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Although the architecture of a dopaminergic (DA) system within the primary motor cortex
(M1) was well characterized anatomically, its functional significance remained obscure for
a long time. Recent studies in rats revealed that the integrity of DA fibers in M1 is a prereq-
uisite for successful acquisition of motor skills. This essential contribution of DA for motor
learning is plausible as it modulates M1 circuitry at multiple levels thereby promoting plas-
tic changes that are required for information storage: at the network level, DA increases
cortical excitability and enhances the stability of motor maps. At the cellular level, DA
induces the expression of learning-related genes via the transcription factor c-Fos. At the
level of synapses, DA is required for the formation of long-term potentiation, a mechanism
that likely is a fingerprint of a motor memory trace within M1. DA fibers innervating M1
originate within the midbrain, precisely the ventral tegmental area (VTA) and the medial
portion of substantia nigra (SN). Thus, they could be part of the meso-cortico-limbic path-
way – a network that provides information about saliency and motivational value of an
external stimulus and is commonly referred as “reward system.” However, the behavioral
triggers of the release of dopamine in M1 are not yet identified. As alterations in DA trans-
mission within M1 occur under various pathological conditions such as Parkinson disease
or ischemic and traumatic brain injury, a deeper understanding of the interaction of VTA/SN
and M1 may reveal a deeper insight into a large spectrum of neurological disorders.

Keywords: dopamine, motor cortex, motor learning, cortical plasticity, memory

INTRODUCTION
The primary motor cortex (M1) receives dopaminergic (DA)
projections from mesencephalic brainstem nuclei. The integrity
of this DA meso-cortical pathway has been recently shown to
be a prerequisite of successful motor learning in rats. Apart
from providing details on morphology and behavioral experi-
ments, we describe how DA signaling facilitates plastic changes
within M1 circuitry at various levels thereby promoting storage
of newly acquired movement sequences. In addition to puta-
tive behavioral triggers and dynamics of DA release in M1, the
assignability of knowledge gained in rodent models to human
subjects becomes discussed. Finally, we provide an overview of
M1 plasticity in neurological diseases characterized by a DA
deficit.

DA IN M1 IS NECESSARY FOR MOTOR LEARNING IN RATS
Apart from prefrontal region (PFC), sensorimotor areas receive
the largest amount of DA innervation within the rodent neocor-
tex (1). In M1, DA terminals are distributed inhomogeneously
with a preference for deep cortical layers [layer V/VI (2)]. Regard-
ing postsynaptic elements, D1 receptors are expressed in both,
superficial (layers I, II, IIIa) and deep (V and VI) layers (3),
whereas D2-receptors are expressed primarily in layer V but 10-
fold less than D1 (4). Additionally, co-localization of both recep-
tor subtypes were observed in layer V/VI motor neurons (5).

Retrograde tracing identified the ipsilateral DA midbrain nuclei
to be the origin of motor-cortical DA innervation: about 73%
of DA midbrain neurons projecting to M1 are located in the
rostro-lateral ventral tegmental area (VTA, also referred to as
region A10) whereas a smaller amount of neurons can be found in
the rostro-medial substantia nigra [SN; also referred to as region
A9; 12%; (6)].

To define the functional role of this DA system, we assessed
the effect of removing DA terminals within M1 on acquisition
of a motor skill-learning paradigm (6, 7). Rats were trained in
a single-pellet reaching task (8), while selective destruction of
DA terminals was performed by injecting 6-hydroxi-dopamine
(6-OHDA) either directly in M1 or within the rostral VTA/SN,
both contralateral to the preferred paw. DA depletion of M1
resulted in an impaired gain in motor performance between sub-
sequent training sessions (inter-session learning) when compared
to controls. This impairment could be resolved by substitut-
ing levodopa directly within M1 using osmotic mini-pumps. As
the short-term improvement of performance within one session
(intra-session learning) was not affected by lesions, DA seems
to be required for longer-lasting storage mechanisms underly-
ing motor memory consolidation (9). Inducing 6-OHDA lesions
in rats that already learned the task did not influence reaching
performance, indicating a role of DA for movement acquisi-
tion but not for movement execution. As the effect of 6-OHDA
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lesions could be mimicked by injection of the D1-receptor antag-
onist SCH-29930 or the D2-receptor antagonists raclopride and
sulpiride, motor learning seems to depend on both receptor sub-
types (7). Whereas direct 6-OHDA lesions in M1 resulted only
in a gradual but significant impairment of motor skill acqui-
sition, destroying the origin of the motor-cortical DA innerva-
tion in VTA/SN completely abolished motor learning. This can
be explained by a higher effectiveness of DA depletion caused
by brainstem lesions when compared to direct injection of 6-
OHDA into M1. Remarkably, 6-OHDA lesions within the mid-
brain could be applied with sufficient precision to avoid any
side effects like motivational deficits or extrapyramidal symp-
toms that would be expected in case of damaging projections
to the PFC or to striatum. In summary, the integrity of DA
projection from midbrain to M1 is a prerequisite of successful
movement acquisition based on D1- and D2-receptor mediated
mechanisms.

