

ORIGINAL RESEARCH

published: 12 December 2016 doi: 10.3389/fpls.2016.01838

Molecular Identification of Broomrape Species from a Single Seed by High Resolution Melting Analysis

Mathieu Rolland1*, Aurélie Dupuy1, Aude Pelleray2 and Philippe Delavault2

¹ GEVES, Beaucouzé, France, ² Laboratoire de Biologie et Pathologie Végétales, Université de Nantes, Nantes, France

Broomrapes are holoparasitic plants spreading through seeds. Each plant produces hundreds of thousands of seeds which remain viable in the soils for decades. To limit their spread, drastic measures are being taken and the contamination of a commercial seed lot by a single broomrape seed can lead to its rejection. Considering that broomrapes species identification from a single seed is extremely difficult even for trained botanists and that among all the described species, only a few are really noxious for the crops, numerous seed lots are rejected because of the contamination by seeds of non-noxious broomrape species. The aim of this study was to develop and evaluate a High Resolution Melting assay identifying the eight most noxious and common broomrape species (Phelipanche aegyptiaca, Orobanche cernua, O. crenata, O. cumana, O. foetida, O. hederae, O. minor, and P. ramosa) from a single seed. Based on tmL and rbcL plastidial genes amplification, the designed assay successfully identifies O. cumana, O. cernua, O. crenata, O. minor, O. hederae, and O. foetida; P. ramosa, and P. aegyptiaca can be differentiated from other species but not from each other. Tested on 50 seed lots, obtained results perfectly matched identifications performed by sequencing. Through the analysis of common seed lots by different analysts, the reproducibility of the assay was evaluated at 90%. Despite an original sample preparation process it was not possible to extract enough DNA from some seeds (10% of the samples). The described assay fulfills its objectives and allows an accurate identification of the targeted broomrape species. It can be used to identify contaminants in commercial seed lots or for any other purpose. The assay might be extended to vegetative material.

OPEN ACCESS

Edited by:

Monica Fernandez-Aparicio, Institut National de la Recherche Agronomique (INRA), France

Reviewed by:

Paula Martins-Lopes,
University of Trás-os-Montes and Alto
Douro, Portugal
Leonardo Velasco,
Institute for Sustainable Agriculture –
CSIC, Spain
Manuel Miller,
Helmholtz Zentrum München,
Germany

*Correspondence:

Mathieu Rolland mathieu.rolland@anses.fr

Specialty section:

This article was submitted to Crop Science and Horticulture, a section of the journal Frontiers in Plant Science

Received: 27 April 2016 Accepted: 22 November 2016 Published: 12 December 2016

Citation

Rolland M, Dupuy A, Pelleray A and Delavault P (2016) Molecular Identification of Broomrape Species from a Single Seed by High Resolution Melting Analysis. Front. Plant Sci. 7:1838. doi: 10.3389/fpls.2016.01838 Keywords: Orobanche, Phelipanche, parasitic weed, molecular diagnosis, HRM, trnL, rbcL

1

INTRODUCTION

Broomrapes (*Orobanche* and *Phelipanche* spp.) are angiosperms in the Orobanchaceae which have evolved into obligate root holoparasitic plants (Joel, 2009). Devoid of leaves, of chlorophyll as well as of functional roots, they entirely depend on their host for nutritional requirements (Westwood, 2013). One single broomrape plant can produce hundreds of thousands of extremely small seeds, between 200 and 300 μ m, each weighing around 5 μ g and composed of only 200 to 300 cells (Joel, 1987). They are easily dispersed mainly by wind and water, and remain viable in the soils for many

years until their germination is triggered chemically by exudates released in the soil by the roots of potential host plants (Lopez-Granados and Garcia-Torres, 1996, 1999). At the vicinity of host roots, germinated seeds develop a haustorium that penetrates host tissues and establish a connection with its vascular tissues. This connection will constitute the source of the parasite for water and nutrients. Some species in the Orobanche and Phelipanche genera, the weedy broomrapes, are able to infect a large range of plant species, including many important crops. In severe cases, infection of the host plant can lead in reduction of crop yields up 100%. This makes broomrapes one of the most devastating parasitic weeds in the Mediterranean and western Asian regions but also in many other parts of the world (Parker, 2009). Thus, among these noxious parasitic species are the closely related Phelipanche ramosa L. and P. aegyptiaca Pers. (synonym Orobanche ramosa and O. aegyptiaca) (Joel, 2009), O. cumana Wallr., O. cernua Loefl., O. crenata Forsk., O. foetida Poir., and O. minor Sm., while O. hederae Vaucher ex Duby has no agronomical impact but is extremely common.

Strategies to control parasitic weeds can be classified in chemical, cultural, physical, and biological control methods (Fernández-Aparicio et al., 2016). Among them, breeding for crop resistance seems to be the best approach to manage this issue. However, sources of resistance to most parasitic plants are either scarce or of complex nature (Perez-De-Luque et al., 2009). Despite these difficulties, significant success has been made on some crops. All these approaches allow a control of the parasitic population or permit resistant crops to grow and yield on infested soils, however, the eradication of parasitic weeds remains extremely difficult. Considering that one major mean of field contamination is through contaminated crop seed lots, preventive measures have to be taken to avoid spreading parasite seeds, especially through global scale seed exchanges. This requires to detect efficiently the possible contaminations of crop seeds lots by broomrape seed (Dongo et al., 2012). Visual detection of broomrape seeds in crop seed lots is conducted by sieving and observation of the obtained residues. Characterization of broomrape seeds at the species level in contaminated crop seed lots is important giving the differential host ranges among broomrape weed species and the capacity of some broomrape weeds to thrive in non-parasitic weed species. However, due to their nuanced microscopic morphological features, this identification is extremely difficult and can only can be performed by high qualified specialists (Abu Sbaih and Jury, 1994; Plaza et al., 2004). Molecular tools have been developed to detect and identify broomrape species from soil and crop seed batches. Random amplified polymorphic DNA technique (RAPD) allowed the differentiation between species such as P. aegyptiaca, P. ramosa, O. cernua, O. cumana, and O. crenata (Katzir et al., 1996; Paran et al., 1997). This technique was even used on single seeds (Portnoy et al., 1997), however, the main drawback of RAPDs is their low reproducibility (Harris, 1999). Intersimple sequence repeats (ISSR) were latter used to discriminate closely related species such as O. cumana and O. cernua (Benharrat et al., 2002). A TaqMan assay was developed on internal transcribed spacers (ITS) with the aim of detecting and quantifying P. ramosa and O. cumana seeds

in oilseed rape and sunflower seed lots, respectively (Dongo et al., 2012). Microsatellites were also developed to investigate intraspecific variations in *O. cumana* (Pineda-Martos et al., 2014). Due to its monoparental inheritance, plastid genome has a low intraspecific variability and seems to be an adequate target for species identification. In the case of *Orobanche* genus, a particular attention was paid to the pseudogene *rbcL* which showed important sequence divergences among species due to an evolution under purifying selection (Wolfe and dePamphilis, 1997; Benharrat et al., 2000; Manen et al., 2004). Recently, full broomrape plastid genome sequence was made available (Wicke et al., 2013; Cusimano and Wicke, 2015) providing new molecular markers for species identification.

