation between valid box validity and valid box utilization
(Kruschke and Johansen, 1999; Little and Lewandowsky, 2009).
In fact, the optimal behavior is to exploit the valid box. However,
as the valid box validity decreases, participants might engage
in probability matching and select the valid box less often even
though it is not optimal to do so.

Several researchers (Shanks, 2007 and Mitchell et al., 2009 for
review) have claimed that the learning process in the current
categorization task can be accounted for by simple associative
learning mechanisms (i.e., Rescorla and Wagner, 1972). Box
utilization can be modeled using a simple reinforcement learning
model (i.e., Sutton and Barto, 1998; Dayan and Niv, 2008),
with an attention weight parameter to each box being adjusted
based on the strength of the association between the winner
of the box and the overall winner (i.e., Mackintosh, 1975).
Specifically, an associative link between the winner of the selected
box and round winner is formed in memory. Contrary to the
reinforcement learning model, participants may develop a causal
belief in which they expect the winner of the selected box to
win at least one of the remaining two boxes. Under the causal
model, reversing the relationship between box winner and overall
winner impairs performance since it contradicts participants’
causal belief. According to the reinforcement learning model,
however, such a manipulation will not impair performance.

In the current experiment, we introduced a second factor
in which either the winner or loser of the valid box was the
overall winner. In the consistent condition, a participant should
choose the player with the highest number of tokens in the
valid box. In the inconsistent condition, the only difference was
that the overall winner was determined by whoever had the
fewest number of tokens in the valid box. (Note that we use
the terms consistent and inconsistent to refer to the agreement
between the valid box and the box winner, and not in reference
to any non-stationary feedback state. The probabilities of the
valid boxes were fixed throughout the task). Intuitively, in the
consistent condition, participants had to learn that the player
who won the valid box also won the entire round (i.e., by also
winning one of the remaining two boxes), but in the inconsistent
condition, participants had to learn that the player who lost the
valid box won the entire round (i.e., by winning both of the
remaining two boxes). Under a simple reinforcement learning
account (e.g., Rescorla and Wagner, 1972), we should expect
no difference between these conditions. For instance, Shanks
(1987) found equivalent increases in judgments of causality in
both positive and negative contingency (e.g., preventative causes)
conditions (see also Danks et al., 2002). We further should expect
no difference under a simple attentional learning account (since
our manipulation is no different from an intradimensional shift;
Kruschke, 1996).

By contrast, under a causal learning account, one might expect
learning to be slower in the inconsistent condition than in the
consistent condition. For instance, in the inconsistent condition,
a player winning the valid box can be thought of as preventing
that player from winning overall. Many studies have contrasted
simple associative learning theories (usually instantiated as
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1P1), which typically only account for covariation of cues and
outcomes, with more elaborate causal models (Cheng, 1997;
Glymour, 2003; Griffiths and Tenenbaum, 2005). Many of these
models predict equivalent learning between positive and negative
contingencies. However, Danks et al. (2002) showed that slower
learning in the negative contingency case is predicted whenever
there is a prior bias toward expecting positive contingencies.
Waldmann (2000, p. 54) phrases the problem thusly: are humans
“sensitive...to causes and effects...or [can] they reduce learning
events to cues and outcomes, which can give rise to mental
representations that contradict physical reality”? In line with the
assumption that participants learn via reasoning about causes,
Waldmann (2000) demonstrated that when causes are presented
after effects, people reason correctly about the causal direction
contra simple associative learning models (see also Waldmann
and Holyoak, 1992).

Having prior knowledge about the direction of the cue-
criterion relationship also seems to allow people to form
appropriate strategies and benefits learning (e.g., von Helverson
et al., 2013). If participants in our tasks adopt a framing in
which they link the winner of the box they’ve chosen with the
overall winner, then this might lead to a bias in the expected
causal relationship. Learning is faster and more efficient when
expectations are consistent with the learning environment (Heit,
1994, 1997; Heit and Bott, 2000; Heit et al., 2004; Little et al.,
2006). Consequently, learning in the inconsistent condition may
have impaired relative to the consistent condition.

MATERIALS AND METHODS

Participants
One-hundred and seven students from The University of
Melbourne consented to participate in exchange for course credit.
Participants were randomly assigned to each condition. There
were 13 participants in each except in the 85% consistent and
inconsistent conditions and in the 75% consistent condition
where there were 14 participants. The experimental protocol was
approved by the Human Ethics Advisory Group at the University
of Melbourne.