HOW DA MAY PROMOTE PLASTICITY IN M1
Although extra-cortical brain regions as cerebellum and basal gan-
glia contribute to motor learning (10), M1 is thought to be the
place where motor memory becomes stored (11). This motor
memory storage depends on M1 ability to undergo experience-
dependent changes, a phenomenon commonly referred to as
motor plasticity (12). DA has been shown to modulate M1 cir-
cuitry at several levels thereby affecting various processes of
motor-learning dependent plasticity.

LEVEL OF M1 NETWORK-PHYSIOLOGY
Motor learning induces an enlargement of the motor-cortical rep-
resentation (motor map) of particular body-parts that became
trained, a phenomenon observed in rodents, primates, and
humans (13–15). This enlargement is learning specific as it does
not occur in response to mere motor activation and its magnitude
is proportional to learning success (16, 17). The enlargement of
motor representations furthermore depends on intact signaling
of modulatory neurotransmitters: preventing cholinergic trans-
mission by destroying basal forebrain structures in rats abolished
both, expansion of motor maps and skill acquisition (18). Compa-
rably, intra-motor-cortical injection of the D2-receptor antagonist
raclopride induced a collapse of motor representations evoked by
epidural electrical microstimulation in rats, whereas blocking D1
receptors with SCH 23390 had no effects (19).

Besides the spatial expansion of motor maps, transcranial mag-
netic stimulation (TMS) in humans revealed a training-related
increment in M1 excitability in response to learning a piano
sequence (15). In rats, blocking D2-receptors by intra-cortical
injection of raclopride significantly increased stimulation thresh-
olds necessary to evoke motor responses indicating a decreased
level of motor-cortical excitability (19). Thus, by stabilizing motor
representations and by increasing cortical excitability via D2-
receptor dependent processes, DA signaling in M1 seems to be
ideally suited to support learning-related changes on M1 network
level.

LEVEL OF GENE EXPRESSION
Motor learning requires protein synthesis within M1 neurons
(20) as a prerequisite of subsequent learning-dependent changes

including increased spine-turnover and dendritic growth (11,
12). In M1 of rats, expression of the transcription factor c-
Fos becomes induced in response to learning an acrobatic skill
(21). Because c-Fos expression was highest during skill acquisi-
tion and subsequently decreased in the maintenance phase, the
learning-specificity of this phenomenon is highly plausible. c-Fos
is considered to be not only a marker of recent neuronal activa-
tion but also for experience-dependent changes (22) and is known
to become induced by DA signaling (23). Electrical stimulation
of neurons within the rostro-lateral VTA induces an increased
expression of c-Fos within the ipsilateral M1 that can be blocked
by intra-cortical injection of the D1- and D2-receptor antagonists
SCH 23990 and raclopride (6). Thus, DA efferents from the mid-
brain are capable to support the expression of learning-relevant
proteins in M1.

LEVEL OF SYNAPTIC TRANSMISSION
In rats, motor skill learning induces a long-lasting increase of
synaptic strength in M1 horizontal connections of layer II/III sug-
gesting an association with long-term potentiation (LTP)-like plas-
ticity (24). In line with this assumptions, capacity to induce LTP
within these connections was reduced whereas long-term depres-
sion (LTD) was increased, suggesting that the learning-induced
gain in synaptic strength expended the capacity of LTP-formation
(25). Several weeks after skill acquisition, the ability to form
LTP was restored while the horizontal connections of layer II/III
remained strengthened (26). Bath application of both, the D1-
receptor antagonist SCH 29339 and the D2-receptor antagonist
raclopride markedly reduced the ability of M1 horizontal con-
nections to form LTP (7), suggesting the necessity of intact DA
signaling for long-lasting synaptic plasticity in M1.