High resolution melting (HRM) is a technique based on the real-time measure of double stranded DNA denaturation at a high resolution. It is suitable for gene scanning and genotyping (Gori et al., 2012) and allows the detection of genetic variations such as single nucleotide polymorphisms (SNP), mutations (Toi and Dwyer, 2008), or methylation (Wojdacz and Dobrovic, 2007). Used on PCR products during a post-PCR denaturation, it requires no tube opening, purification, or product separation. With a minimum manipulation, HRM minimizes the contamination risk, it is cost efficient, suitable for high-throughput, and can be performed in-house by laboratories with no sequencing facility (Reed et al., 2007). This technique has been extensively used on human tissues (Krypuy et al., 2007; Takano et al., 2008), for clinical or phytopathological diagnostic and food analysis (Druml and Cichna-Markl, 2014). It is increasingly used on plant tissues for species and cultivar differentiation (Mackay et al., 2008; Jaakola et al., 2010) or genotyping (Lochlainn et al., 2011).

The objective of this study is to combine the knowledge recently obtained on plastid genome and the HRM technique to develop a new application allowing the differentiation of the seven most noxious and common broomrape weed species (*P. aegyptiaca*, *O. cernua*, *O. crenata*, *O. cumana*, *O. foetida*, *O. minor*, and *P. ramosa*) and the widely distributed *O. hederae* species from a single seed. This new application should provide to laboratories, involved in seed certification, a decision-making tool to evaluate crop seed lots potentially contaminated by noxious broomrape species.

MATERIALS AND METHODS

Plant Material

Broomrape seeds (*P. aegyptiaca*, *O. cernua*, *O. crenata*, *O. cumana*, *O. foetida*, *O. hederae*, *O. minor*, and *P. ramosa*) were either obtained from international collections or collected during field sampling by GEVES, Syngenta, Terres Inovia, or University of Nantes. Available data concerning the tested seed lots are summarized in **Table 1**.

Single Seed Grinding Procedure and DNA Extraction

One of the technical challenges associated with the development of an assay aiming to characterize broomrape single seeds

TABLE 1 | Origin and identifications of the 50 seed lots tested during the study.