Procedure and Design
Participants were instructed that two computer-generated players
were participating in a game that required each player to allocate
(to the participant) an unknown number of tokens into three
boxes. To win a round, a player had to have more tokens in at least
two of the three boxes. On each trial, participants were allowed
to reveal the contents of a box by selecting it with the computer
mouse (Figure 1). Once selected, the number of tokens for each
player was displayed, and participants then clicked on the player
they thought won that round. Feedback (“correct” or “incorrect”)
was immediately presented for 1500 ms. There were 10 practice
trials, and 400 experimental trials divided into 10 blocks of 40

11P is calculated as p(outcome | cause present)−p(outcome | cause absent) and can
be thought of as the asymptotic weight of a causal stimulus trained using a simple
associative learning model (e.g., the delta rule; Rescorla and Wagner, 1972).

with a 750 ms blank interval between trials. Each participant
completed the task alone in a sound-attenuated room.

Following precedent (Kruschke and Johansen, 1999; Little and
Lewandowsky, 2009), participants were told that some boxes were
more useful than others and that they should not always expect to
be correct. Participants were also told that the answer could not
be deduced mathematically. In reality, the number of tokens was
randomly generated between 0 and 9 for each player; ties were
not permitted in the valid box but could occur in the non-valid
boxes. Participants were debriefed about the task afterward.

For each participant, only one box provided valid information.
The valid box changed between participants. In addition, the
frequency with which the valid box correctly predicted the winner
varied between conditions from 75% to 100% of trials in four
steps (i.e., 75, 85, 95, and 100%). Validity remained consistent
throughout the experiment. For the non-valid boxes, the winning
player was randomly selected with a probability of 0.5.

In the consistent (or inconsistent) condition, the player with
the most (or fewest) tokens in the valid box was the ultimate
winner with a frequency determined by the validity of the valid
box.

RESULTS

To determine whether participants learned to utilize the valid
box, we created learning curves by averaging the proportion of
valid box selection in each block (Figure 2).2 In the consistent
condition (top panel), there is a clear separation between the 100
and 95% conditions, who show a rapid increase in utilization
across block, and the 85 and 75% conditions, who show only
a small increase (though performance is above the 33% chance
level). In the inconsistent condition (bottom panel), the learning
curves are more graded. In particular, the learning curves for the
100 and 95% conditions asymptote lower and are more variable
than the same groups in the consistent condition. The 85 and 75%
inconsistent conditions do not change substantially across blocks.

We transformed these proportions using an arcsine
transformation to stabilize variances near ceiling by:

p
′

= 2 · arcsine(
√
p− [1/(2n)]) (1)

where n is the number of observations on which the proportion is
calculated (i.e., 40 observations per block per participant; Winer
et al., 1971). Proportions less than 1/2n or greater than 1 − 1/2n
were set to 1/2n or 1 − 1/2n, respectively, prior to the arcsine
transformation. The resultant values were then subjected to a
10 Block × 4 Validity (100, 95, 85, or 75%) × 2 Consistency
(consistent vs. inconsistent) between-within Bayesian ANOVA.3

2We report an analysis of individual differences in the Supplementary Material.
3All ANOVA results were computed using JASP (Rouder et al., 2012; Love
et al., 2015; Morey and Rouder, 2015) These tests utilize Bayes factors (BF) for
comparing General Linear Models (GLMs) that either include or omit each effect
or interaction. These analyses use the generalized Cauchy priors over standardized
effects to form “default” BF tests (see Rouder et al., 2012, for details). The null
hypothesis is implemented by assuming that the coefficient on a particular GLM
factor equals zero. The BF10 then provides the ratio of the null hypothesis model’s
evidence compared to the alternative hypothesis which assumes that the coefficient
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FIGURE 2 | Proportion of trials in which the participant selected the
valid box, p(valid), in each block for the four validity conditions in the
consistent condition (Top) and the inconsistent condition (Bottom).
Error bars indicate one standard error. The dashed black line indicates chance
performance in box selection (i.e., 1/3).