DA OUTSIDE OF M1
As tetanic stimulation of somatosensory cortex (S1) mediates
LTP induction in M1 (27), it is assumed that motor-learning
dependent synaptic plasticity is mediated by somatosensory input
(28, 29). Thus, a close and precise interaction between M1 and
S1 is a prerequisite for successful motor learning (28). In S1,
intra-cortical injection of both, D1- and D2-receptor antago-
nists induced an enlargement of somatosensory evoked potential
(SEP)-amplitude consistent with an increased cortical excitability
(30). Thus, by reducing S1 excitability, DA may serve focusing
on relevant (= strong) somatosensory input thereby improv-
ing signal-to-noise ratio (31) and improving sensory discrimi-
nation (32). However, if improved somatosensory information
processing in sensorimotor cortex could also be one mecha-
nism by which DA facilitates motor learning remains to be
tested.

WHAT DO DOPAMINERGIC SIGNALS IN M1 ENCODE?
Dopaminergic neurons projecting to M1 are located in the rostro-
lateral VTA and, to a lesser extent, in the rostro-medial SN (6).
Thus, this projection is part of the meso-cortico-limbic system
that provides DA input to cortical (mainly prefrontal cortex) and
limbic (e.g., amygdala and hippocampus) structures (33, 34). In
general, this system is thought to evaluate environmental stimuli
with respect to their value and behavioral significance. Whereas
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the activity of specific neuronal subgroups is coupled to a particu-
lar content like motivational value or saliency (35), the time course
of dopamine release may encode if a stimulus is pleasant (“reward-
ing”) or aversive [“punishing”; (36, 37)]. In rodents, DA projec-
tions to PFC critically modulate spatial working memory (38, 39)
and attention selection (40). In a computational model that sim-
ulates the effect of DA on PFC network (39), low concentrations
of DA constitute a “gate closed” state characterized by a boosted
inhibitory drive and stereotypical behavior. At higher concentra-
tions, DA induces a “gate open” state characterized by an increased
excitability of the network and consecutive explorative behavior.
Based on these considerations, one may hypothesize that the DA
midbrain-to-M1 projection facilitates the occurrence of plastic
changes within the motor-cortical network in response to salient,
novel, or appetitive stimuli. However, it is illusive which envi-
ronmental cues during motor learning are capable of activating
midbrain neurons that trigger the release of DA in M1.

In contrast to DA neurons forming the nigro-striatal pathway,
meso-cortically projecting neurons are characterized by fast fir-
ing (30 Hz), slow dopamine reuptake and reduced if not lacking
D2-receptor dependent auto-inhibition (41). This class of DA
cells therefore seems to be well suited to provide a sustained
release of DA. In addition, voltammetric studies revealed that the
clearance of extracellular DA within the amygdala or the PFC is
considerably slower when compared to striatum (42, 43). Thus,
DA projections to cortical and limbic structures rather seem to
influence DA concentrations on a larger time-scale. This tonic
form of modulatory neurotransmission would be well suited to
support longer-lasting changes required for motor memory con-
solidation such as LTP-like plasticity. However, the kinetics of DA
release and clearance within M1 still remain to be experimentally
established.

CAN THESE FINDINGS BE ASSIGNED TO HUMANS?
Notable differences in magnitude and organization have to be
taken into account between species regarding DA innervation. At
first, the midbrain of primates harbors three to seven times more
DA neurons when compared to rodents (44). Thus, cortical – and
especially motor-cortical – DA innervation is accordingly much
more pronounced in primates (45, 46). Furthermore, cortically
projecting DA neurons in primates can be found beyond VTA
and SN: in owl and rhesus monkeys, 15% of DA efferents toward
M1 are located within the retrorubral field [RRF, also referred
to as region A8; (2, 47)], a region that completely lacks meso-
cortically projecting neurons in rodents (48, 49). Finally, whereas
DA terminals are homogenously distributed among cortical lay-
ers in primates, deeper layers receive stronger DA innervation in
rodents than superficial ones (2, 50). Taken together, presumably
as a consequence of neocortical development, DA innervation of
cortex underwent a gain in complexity during phylogeny. How-
ever, no significant differences in quantity and distribution of DA
terminals in M1 could be detected for non-human primates and
humans (51).

Despite these pronounced differences between species, DA
signaling in humans seems to have similar function for motor
learning when compared to the rodent model: in humans, admin-
istration of a single dose of levodopa or the D2-receptor agonist

cabergoline facilitated the encoding of an elementary motor mem-
ory in M1 [influencing the direction of TMS – evoked thumb
movement by prior training; (50, 52)]. On the other hand, block-
ing DA-receptors with haloperidol interfered with motor learning
(52). The magnitude of this levodopa-induced improvement in
movement acquisition depends on multiple factors like age (50,
53) and genetic variations of DA metabolizing enzymes and DA
receptor isoforms (54). Thus, a beneficial effect of external DA
stimulation is mainly expectable when the DA system is chal-
lenged due to degenerative processes associated with (healthy)
aging or genetic polymorphisms related to a low effectiveness of
DA transmission.