1	å	Visual identification	Country (region)	Crop	Collector	Date	High re	High resolution melting (HRM)	ing (HRM)	Sequencing
R carrosa Chaeving, France Page LBPV UNA Int.C NA sub-crimoses R carrosa Aube, France Themp LBPV 2011 Int.C NA sub-crimoses R carrosa Aube, France Tobosco LBPV 2012 Int.C NA sub-crimoses R carrosa Verifiés France Tobosco LBPV 2012 Int.C NA sub-crimoses R carrosa Verifiés France Topos This study 2012 Int.C NA sub-crimoses R carrosa Verifiés France Pape This study 2013 Int.C NA sub-crimoses R carrosa Verifiés France Pape This study 2013 Int.C NA sub-crimoses R carrosa Aube, France Pape This study 2013 Int.C NA sub-crimoses R carrosa Aube, France Pape This study 2013 Int.C NA sub-crimoses R carrosa Aute <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>trnL</th> <th>rbcL</th> <th>Identification</th> <th>Identification</th>							trnL	rbcL	Identification	Identification
Promosas Aubic Finana Uebro UEPV UNIT. NM sub namosas P. namosas Varientesa Baskhir, Francas Debaco LEBV 0.00 mirco NM sub namosas P. namosas Varientesa, Francas Varientes, Francas Potaco LEBV 2005 mirco NM sub namosas P. namosas Varientes Chemy The study 2013 mirco NM NM P. namosas Varientes Chemy The study 2013 mirco NM NI P. namosas Varientes Pramosa Varientes Deny LTR study 2013 mirco NM sub namosas P. namosa Varientes Hamp LTR LTR NM NA NA Antonosas P. namosa John LTR LTR Mirco LTR NA NA Antonosas C. comman Ilean LTR LTR NA NA Antonosas C. comman <td>_</td> <td>P. ramosa</td> <td>Charente, France</td> <td>Rape</td> <td>LBPV</td> <td>Unkn</td> <td>trnL-C</td> <td>Ą</td> <td>sub. ramosae</td> <td>P. ramosa</td>	_	P. ramosa	Charente, France	Rape	LBPV	Unkn	trnL-C	Ą	sub. ramosae	P. ramosa
P, starrosa Rabe-prince Tobacco LIBPY Unith Int. C NA stitu monoses P, stronia Stratesia Versides, Francisa Rapa LIBPY 2072 rint.G NA stitu monoses P, stronia Versides, Francisa Rapa This study 2013 rint.G NA stitu monoses P, stronia Versides, Francisa Cabry This study 2013 rint.G NA stitu monoses P, stronia Versides, Francisa Rapa This study 2014 rint.G NA stitu monoses P, stronia Versides, Francisa Rapa LIBPY 2014 rint.G NA stitu monoses P, stronia Versides, Francisa Sunflower LIBPY 1014 rint.G NA 0.0 annotes C, currante Illusia Unin LIBPY 1014 rint.G NA 0.0 corrus C, currante Illusia Unin Limby LIBPY 1014 NA 0.0 corrus	2	P. ramosa	Aube, France	Hemp	LBPV	2011	trnL-C	Υ _Z	sub. ramosae	P. ramosa
P, controls Worksis, Finitions Bapo LIBPV 2009 ITHIC NA ab. Incroses P, controls Veryides, Finitions Flape This study 2013 ITHIC NA A.D. Incroses P, controls Veryides, Finitions Flape This study 2013 ITHIC NA A.D. Incroses P, controls Charactes Authori, Finitions Flape This study 2014 ITHIC NA A.D. Incroses P, controls Veryides, Finitions Homp LIBPV 2017 ITHIC NA A.D. Incroses P, controls Veryides, Finitions Homp LIBPV 2017 ITHIC NA A.D. Incroses P, controls Libral Univer LIBPV 2017 ITHIC NA A.D. Incroses Controls Libral Univer LIBPV 2017 ITHIC NA A.D. Incroses Controls Veryides Trial MA A.D. A.D. A.D. A.D. A.D. A.D.	က	P. ramosa	Bas-Rhin, France	Tobacco	LBPV	Unkn	trnL-C	N A	sub. ramosae	P. ramosa
P. Fannosa Characterial Animalian Fannosa Tibabas LIBM 2012 Inti-Le Na.D. Animalian Bornosa P. Fannosa Authorian Rape This study 2013 Inti-C NA Sub. tamosas P. Fannosa Authorian Rape This study 2013 Inti-C NA Sub. tamosas P. Fannosa Authorian Hamp LIBPY 2013 Inti-C NA Sub. tamosas P. Fannosa Authorian Hamp LIBPY 2013 Inti-C NA Sub. tamosas P. Fannosa Authorian Libra LIBPY 2013 Inti-C NA Sub. tamosas P. Fannosa Hattle Clastrone Sanhowe LIBPY 2014 NA O. camara O. cumara Hattle Clastrone Sanho LIBPY Uh LIBPY NA O. camara O. cumara Verdede, France Uh LIBPY Uh Int-A NA O. camara O. cumara Listade France Uh <td>4</td> <td>P. ramosa</td> <td>Vendée, France</td> <td>Rape</td> <td>LBPV</td> <td>2009</td> <td>trnL-C</td> <td>Ν Ν</td> <td>sub. ramosae</td> <td>P. ramosa</td>	4	P. ramosa	Vendée, France	Rape	LBPV	2009	trnL-C	Ν Ν	sub. ramosae	P. ramosa
P. Farmosa Wardee France Rape This study 2013 Inn.L.C NA Sub. armose P. Farmosa Vandee France Rape This study 2014 Inn.C NA Sub. armose P. Farmosa Vandee France Rape This study 2014 Inn.C NA Sub. armose P. Farmosa Vandee France Hemp LBPV 2017 Inn.C NA Sub. armose P. Farmosa Unkin Hemp LBPV 2017 Inn.C NA Sub. armose O. Carriara Unkin Braillower LBPV 2014 Inn.C NA O. Carriara O. Carriara Unkin Unkin LBPV Unkin LBPV NA O. Carriara O. carriara Vandee France Surflower Unkin LBPV Unkin LBPV NA O. Carriara O. carriara Vandee France Unkin LBPV Unkin LBPV NA O. Carriara O. carriara Unkin	22	P. ramosa	Charente-Maritime, France	Tobacco	LBPV	2012	trnL-B	rbcL-B	O. minor	O. minor
P. Famosa Authe Famos Celety This study 2013 NA NA P. Famosa Othate Famos Bape This study 2014 Inn.C NA sub. ramosas P. Famosa Authe, Famos Herp LBPV 2007 Inn.C NA sub. ramosas P. Famosa Authe, Famos Herp LBPV 2017 Inn.C NA sub. ramosas P. Famosa Unkn Herp LBPV 2017 Inn.C NA sub. ramosas O. Cumara Baut, Romaria Surflower LBPV 1046 NA O. Cumara O. Cumara Vacede, Famos Unkn LBPV 1046 NA O. Cumara O. comus Vacede, Famos Unkn LBPV 1046 NA O. Cumara O. comus Vacede, Famos Unkn LBPV 1046 NA O. Cumara O. comus Vacede, Famos Unkn NA NA O. Cumara O. comus Unkn	9	P. ramosa	Vendée, France	Rape	This study	2013	trnL- C	Ν Ν	sub. ramosae	P. ramosa
P. Famosa Charth-Marthine, France Rape This study 2014 Int-C NA sub, nanosea P. Famosa Varides, Frances Happ LBPV 2011 Int-C NA sub, nanosea P. Famosa Unkan Hamp LBPV 2017 Int-C NA sub, nanosea P. Famosa Unkan LBPV 2017 Int-C NA sub, nanosea P. campara D. Cumara LBLA, Pomaria Surfower Authors 2014 Int-A NA O. cumara O. cumara Hance Spalin Unkan LBPV 2014 Int-A NA O. cumara O. cumara Turcial Unkan LBPV 10% Int-A NA O. cumara O. cumara Turcial Unkan Unkan LBPV 10% Int-A NA O. cumara O. cumara Unkan Unkan LBPV 10% Int-A NA O. cumara O. central Unkan Unkan L	_	P. ramosa	Aube, France	Celeny	This study	2013	₹ Z	Α N	Ϋ́	NA A
P, atmosa Vendée, France Happ LBPV 2011 fruin-C NA sub-rancese P, rances Aubé, France Hamp LBPV 2001 fruin-C NA sub-rancese P, rances Israéle Unión Hamp LBPV 2011 nn-C NA sub-rancese O cumara Israéle Unión LBPV Unión LBPV NM NA O. cumara O cumara Haute-Garcine, France Unión LBPV Unión LBPV NM NA O. cumara O comus Lucial descrine, France Unión LBPV Unión LT-A BB NA O. cumara O comus Lucial descrine, France Unión LBPV Unión LT-A BB NA O. cumara O comus Lucial descrine, France Unión LBPV Unión LT-A BB NA O. comara O comus Lucial descripada Unión LBPV Unión LT-A BB NA O. comara	œ	P. ramosa	Charente-Maritime, France	Rape	This study	2014	trnL- C	N A	sub. ramosae	P. ramosa
Pramosa Aube, Frances Hemp LBPV 2007 fruin-C NA sub, rancesa P. amosa Uniden Hemp LBPV 2017 fruin-C NA No. Image O. cumana Demonsaria Surtifower LBPV Unid-A NA N. A NA O. cumana Demonsaria Surtifower LBPV Unid-A NA N. A NA N. A O. cumana Demonsaria Surtifower Unid-A Unid-A NA NA N. A N. A O. cumana Unidea, France Unid-A Unid-A NA N. A N. A O. comma Unidea, France Unid-A Unid-A NA N. A N. A O. comma Unidea Unid-A Unid-A N. A N. A N. A N. A O. comma Unidea Unid-A N. B N. A N. A N. A N. A O. comma Unidea Unidea Authors 2013 Hul-B	6	P. ramosa	Vendée, France	Rape	LBPV	2011	trnL- C	A	sub. ramosae	P. ramosa
Printinosa Unión Hemp LBPV 2011 Inn-C NA Aub. ratnosase O cumana Basájulizada lasaje Unión LBPV 2011 Inn-C NA NA Aub. O cumana C cumana Bazú Pamania Surflower Authors 2014 Inn-A NA O cumana O cumana Haute-Garonne, Frances Burllower Unkn LBPV Unkn Inn-A bis NA O cumana O camua Undrait Unkn LBPV Unkn LBPV Unkn Inn-A bis NA O cumana O camua Undrait Unkn LBPV Unkn LBPV NA O camua O camua Unkn Unkn LBPV Unkn LBPV NA O camua O camua Unkn Unkn LBPV Unkn Inn-B NA O camua O camua Unkn Unkn LBPV Unkn Inn-B O camua O camua Unkn <td>10</td> <td>P. ramosa</td> <td>Aube, France</td> <td>Hemp</td> <td>LBPV</td> <td>2007</td> <td>trnL- C</td> <td>Ν Ν</td> <td>sub. ramosae</td> <td>P. ramosa</td>	10	P. ramosa	Aube, France	Hemp	LBPV	2007	trnL- C	Ν Ν	sub. ramosae	P. ramosa