As is evident in Figure 2, there is a main effect of block,
a main effect of validity, and main effect of consistency. The
Bayesian ANOVA (Table 1) confirmed this as Block, Validity, and
Consistency each have BFinc values greater than 1. However, the
support for the consistency factor was weak (BFinc = 1.22). There
was also weak support for including the validity × consistency
interaction (BFinc = 1.33). We show in Table 1 the models which,
when their posterior probabilities are summed, account for 95%
of the posterior probability. The three models always include the
effects of block, validity, and the block × validity interaction.
The model with the highest posterior probability also adds the

for a particular component does not equal 0. Hence, the BFinc for the inclusion of
a factor can be interpreted in the same manner as a traditional Null Hypothesis
test (but can be interpreted as evidence either for or against the null hypothesis).
We follow Kass and Raftery’s (1995) interpretation such that any BF less than
1 indicates support for the null hypothesis, and 1 < BF < 3, 3 < BF < 20,
and 20 < BF indicate weak, strong, and very strong support for the alternative
hypothesis (Jeffreys, 1998).

main effect of consistency, and the model with the second highest
posterior probability adds the validity× consistency effect.

To further characterize the results shown in Figure 2, we
ran a series of 10 Block × 2 Consistency between-within
Bayesian ANOVAs for each of the four validity conditions
(Table 1). In the 100% condition, the main effects model
(Block + Consistency) was the most preferred model (Table 1);
the evidence for inclusion of the consistency variable is weak
but positive, BF10 = 1.46. Likewise, in the 95% condition, the
main effects (Block+Consistency) model was the most preferred
model (in terms of having the highest posterior probability), but
there was some evidence in favor of including the interaction,
BFinc = 2.42. In both the 85 and 75% validity conditions, the
null model was preferred over all the alternative models. In both,
the consistency-only model had the second highest posterior
probability (Table 1).

Taken together, these results indicate that (a) probabilistic
feedback substantially limits the ability to learn which box
is the valid box, and (b) providing an inconsistent frame
for understanding the task substantially decreases valid box
selection. The latter finding may be due to a greater difficulty
for participants to learn a negative contingency between box
outcome and overall winner (cf. Betsch et al., 2016; see also
Busemeyer et al., 1997; Rolison et al., 2011, for a description
of similar results in the prediction of continuous criterion).
A subsequent analysis was conducted to examine this possibility.

Learning of Box Validity
To examine whether participants learned the contingency
between the valid box and round winner, a second analysis
focused on response selection in the second stage of the two-
stage learning task. This analysis examined the likelihood that
participants select the correct player choice (i.e., based on their
condition) conditional on sampling from the valid or non-valid
boxes. To avoid confusion, we term correct player choices as
rule-consistent choices. Do participants in the consistent (or
inconsistent) group learn to choose as the overall winner the
player who had the most (or least) tokens in the inspected
box? In general, participants who learned the overall consistent
or inconsistent validity rule should make their player choice
selection based on the appropriate outcome of the box selection –
selecting the player with more tokens in the consistent condition
and selecting the player with fewer tokens in the inconsistent
condition.

Figure 3 shows the mean proportion of rule-consistent choices
after selecting the valid and non-valid box across conditions.
Similar to the previous analysis, the data was analyzed using a
three-way Bayesian ANOVA of 2 Box Choice × 4 Validity × 2
Consistency (Table 2). The three main effects and the Box
Choice × Consistency interaction all had BFinc values indicating
moderate to strong support for their inclusion. The model which
included these factors had the highest posterior probability,
p(MBox Choice + Validity + Consistency + Box Choice × Validity | data) =
0.53.4 This model was preferred over the models which also

4Technically, the posterior probability is also conditional on the model that
we adopted for the likelihood and the prior probability distributions, outlined
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TABLE 1 | Results of a 10 Block × 4 Cue Validity × 2 Consistency Bayesian ANOVA on p(valid box) data.

BFinc

Effect Overall 100% 95% 85% 75%

Block >150 >150 >150 <1 <1
Validity >150 – – – –
Consistency 1.22 1.46 2.7 <1 <1
Block × Validity >150 – – – –
Block × Consistency <1 <1 2.42 <1 <1
Validity × Consistency 1.33 – – – –
Block × Validity × Consistency <1 – – – –

Overall: Highest posterior probability General Linear Model (GLM) p(M| data)

Block + Validity + Consistency + Block × Validity 0.39

Block + Validity + Consistency + Block × Validity + Validity × Consistency 0.38

Block + Validity + Block × Validity 0.23

100% Validity: Highest posterior probability GLM p(M| data)

Block + Consistency 0.67

Block 0.31

95% Validity: Highest posterior probability GLM p(M| data)

Block + Consistency 0.43

Block + Consistency + Block × Consistency 0.38

Block 0.20

85% Validity: Highest posterior probability GLM p(M| data)

Null model 0.64

Consistency 0.29

Block 0.05

75% Validity: Highest posterior probability GLM p(M| data)