Although the cited studies in humans are in a good agreement
with findings derived from animal research, transfer of knowl-
edge across species is limited due to differences in experimental
methodology and the increased complexity of the DA system in
higher-order species. For example, intra-cortical injection of the
D2-receptor antagonist raclopride reduces M1 excitability in rats
(19) whereas administration of DA antagonists in humans has the
opposite effect (52, 55, 56). However, as intra-cortical injection in
the animal model is expected to induce only local changes, sys-
temic application of drugs will influence several systems thereby
causing a different net effect. In this example, blocking striatal
DA-receptors may disinhibit excitatory thalamo-cortical projec-
tions thereby increasing M1 excitability (57, 58). Furthermore,
the effect of exogenous DA stimulation on motor learning in
humans depends on various genetic polymorphisms within cleav-
ing enzymes (e.g., catechol-O-methyltransferase), receptor iso-
forms and reuptake transporters (54). Thus, administration of
levodopa may range from beneficial to disadvantageous effects
depending on the individual genetic profile. In contrast to humans,
genetic profiles in rodent inbred stems are expected to be quite
homogenous. Thus, it is not surprising that results in human
studies spread around a larger range when compared to animal
experiments.

THE ROLE OF DA FOR M1 PLASTICITY IN NEUROLOGICAL
DISEASES
In Parkinson disease (PD), degeneration of DA neurons projecting
to the neocortex occurs early in the course of disease (59, 60) and
leads to a 70% reduction of DA fibers within M1 and other frontal
cortical areas (61). Apart from the loss of nigro-striatal DA pro-
jections causing the classical extrapyramidal symptoms of PD like
stiffness, tremor, and bradykinesia (62), PD patients also suffer
from motor-learning deficits (63, 64). In line with these obser-
vations, capability of M1 to undergo plastic changes in response
to TMS paired associative stimulation or theta-burst stimulation
protocols is abolished in PD patients off DA medication (65–69).
Interestingly, substitution of a single dose of l-DOPA rescued LTP-
(and LTD)-like plasticity only in patients on chronic DA medica-
tion (65, 67, 68) but not in newly diagnosed PD patients naïve
to l-DOPA (66). Thus, restoration of M1 plasticity likely reflects
a long-duration effect of l-DOPA treatment, whereas reduction
of extrapyramidal symptoms that occurs immediately after l-
DOPA substitution depends on a short-duration response (65).
In PD patients with a long-lasting course of disease suffering
from fluctuations (e.g., wearing off phenomenon) or dyskinesia
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(e.g., peak of dose dyskinesia) l-DOPA dependent restoration of
M1 plasticity is deficient (67) and even dysfunctional effects on
plasticity-formation occur in response to l-DOPA administration
(65). Taken together, M1 capability for plasticity-formation in PD
patients depends on duration of disease (= degree of denervation)
and persistent effects of DA treatment. If these phenomena can
be explained by the degeneration of DA fibers directly within
M1, by indirect effects on M1 circuitry (e.g., changes in striato-
thalamo-cortical signaling) or by a sum effect of both is still an
open question.

Apart from PD where DA neurons irreversibly degenerate, a
state of a functional “DA deficit” may also emerge in case of brain
injury (53, 54). After experimental application of traumatic brain
lesions in rats, a sustained down-regulation of DA reuptake trans-
porters (DAT) and increased concentrations of the DA synthesiz-
ing enzyme tyrosine hydroxylase (TH) within the frontal cortex
indicate profound alterations of DA transmission in response to

mechanical damage (70, 71). If ischemic brain injury leads to
similar widespread changes in DA signaling has not been investi-
gated, yet. However, chronic stroke survivors also profited from l-
DOPA administration in acquiring an elementary motor-learning
paradigm (72) and levodopa treatment in combination with
physiotherapy was superior to physiotherapy alone in hemiparetic
stroke patients (73, 74).

CONCLUSION AND FUTURE RESEARCH
In rats, meso-cortical DA projections are required for success-
ful motor learning (Table 1: 1–3). By promoting plasticity at
the level of learning-related gene expression, synaptic transmis-
sion, and network-physiology, DA signaling is well suited to
facilitate the storage of novel movement sequences within M1
circuitry. Based on present literature, we propose that mesen-
cephalic DA neurons innervating M1 are activated by novel and
salient external stimuli, exerting a tonic and longer-lasting shift

Table 1 | Collection of key papers studying the effect of dopaminergic signaling on plasticity in M1 and/or motor learning.