P. aegyptikaca Israél Unkor LBPV 2011 NA NA NA O. cumara Gumnoria Suntlover LBPV 104n Inth-A NA O. cumara O. cumara Coumara Suntlover Authors 2014 Inth-A NA O. cumara O. cumara Hatte-Carone, France Unkor LBPV 2009 Inth-A NA O. cumara O. cumara Hatte-Carone, France Unkor LBPV LMA Inth-A NA O. camara O. centua Unkor Unkor LBPV 2006 Inth-A bis NA O. camara O. centua Unkor Unkor LBPV 2014 Inth-A bis O. camara O. camara O. centua Unkor Unkor LBPV 2014 Inth-A bis O. camara O. camara O. minor Unkor Unkor Authors 2014 Inth-B bis O. camara O. camara O. minor Unkor Doker Authors </td <td>11</td> <td>P. ramosa</td> <td>Unkn</td> <td>Hemp</td> <td>LBPV</td> <td>2013</td> <td>trnL- C</td> <td>N A</td> <td>sub. ramosae</td> <td>P. ramosa</td>	11	P. ramosa	Unkn	Hemp	LBPV	2013	trnL- C	N A	sub. ramosae	P. ramosa
O cumman Bazu, Romania Sunflower LBPV Unkn Inn1-A NA O cumman O cumman Cumman Sunflower Authors Authors 1014 NA NA O cumman O cumman Verdée, France, Spain Unkn LBPV 1040 LBPV NA O cumman O cumman Verdée, France Unkn LBPV 1040 LBPV NA O cumman O comma Turdée Unkn LBPV 1040 LBPV NA O comman O coerna Luciantera, Spain Unkn LBPV 1040 NA O coerna O coerna Luciantera, Spain Unkn LBPV 1040 NA O coerna O coerna Unkn Verdée Authors 1041 Authors NA O coerna O minor Unkn Verdée Authors 1040 Botanical garden of Mursée 1041 NA NA A coernat O coernata Unkn Unkn Botani	12	P. aegyptiaca	Israël	Unkn	LBPV	2011	₹Z	A	Ϋ́	ΑN
Cumara Lambde-datume, Spain Sunflower Authors Authors 2014 IntA NA NA NA Cumara Haule-Satomas, France Sunflower Lamboar 2014 IntA NA O cumara Cumara Luchara Unkn LBPV 10kn IntA bis NA O cumara Cumara Lucia, Turkey Unkn LBPV 10kn IntA bis NA O cumara Comus Lucia Unkn Onhor LBPV 10kn NA O cumara O centua Lucia Unkn Onhor LBPV 10kn Na O centua O centua Lucia Unkn Onhor Authors 2014 IntB bis O mnor O minor Unkn Nin Botanical garden of Munser 10kn IntB IntB O mnor O minor Nindros Unkn Botanical garden of Zurich 10kn IntB IntB O centata O creatata Unkn	13	O. cumana	lazu, Romania	Sunflower	LBPV	Unkn	trnL- A	N A	O. cumana	O. cumana
0. cumana Haute-Garcine, Frances Sunflower Authors 2014 NA NA NA 0. cumana Vendée, Frances Unkn LBPV 0x09 mr. A bis NA 0. cumana 0. cemua Turcia, Turkey Unkn LBPV Unkn MA 0. cemua 0. cemua Lucainena, Spain Unkn LBPV 2006 mr. A bis NA 0. cemua 0. centua Unkn Unkn Unkn LBPV 2013 mr. A bis NA 0. centua 0. centua Unkn Unkn Unkn Authors 2013 mr. B nxb-LB 0. minor 0. minor Unkn Unkn LBPV 2013 mr. B nxb-LB 0. minor 0. minor Unkn Unkn Botanical garden of Munster 1987 mr. B nxb-LB 0. minor 0. minor Unkn Unkn Botanical garden of Munster 1987 mr. B nxb-LB 0. minor 0. coresta Unkn U	14	O. cumana	Carmona, Spain	Sunflower	Authors	2014	trnL- A	Ν Ν	O. cumana	O. cumana
O cumana Vendée, France Unkn LBPV 2009 trnL-A NA O cumana O comusa Turcia, Turkey Unkn LBPV Unkn trnL-A bis NA O camusa O central Lucainena, Spain Unkn LBPV 2006 trnL-A bis NA O camusa O, central Lucainena, Spain Unkn LBPV 2016 trnL-A bis NA O central O, central Unkn Chickpea LBPV 2014 trnL-B NA O central O, minor Unkn Unkn LBPV 2013 trnL-B rbcL-B O minor O, minor Unkn Unkn Botencal graden of Munster 2014 trnL-B rbcL-B O minor O, minor O, minor Unkn Botanical graden of Munster 2014 trnL-B rbcL-B O minor O, minor O, minor Unkn Botanical graden of Munster 1995 trnL-B rbcL-B O minor O, constate Unkn	15	O. cumana	Haute-Garonne, France	Sunflower	Authors	2014	₹Z	N A	Ϋ́	Ϋ́
Comman Tuncia, Tunkey Unkn LBPV Unkn tmL-A bis NA O cumans 0 centua Locenua Lucianena, Spain Unkn LBPV Ninh tmL-A bis NA O centua 0 centua Lucianena, Spain Unkn LBPV Ninh tmL-A bis NA O centua 0 centua Unkn O indicpas LBPV Ninh tmL-A bis NA O centua 0 minor Unkn Unkn Authors 2014 tmL-B rbC-B O minor 0 minor Unkn O minor Authors Authors 2014 tmL-B rbC-B O minor 0 minor Unkn Unkn Authors 2014 tmL-B rbC-B O minor 0 minor Unkn Unkn Botanical garden of Munster 1995 tmL-B rbC-B O centual 0 centual Unkn Unkn Botanical garden of Examschweig 1994 rbC-B O centual 0 centual Unkn Un	16	O. cumana	Vendée, France	Unkn	LBPV	2009	trnL- A	A	O. cumana	O. cumana
O. centua Israél Unkn LBPV Unkn LBPV NA O. centua O. centua Lucainera, Spain Unkn LBPV 2006 frth-A bis NA O. centua O. centua Lucainera, Spain Unkn Chickpaa LBPV 0.06 frth-A bis NA O. centua O. checida Tunisa Chickpaa LBPV 0.013 frth-B nb. O. centua O. minor Vendée, France Clover Authors 2013 frth-B nb. O. minor O. minor Usunomiya, Japan Unkn Clover Authors 2014 frth-B nb. O. minor O. minor Unkno O. centual Ninha Botanical garden or Munster 2014 frth-B nb. O. cental O. centata Unkn Unkn Botanical garden or Grants 1994 nb. nb. O. cental O. centata Unkn Unkn Botanical garden or Grants 1997 nb. nb. O. cental<	17	O. cumana	Turcia, Turkey	Unkn	LBPV	Unkn	trnL- A	Υ	O. cumana	O. cumana
O. Centual Lucainena, Spain Unkn LIBPV 2006 trnL-A bis NA O. centua O. Koetda Unkn Chickpea LIBPV Unkn Tun1-B NA O. foetda O. Koetda Unkn Unkn Authors 2014 trnL-B rtnL-B ChCL-B O. finor O. minor Usunomiya, Japan Unkn LABV 2013 trnL-B rtnL-B ChCL-B O. minor O. minor Usunomiya, Japan Unkn Clover Authors 2014 trnL-B rtnL-B rtnL-B O. minor O. minor Uninor Oxer Authors 2014 trnL-B rtnL-B O. minor O. minor Uninor Unkn Botanical garden of Munster 1995 trnL-B rtnL-B O. minor O. crenata Unkn Unkn Unkn Botanical garden of Munster 1997 trnL-B rtnL-B O. crenata O. crenata Unkn Unkn Unkn Unkn Manna Aut	9	O. cemua	Israël	Unkn	LBPV	Unkn	trnL- A bis	Υ	O. cernua	O. cernua
O. feetida Unkon Chickpea LBPV Unkon InnL-D NA O. foetida O. friedrida Unkon Unkon Unkon Authors 1987 frnL-B rnd-B O. minor O. minor Unkon Unkon LBPV 2013 frnL-B rbcL-B O. minor O. minor Usanomiya, Japan Unkon Unkon Authors 2014 frnL-B rbcL-B O. minor O. minor Unkon Unkon Unkon Authors 1995 frnL-B rbcL-B O. minor O. minor subsp. maritima Unkon Unkon Muknos Dukno Authors 1987 frnL-B rbcL-B O. minor O. crenata Unkon Unkon Botanical garden of Munster 100-B rbcL-B rbcL-B O. crenata O. crenata Unkon Unkon Unkon Botanical garden of Saunschweig 1994 rhcL-B rbcL-A O. crenata O. crenata Unkon Unkon Unkon Munkon <td>19</td> <td>O. cemua</td> <td>Lucainena, Spain</td> <td>Unkn</td> <td>LBPV</td> <td>2006</td> <td>trnL- A bis</td> <td>Ν Ν</td> <td>O. cernua</td> <td>O. cernua</td>	19	O. cemua	Lucainena, Spain	Unkn	LBPV	2006	trnL- A bis	Ν Ν	O. cernua	O. cernua
0. foetida Tunisia Chickpea LBPV 2014 frun- D NA O. foetida 0. minor Uninor Unkn Authors 2013 frun- B fruch-B O. minor 0. minor Usunomiya, Japan Unkn LBPV 2013 frun- B rbc-B O. minor 0. minor Usunomiya, Japan Unkn Authors 2014 frun- B rbc-B O. minor 0. minor Usunomiya, Japan Olover Authors Authors 2014 frun- B rbc-B O. minor 0. minor O. minor Olover Authors Mathors frun- B rbc-B O. minor 0. minor substantatima Unknest, Unknes Unkn Botanical garden of Braunschweig 2001 frun- B rbc-B O. minor 0. crenata Unkn Unkn Botanical garden of Braunschweig 1997 frun- B rbc-A O. crenata 0. crenata Unkn Unkn Botanical garden of Braunschweig 1997 frun- B rbc-A	20	O. foetida	Unkn	Chickpea	LBPV	Unkn	trnL- D	Α N	O. foetida	O. foetida
O minor Unkn Jukn Authors 1987 tnL-B rbcL-B O minor O minor Usunomiya, Japan Unkn LBPV 2013 tnL-B rbcL-B O minor O minor Usunomiya, Japan Unkn Authors 2014 tnL-B rbcL-B O minor O minor O minor Code-d'Or, France Clove Authors 2014 tnL-B rbcL-B O minor O minor Uninor Unkn Unkn Botanical garden of Munster 1987 tnL-B rbcL-B O minor O minor subsp. maritima Meknes, Morocco Peas Unkn Botanical garden of Munster 2007 tnL-B rbcL-B O minor O creatata Unkn Unkn Unkn Botanical garden of Braunschweig 1994 rhc-B rbcL-A O creatata O creatata Unkn Unkn Botanical garden of Braunschweig 1997 rhc-B rbcL-A O creatata O creatata Unkn Unkn Botanical garden of Brainestal garden	21	O. foetida	Tunisia	Chickpea	LBPV	2014	trnL- D	N A	O. foetida	O. foetida