Null model 0.56

Consistency 0.25

Block 0.12

Block + Consistency 0.06

Follow-up planned Block × Consistency Bayesian ANOVA results are also shown.
Models whose summed posterior probabilities account for at least 95% of the posterior probability are shown.

added the Validity × Consistency interaction, p(MBox Choice+

Validity + Consistency + Box Choice × Validity+Validity × Consistency|data) =
0.13, or the Box Choice × Consistency interaction,
p(MBox Choice+ Validity+Consistency+Box Choice×Validity+ Validity×
Consistency | data) = 0.12. The next highest posterior probability
was 0.06 for the model containing only the three main effects.
All conditions learned to adopt the rule-consistent strategy
when choosing the valid box. In the consistent conditions,
participants also seem to adopt the rule-consistent choice at
above chance level even when selecting the non-value box. By
contrast, participants in the inconsistent condition were closer to
chance after selecting the non-valid boxes reflecting the greater
uncertainty about the correct strategy.

One caveat for this analysis is that the sampling rate of the
valid and non-valid boxes was unequal between participants.

in Footnote 3, over the model parameters in the likelihood. We omit the
conditionalization on the model for simplicity.

Biased estimates of each participant’s propensity to select the rule-
consistent player could arise due to having only encountered
a small sample size of the valid and non-valid boxes. That is,
a participant who exploited the valid box would have only a
very small number of samples from the non-valid boxes. To
test this possibility, we also computed the total proportions of
rule-consistent player selections for each group by summing the
frequencies across participants and dividing by the total sample
for each group (Table 3). These results are generally in agreement
with Figure 3.

DISCUSSION

We found that participants in the inconsistent condition were
less successful in utilizing the valid box than in the consistent
condition especially at higher validity levels. This occurred
despite the fact that the only variation between the two conditions
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FIGURE 3 | Proportion of trials in which the participants selected the
rule-consistent player after selecting from either the non-valid or valid
boxes. This indicates the frequency with which participants selected the
player with most tokens in the consistent condition and player with fewest
tokens in the inconsistent condition. Mean proportion was calculated for each
participant and averaged across participants for each group. Error bars
indicate one standard error. The dashed black line indicates change
performance in player selection (i.e., 1/2).

was whether the likely overall winning player was the same
player who had won or lost the valid box and that participants
could achieve optimal performance by simply learning this
contingency. Importantly, participants learned to differentiate
between the valid and invalid boxes in both the consistent and
inconsistent conditions. That is, participants were more likely

TABLE 2 | Results of a 2 Box Choice × 4 Cue Validity × 2 Consistency
Bayesian ANOVA.

Effect BFinc

Box Choice >150

Validity 5.27

Consistency 9.87

Box Choice × Validity 11.78

Box Choice × Consistency <1

Validity × Consistency <1

Box Choice × Validity × Consistency <1

to select the rule-consistent player after selecting the valid box.
Therefore, poor utilization of the valid box in the inconsistent
condition does not result from a failure to learn the negative
contingency in that condition.

A possible explanation is that participants’ search behavior is
driven by the opportunity to develop a coherent representation of
the task (Gureckis and Love, 2009). In the consistent condition,
the correlation between the winners of each box does not vary
depending on which box is inspected allowing the formation of
a coherent representation of these correlations. Conversely, in
the inconsistent condition the correlations do vary depending on
which box is inspected, thereby preventing the participant from
creating a coherent representation.

To explain, to win the round, a player must win two boxes. In
both conditions, the invalid box is not correlated with the winner
of either of the remaining boxes. In the consistent condition,
the participant learns that whichever player wins the valid box
tends to win overall. Having won the valid box (e.g., having
lower prices), the player only needs to win one of the two non-
valid boxes (e.g., higher quality food but slower service). In
the inconsistent condition, whoever wins the valid box tends
to lose overall. Having won the valid box (e.g., lower prices),
to lose overall the player would then need to lose both of the
non-valid boxes (e.g., poorer quality food and slower service).
To do so consistently implies that the invalid boxes must be
correlated with each other (i.e., when you lose one you tend
to lose the other) and negatively correlated with the valid box.
In reality, the outcome of an invalid box is not correlated with
the outcomes of either of the two other boxes or the overall
outcome. Because the correlational relationship between the
boxes varies depending on which box is inspected, the participant
cannot develop a coherent representation in the inconsistent
case. Or rather, if participants in the inconsistent condition
adopted a causal model, they could never find consistent evidence
for it as participants only saw the contents of one box per

TABLE 3 | Mean proportion of selecting the rule-consistent player after selecting from the non-valid and valid boxes.