Reference Species Effect of DA regarding M1 plasticity/motor learning

1. Molina-Luna et al. (7) Rat DA signaling in M1 is required for successful motor learning

Blocking D1- and D2-receptors in M1 interferes with motor learning

Blocking D1- and D2-receptors interferes with LTP-formation in M1

2. Hosp et al. (19) Rat Blocking D2-receptors in M1 induces a breakdown of motor representations

Blocking D2-receptors reduces excitability of M1 network

3. Hosp et al. (6) Rat Dopaminergic projections to M1 originate in the ipsilateral VTA (and SN)

The integrity of this meso-cortical pathway is essential for motor learning

VTA-stimulation induces expression of learning-relevant genes in M1

4. Floel et al. (50) Humans (healthy) L-DOPA facilitates encoding of motor memory in M1 (TMS-evoked thumb movements) in

elderly but not in young subjects

5. Meintzschel and Ziemann (52) Humans (healthy) DA agonist cabergoline facilitates encoding of motor memory (TMS-evoked thumb

movements) in M1

DA antagonist haloperidol enhances excitability of M1

6. Floel et al. (53) Humans (healthy) L-DOPA facilitates skilled motor learning in elderly but not in young subjects

7. Pearson-Furhop et al. (54) Humans (healthy) Effect of external dopaminergic stimulation depends on the individual profile of

polymorphisms in DA-related genes

8. Morgante et al. (67) Humans (PD) Plasticity-inducing TMS protocols have no effect in M1 of PD patients

L-DOPA restores M1 capability to undergo plastic changes except in patients suffering

from dyskinesia

9. Ueki et al. (68) Humans (PD) Plasticity-inducing TMS protocols have no effect in M1 of PD patients

L-DOPA restores M1 capability to undergo plastic changes

10. Kishore et al. (65, 66) Humans (PD) Plasticity-inducing TMS protocols have no effect in M1 of PD patients

L-DOPA-dependent restoration of plasticity in M1 capability is a long-term effect

L-DOPA has no or even disadvantageous effects in patients suffering from

fluctuations/dyskinesia

11. Scheidtmann et al. (73) Humans (stroke) L-DOPA in combination with physiotherapy facilitates motor recovery in stroke patients

12. Floel et al. (72) Humans (stroke) L-DOPA facilitates encoding of motor memory in M1 (TMS-evoked thumb movements) in

stroke patients

PD, Parkinsons disease; SN, substantia nigra; TMS, transcranial magnetic stimulation; VTA, ventral tegmental area.
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in cortical DA concentrations. Thus, the DA meso-cortical path-
way is thought to support M1 circuitry to adapt to changes in
environmental requirements. However, this hypothesis needs fur-
ther experimental confirmation: combining telemetric recording
of VTA activity and M1 field potentials during a skilled reach-
ing task could reveal the behavioral cue preceding the activation
of M1-projecting mesencephalic neurons. Furthermore dynamics
of DA signaling within M1 could be assessed using voltammetric
measurements.

In human subjects, the specific role of the meso-cortical pro-
jections toward M1 can be hardly defined, as alterations (systemic
administration of drugs or degeneration of DA neurons) usu-
ally affect the entire DA system. However, DA signaling seems
to influence M1 plasticity and motor learning in a quite sim-
ilar way when compared to the rodent model: administration
of l-DOPA improves the encoding of elementary motor mem-
ory in healthy subjects characterized by a low effectiveness of DA
signaling (e.g. due to aging process; Table 1: 4–6). In patients suf-
fering from PD, induction of plastic changes using TMS is severely

impaired, a phenomenon that can be reversed by administration
of l-DOPA at least in the early course of disease (Table 1: 8–
10). In future research on humans, special attention should be
paid to genetic variability with respect of DA receptor isoforms
and DA cleaving or metabolizing enzymes as this molecular pro-
file substantially shapes the effect of exogenous DA stimulation
(Table 1: 7).

Apart from PD where l-DOPA substitution is the medication
of choice, a DA deficiency requiring intervention may also occur
in case of ischemic (or traumatic) brain injury (Table 1: 11–12).
To test this hypothesis, changes on key determinants of DA sig-
naling could be assessed in response to experimentally applied
ischemic lesions (M1) in rats with respect to peri-infarct cor-
tex and target regions of the DA system remote to the lesion
side. Besides the valuable insight into long-term consequences of
ischemic stroke on modulatory transmitter systems, these experi-
ments could provide strong support for the application of l-DOPA
in stroke survivors highlighting the requirement for further clinical
trials.
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