O minor Vendeé, France Clover Authors 2013 trnL-B rbcL-B O. minor O minor Usunomiya, Japan Unkn LBPV 2014 trnL-B rbcL-B O. minor O minor O. minor Córed-d'Or, France Clover Authors 2014 trnL-B rbcL-B O. minor O. minor Nienberge, Germany Unkn Unkn Botanical garden of Munster 1987 trnL-B rbcL-B O. minor O. minor Unkn Unkn Unkn Botanical garden of Munster 2001 trnL-B rbcL-B O. minor O. creata Unkn Unkn Unkn Botanical garden of Braunschweig 2007 trnL-B rbcL-A O. creata O. creata Unkn Unkn Botanical garden of Braunschweig 1997 trnL-B rbcL-A O. creata O. creata Unkn Unkn Unkn Botanical garden of Zurich 1997 trnL-B rbcL-A O. creata O. hederae Maine-et-Lorie, France <t< td=""><td>22</td><td>O. minor</td><td>Unkn</td><td>Unkn</td><td>Authors</td><td>1987</td><td>trnL- B</td><td>rbcL-B</td><td>O. minor</td><td>O. minor</td></t<>	22	O. minor	Unkn	Unkn	Authors	1987	trnL- B	rbcL-B	O. minor	O. minor
O. minor Utsunomiya, Japan Unkn LBPV 2013 trnL-B rbcL-B O. minor O. minor O. minor O. minor O. minor Cote-d'Or, France Clover Authors 2014 trnL-B trnL-B Chcl-B O. minor O. minor O. minor Unkn Unkn Unkn Muthors LBPV 2001 trnL-B trnL-B O. minor O. cenata Weknes, Morocco Peas LBPV 2001 trnL-B rbcL-B O. minor O. cenata Ariana, Tunisia Unkn Unkn Botanical garden of Braunschweig 2007 trnL-B rbcL-B O. crenata O. cenata Unkn Unkn Botanical garden of Braunschweig 1994 NA NA NA O. cenata Unkn Unkn Botanical garden of Zurich 1997 trnL-B rbcL-A O. crenata O. rederate Unkn Unkn Unkn Authors Authors NA NA NA O. rederate <td< td=""><td>23</td><td>O. minor</td><td>Vendée, France</td><td>Clover</td><td>Authors</td><td>2013</td><td>trnL- B</td><td>rbcL-B</td><td>O. minor</td><td>O. minor</td></td<>	23	O. minor	Vendée, France	Clover	Authors	2013	trnL- B	rbcL-B	O. minor	O. minor
O minor Maine-et-Loire, France Clover Authors 2014 tnL-B tnL-B tbCl-B O. minor O. minor O. minor O. minor Unkn Unkn Botanical garden of Munster 1985 tnrL-B rbCl-B O. minor O. minor subsp. martima Unkn Unkn Authors 1987 tnrL-B rbCl-B O. minor O. crenata Meknes, Morocco Peas LBPV 2001 tnrL-B rbCl-B O. crenata O. crenata Aniana, Tunisia Unkn Unkn Botanical garden of Braunschweig 1994 NA NA-DCL-A O. crenata O. crenata Unkn Unkn Botanical garden of Zuirch 1997 tnrL-B rbcL-A O. crenata O. rederae Unkn Unkn Unkn Authors NA NA NA O. crenata O. rederae Maine-et-Loire, France Olimber Olimber Authors 2012 tnrL-B rbcL-C O. rederae O. rederae Maine-et-Loire, France <td>24</td> <td>O. minor</td> <td>Utsunomiya, Japan</td> <td>Unkn</td> <td>LBPV</td> <td>2013</td> <td>trnL-B</td> <td>rbcL-B</td> <td>O. minor</td> <td>O. minor</td>	24	O. minor	Utsunomiya, Japan	Unkn	LBPV	2013	trnL-B	rbcL-B	O. minor	O. minor
O minor Côte-d'Or, France Clover Authors 2014 trnL- B rbcL-B O. minor O minor O minor Unkn Unkn Authors 1987 trnL- B rbcL-B O. minor O crenata Unkn Unkn LBPV 2007 trnL- B rbcL-A O. crenata O crenata Ariana, Tunisia Unkn Unkn Botanical garden of Braunschweig 1994 rbcL-A O. crenata O crenata Unkn Unkn Botanical garden of Zurich 1997 trnL- B NA NA O hederae Unkn Unkn Authors 1987 trnL- B Na NA O hederae Maine-et-Loire, France Climber Climber Authors 2012 trnL- B rbcL-G O. hederae O. hederae Maine-et-Loire, France Climber Climber Authors 2012 trnL- B rbcL-G O. hederae	25	O. minor	Maine-et-Loire, France	Clover	Authors	2014	trnL- B	rbcL-B	O. minor	O. minor
O. minor Nienberge, Germany Unkn Botanical garden of Munster 1987 trnL- B rbcL-B O. minor O. minor subsp. maritima Unkn Unkn LBPV 2001 trnL- B rbcL-A O. creata O. creata Ariana, Tunisia Unkn Unkn Botanical garden of Braunschweig 1994 NA NA NA O. creata Unkn Unkn Botanical garden of Braunschweig 1997 trnL- B rbcL-A O. creata O. hederae Unkn Unkn Botanical garden of Zurich 1997 trnL- B rbcL-A O. creata O. hederae Maine-et-Loire, France Climber Authors 2012 trnL- B rbcL-A O. hederae O. hederae Maine-et-Loire, France Olimber Authors 2012 trnL- B rbcL-C O. hederae	56	O. minor	Côte-d'Or, France	Clover	Authors	2014	trnL-B	rbcL-B	O. minor	O. minor
O. minor subsp. maritima Unkn Unkn Authors TrnL-B trnL-B rbcL-B O. creata O. creata O. creata Unkn Unkn Botanical garden of Braunschweig 1994 NA NA NA O. creata Unkn Unkn Botanical garden of Braunschweig 1997 trnL-B rbcL-A O. creata O. creata Unkn Unkn Botanical garden of Braunschweig 1997 trnL-B rbcL-A O. creata O. hederae Unkn Unkn Authors NA NA NA NA O. hederae Maine-et-Loire, France Climber Climber Authors 2012 trnL-B rbcL-C O. hederae O. hederae Maine-et-Loire, France Climber Authors 2012 trnL-B rbcL-C O. hederae	27	O. minor	Nienberge, Germany	Unkn	Botanical garden of Munster	1995	trnL-B	rbcL-B	O. minor	O. minor
O. crenata Meknes, Morocco Peas LBPV 2001 trnL- B rbcL-A O. crenata O. crenata Unkn Unkn Botanical garden of Braunschweig 1994 NA NA NA O. crenata Unkn Unkn Unkn Authors 1987 trnL- B rbcL-A O. crenata O. hederae Unkn Unkn Authors Authors 2012 trnL- B rbcL-A O. hederae O. hederae Maine-et-Loire, France Olimber Olimber Authors 2012 trnL- B rbcL-C O. hederae O. hederae Maine-et-Loire, France Olimber Olimber Authors 2014 trnL- B rbcL-C O. hederae	28	O. minor subsp. maritima	Unkn	Unkn	Authors	1987	trnL-B	rbcL-B	O. minor	O. minor
O. crenata Aniana, Tunisia Unkn Unkn Botanical garden of Braunschweig 1994 NA NA NA O. crenata Unkn Unkn Botanical garden of Zurich 1997 trnL- B rbcL-A O. crenata O. hederae Unkn Unkn Unkn Authors NA NA NA O. hederae Maine-et-Loire, France Climber Climber Authors 2012 trnL- B rbcL-C O. hederae O. hederae Maine-et-Loire, France Climber Authors 2014 trnL- B rbcL-C O. hederae	29	O. crenata	Meknes, Morocco	Peas	LBPV	2001	trnL- B	rbcL-A	O. crenata	O. crenata
O. crenata Unkn Dotanical garden of Braunschweig 1994 NA NA NA O. crenata Unkn Unkn Botanical garden of Zurich 1997 trnL- B rbcL-A O. crenata O. hederae Unkn Unkn Vulhors Authors 2012 trnL- B rbcL-C O. hederae O. hederae Maine-et-Loire, France Climber Authors 2012 trnL- B rbcL-C O. hederae O. hederae Maine-et-Loire, France Climber Authors 2014 trnL- B rbcL-C O. hederae	30	O. crenata	Ariana, Tunisia	Unkn	LBPV	2007	trnL- B	rbcL-A	O. crenata	O. crenata
O. crenata Unkn Unkn Botanical garden of Zurich 1997 trnL- B rbcL-A O. crenata O. hederae Unkn Unkn Authors 1987 NA NA NA O. hederae Maine-et-Loire, France Climber Climber Authors 2012 trnL- B rbcL-C O. hederae O. hederae Maine-et-Loire, France Climber Authors 2014 trnL- B rbcL-C O. hederae	31	O. crenata	Unkn	Unkn	Botanical garden of Braunschweig	1994	Ϋ́Z	N A	ΑN	N A
O. hederae Unkn Unkn Authors Authors 1987 NA NA NA O. hederae Maine-et-Loire, France Climber Authors 2012 trnL- B rbcL-C O. hederae O. hederae Maine-et-Loire, France Climber Authors 2014 trnL- B rbcL-C O. hederae	32	O. crenata	Unkn	Unkn	Botanical garden of Zurich	1997	trnL- B	rbcL-A	O. crenata	O. crenata
O. hederaeMaine-et-Loire, FranceClimberAuthorsAuthors2012trnL- BrbcL-CO. hederaeO. hederaeMaine-et-Loire, FranceClimberAuthors2012trnL- BrbcL-CO. hederae	33	O. hederae	Unkn	Unkn	Authors	1987	₹ Z	Ν Α	Ϋ́Z	Ϋ́
O. hederae Maine-et-Loire, France Climber Authors 2012 trnL- B rbcL-C O. hederae O. hederae Maine-et-Loire, France Climber Authors 2014 trnL- B rbcL-C O. hederae	34	O. hederae	Maine-et-Loire, France	Climber	Authors	2012	trnL-B	rbcL-C	O. hederae	O. hederae
O. hederae Maine-et-Loire, France Climber Authors 2014 trnL- B rbcL-C O. hederae	35	O. hederae	Maine-et-Loire, France	Climber	Authors	2012	trnL- B	rbcL-C	O. hederae	O. hederae
	36	O. hederae	Maine-et-Loire, France	Climber	Authors	2014	trnL-B	rbcL-C	O. hederae	O. hederae