Consistent Inconsistent

Box 100% 95% 85% 75% 100% 95% 85% 75%

Valid 0.97 0.96 0.84 0.85 0.96 0.84 0.84 0.78

Non-valid 0.67 0.60 0.60 0.61 0.58 0.58 0.50 0.56

Rule-consistent refers to the player with the most tokens in the consistent condition and the player with the least tokens in the inconsistent condition.
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trial. Note that this was intended and not a flaw in the
design.

Reducing cue validity impaired participants’ ability to exploit
the valid box. Most interestingly, reducing task consistency
produced the same effect. Dayan and Niv (2008) make a
distinction between model-based learning, which emphasizes
the construction of an internal model, which is used to
support goal-directed action, and model-free reinforcement
learning (i.e., Rescorla and Wagner, 1972; Sutton and Barto,
1998), which uses experience to estimate cue validities and
payoffs without the construction of an internal model. These
theories have been applied to similar two-stage choice tasks
(Otto et al., 2013), and it is worthwhile to consider how
they might apply as a post hoc explanation of our data.
Model-free learning is not influenced by top-down hypotheses
about the state of the environment, and involves areas
associated with habitual action (Killcross and Coutureau,
2003; Balleine, 2005). Under this dichotomy, our task is one
in which the model-free aspects of the task are identical
between the consistent and inconsistent conditions, and thus
no difference is expected under a reinforcement learning
framework. However, the model-based representations of the
contingencies between the tasks differ since participants derive
different expectations or causal beliefs within each condition.
Humans are clearly susceptible to interference with model-based
representations though it is surprising that the decrement is so
severe.

Our task is a natural complement to the task used by
Avrahami and Kareev (2009). Avrahami and Kareev (2009)
were concerned with how two competing opponents of unequal
strength would distribute resources among various criteria when
the assessment of those criteria was either deterministic or
probabilistic. In their study, two players were given a number
of tokens to distribute amongst a number of boxes. The
total number of tokens was uneven such that one player was
“stronger” than the other. In this classic variant of the Colonel
Blotto game, the winner of any round was determined by
selecting one of the boxes and determining which player had
placed more tokens in that box. It is clear that if a ‘referee’
repeatedly and deterministically checks one of the boxes, then
the stronger player will learn over time which box is consistently
assessed, so will distribute all their tokens to this box and
consequently always win the game. By contrast, if the referee
selects boxes probabilistically then the weaker of the two players
can occasionally win the game by foregoing some of the
boxes and allocating more of their meager allotment to fewer
boxes. This is, in fact, the optimal solution to this task, and
participants approximated this solution well under probabilistic
conditions.

In our task, the tokens were generated with a fixed probability
structure. In Avrahami and Kareev’s task, the computer referee
chose a box with a fixed probability structure. It is therefore
interesting to consider generalizations of both designs in which
there are two human players and one human referee. It is
likely that a number of possible states would evolve out
of the three-way interaction between the players with each
player utilizing dynamic rather than static strategies. Two likely

possibilities are oscillatory states that cycle through different
configurations of allocation and evaluation strategies and steady
states that settle into deterministic allocation and evaluation.
The emergence of these states would likely depend on relative
strength of the players and individual differences such as working
memory capacity, which influences learning rate and strategy use
(Lewandowsky, 2011; Sewell and Lewandowsky, 2012). Future
research should determine the nature of how these individual
differences interact with the cue structure to lead to different
patterns of performance.

In decision-making studies, it is common to incentivize
participants with monetary rewards in order to motivate
high performance and profit maximization. Participants in the
current study, however, only received course credit for their
performance and this may limit the generalizability of the
current findings. Nevertheless, participants were sufficiently
motivated to demonstrate increased utilization of the valid
box across blocks and discrimination the valid from the non-
valid boxes. Critically, our findings illustrate that participants
failed to utilize more valid information within an inconsistent
task structure. The lack of monetary reward, however, may
encourage participants to explore non-valid boxes since there
is no financial cost for this behavior, and thus this issue
should be explored in future studies. A second limitation of
the present task is that although participants were informed
of the probabilistic nature of the task upfront, participants
in the inconsistent condition were not informed about the
difficulty of forming a causal model of the task. By our walking
on the slippery slope between deception and not providing
complete information about cue generation, we may have
inadvertently increased participant frustration, which may have
altered behavior. Nonetheless, we feel that the current study offers
insight to how task structure and participant expectation can
affect learning and exploratory behavior within a probabilistic
learning environment.
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