å	Visual identification	Country (region)	Crop	Collector	Date	High r	High resolution melting (HRM)	elting (HRM)	Sequencing
						trnL	rbcL	Identification	Identification
37	O. hederae	Finistère, France	Unkn	LBPV	1993	trnL- B	rbcL-C	O. hederae	O. hederae
38	P. purpurea	La palma, Spain	Unkn	Botanical garden of Zurich	Unkn	trnL-B	rbcL-C	O. hederae	O. hederae
33	O. flava	Unkn	Aconitum variegatum	Botanical garden of Zurich	Unkn	trnL-B	rbcL-C	O. hederae	O. hederae
40	O. picridis	Yvelines, France	Unkn	Authors	2014	trnL-B	Z	Z	minores spp
41	O. artemisia campestris	Maine-et-Loire, France	Unkn	Authors	2014	trnL-B	Z	Z	minores spp
42	O. alsatica	Binn, Switzerland	Peucedanum cervaria	Botanical garden of Zurich	Unkn	Z	Ν	Z	Z
43	O. alsatica	Unkn	Unkn	Botanical garden of Frankfurt	2012	trnL-B	Z	Z	O. bartlingii
44	P. arenaria	Indre-et-Loire, France	Unkn	Botanical garden of Nantes	Unkn	Z	NA	Z	P. arenaria
45	O. laevis	Lax, Switzerland	Artemisia campestris	Botanical garden of Zurich	Unkn	Z	Ν	Z	P. arenaria
46	O. lucorum	Unkn	Berberis vulgaris	Botanical garden of Zurich	Unkn	Z	ΑN	Z	O. lucorum
47	O. gracilis	Haute-Savoie, France	Unkn	Botanical garden of Alpin	Unkn	Z	ΑN	Z	O. gracilis
48	O. caryophyllacea	Binn, Switzerland	Galium spec.	Botanical garden of Zurich	Unkn	Z	NA	Z	Z
49	P. mutelii	Australia	Unkn	LBPV	Unkn	trnL-C	Α	sub. ramosae	P. mutelii
20	P. mutelii	Mannum south, Australia	Unkn	LBPV	2002	trnL- C	Ϋ́	sub. ramosae	P. mutelii
NA, nc	NA, not amplified; NI, not identified; Unkn, unknown.	Jnkn, unknown.							

is the ability to obtain enough DNA from seeds weighing an average of 5 μg in a reproducible manner. To this end, each seed was crushed between two microscopy glass slides in presence of 2 μl of ultrapure water and seed tissues were then collected in a microtube. In order to maximize the amount of collected DNA, the slides were rinsed with 400 μl of PL1 extraction buffer (Macherey–Nagel) and the rinse collected in the microtube. Total DNA extraction was then performed using the NucleoSpin® Plant II commercial kit (Macherey–Nagel) following the manufacturer's instructions (filtration columns were not used). A control of the quantity and quality of the extracted DNA was performed using a NanoVueTM Spectrophotometer (GE Healthcare).

Sequencing

Thanks to previous studies on plastid genome sequences in broomrapes (Wicke et al., 2013; unpublished results), sequences corresponding to eight plastid genes (*rbcL*, *rps7*, *rps11*, *rpl36*, *rpl16*, *trnQ*, *trnL*, and *rrn23*) and one nuclear region (ITS) were obtained for the eight studied species. Sequences were aligned using the default alignment algorithm of Geneious v5.6.4. Two markers showing significant sequence divergence among the eight species were selected for subsequent HRM experiments: trnL and rbcL.

To design HRM primers and to control the identification of the species, pseudogenes *trn*L and *rbc*L were amplified and sequenced, respectively, using the primers (i) trnL C (F) and trnL HRM R, (ii) 1F and 1352R (**Table 2**). Amplification was performed on 5 μl of single seed total DNA extract, by 1 U of AmpliTaq Gold® (Life Technologies), in a total volume of 40 μl at the final concentration of 1X of the appropriate Buffer II, 0.3 μM of each primer, 1.5 mM of MgCl₂, and 0.2 mM of dNTP. PCR conditions were adjusted as follow, an initial denaturation of 10 min at 95°C, 40 cycles of 30 s at 95°C, 15 s at 58°C, and 1 min at 72°C, and a final extension of 10 min at 72°C. After migration in a 1.5% agarose gel at 180 V for 45 min and ethidium bromide staining, PCR products were visualized under UV light. Purification and sequencing of the PCR products was provided by Genoscreen.

Primer Design

Obtained sequences were aligned using the default alignment algorithm of Geneious v5.6.4 (some alignments are provided as **Supplementary Images 1** and **2**). Conserved regions and potential markers were identified visually. To achieve HRM identification of the species, primers surrounding the selected markers were designed using primer 3¹ with an estimated melting temperature of 60°C (**Table 2**). According to the tested species, the designed primers surround fragments of 315–463 bp for *trnL* and 345–389 bp for *rbcL*.

High Resolution Melting Analysis

HRM reactions were performed on 5 μ l of single seed DNA extract, in a total volume of 20 μ l, using the MeltDoctor Master mix (Life technologies) on a StepOnePlus instrument (Applied

TABLE 1 | Continued

¹http://primer3.ut.ee/

TABLE 2 | Primers used for amplification, sequencing, and HRM.

Target	Name	Sequence (5'-3')	Source	Purpose
trnL	trnL C (F)	CGAAATCGGTAGACGCTACG	Taberlet et al., 1991	PCR and sequencing
	trnL HRM R	GGGGATAGAGGGACTTGAACC		
rbcL	1F	ATGTCACCACAAACAGAAAC	Manen et al., 2004	PCR and sequencing
	1352R	CAGCAACTAGTTCAGGRCTCC		
trnL	trnL-Z1-F	CGGTAGACGCTACGGACTTA	This study	HRM
	trnL-Lg-2R	ATGGGACTCTATCTTTATTCTC		
rbcL	rbcL-lg-1-F	AACCTGAAGTTCCGCCTGAA	This study	HRM
	rbcL-Z2-R	AGTACATCCCAACAGGGGAC		

Biosystems) following the manufacturers recommendations. TrnL pseudogene was amplified using the primers trnL-Z1-F and trnL-lg-2R at the final concentration of 0.2 μ M, rbcL by the primers rbcL-lg-1-F and rbcL-Z2-R at the final concentration of 0.15 μ M (**Table 2**). PCR conditions were adjusted as follow, an initial denaturation of 10 min at 95°C, 45 cycles of 15 s at 95°C, and 1 min at 60°C, a complete denaturation of 10 s at 95°C, 1 min at 60°C, and a continuous melt rising from 60 to 90°C with 0.3% temperature increment every 15 s.

Each extract was run in duplicate, in the presence of the usual positive, negative and process controls and in the presence of reference materials used for HRM profiles analysis. One reference material is required for each HRM profile. These reference materials were previously prepared by extraction of identified seeds using the described protocol and control of the species by sequencing.

Considering the real-time amplification results, only the samples providing cycle threshold (C_t) values below 35 were considered for HRM results analysis. Analysis of the melting profiles was performed using High Resolution Melt Software v3.0 (Applied Biosystems).

RESULTS

DNA Extraction from Single Seeds

A simple methodology was developed to crush individual seeds between two microscopy glass slides and extract total DNA from this crushed material. For the 50 seed lots tested (**Table 1**), extractions and amplifications were performed separately from two single seeds. DNA concentration of the obtained extracts was too low to be measured using a Nanovolume spectrophotometer. For seed lots number 22, 29, 30, and 37, only one of the extracts allowed a proper amplification. For lots number 7, 12, 15, 31, and 33, respectively, harvested in 2013, 2011, 2014, 1994, and 1987, it was not possible to obtain any amplification. For these five last seed lots, single seed extraction was performed on two more seeds with the similar results. The failure of these seed batches was not species-specific associated. The viability of the different seed lots was not assessed.

Species Identification

For the selected markers trnL and rbcL, respectively, 9 and 11 primer pairs were designed and evaluated for their ability

to provide a suitable assay. Results obtained with the best primers are reported. HRM primers were first selected according to their ability to differentiate the eight target species by providing distinct HRM profiles. Discrimination between species was possible because of sequence divergences (SNP and indel) between the amplicons. Targeted species show five different profiles when considering the high resolution melt curves of the trnL PCR product (Figure 1A). O. cumana, O. cernua, and O. foetida are easily identified using this HRM marker since each of these species is the only one associated with a profile (respectively, red, orange, and yellow). O. crenata, O. minor, and O. hederae are associated with the blue profile. They can be then differentiated from other species but not from each other. The same goes for species P. ramosa and P. aegyptiaca associated with the green profile. Among the eight species considered, the rbcL primers amplify only O. crenata, O. minor, and O. hederae. PCR products obtained from these three species show distinct and identifiable HRM profiles (respectively, red, blue, and green; Figure 1A). Considering the obtained results, an identification key is proposed to facilitate the analysis of the results (**Table 3**).

The second primers selection criterion was the consistency of the profiles between lots belonging to the same species. Amplification and HRM were performed on single seed DNA extracts obtained from the 37 (out of 50) available seed lots belonging to the eight targeted species (**Table 1**). **Figure 1B** presents the aspect of the obtained melting curve for the *trn*L and *rbc*L PCR products. Considering raw (not shown) or derivated melt curves, profiles obtained from samples of identical species show some variability. However, for identical profiles, when considering the aligned melt curves of both *trn*L and *rbc*L, the highest relative standard deviation of measured melting temperatures is 3.3%. The different profiles presented above are consistently reproduced between samples of identical species.

Specificity of the Assay

Besides the ability of HRM primers to discriminate among weedy broomrape species, both trnL and rbcL primer pairs amplified single seed DNA extracts obtained from additional 13 seed lots initially identified based on morphological characteristics of adult plant as belonging to eight wild *Orobanche* species and three wild *Phelipanche* species (**Table 1**; **Figure 1C**). Among the 11 wild species, nine showed original non-identified profiles (NI) which could be easily distinguished from the profiles of the weedy species. Samples 38 and 39, respectively, declared in

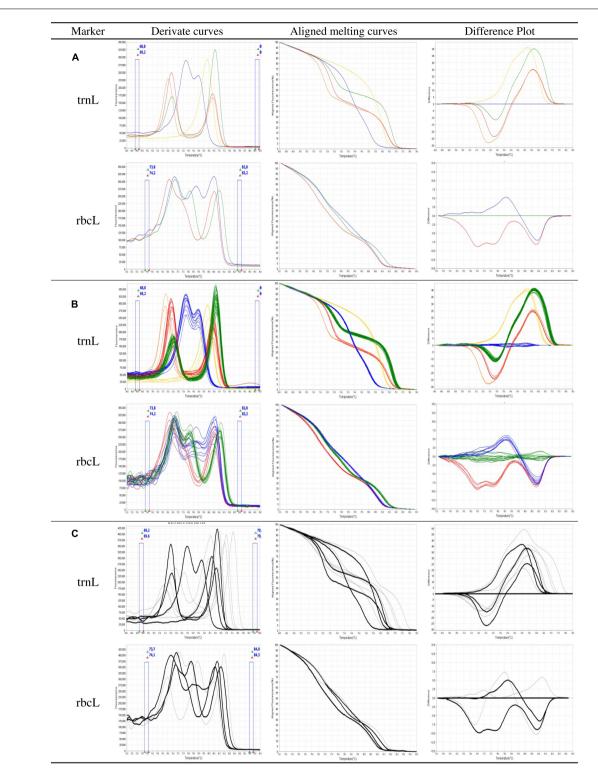


FIGURE 1 | High resolution melting (HRM) analysis of broomrape single seeds for the markers trnL and rbcL. (A) Ability of the assay to differentiate the targeted species as different profiles (i) trnL marker: red = Orobanche cumana; orange = O. cemua; blue = O. crenata, O. minor, or O. hederae; green = ramosae clade; yellow = O. foetida; (ii) rbcL marker: red = O. crenata; blue = O. minor; green = O. hederae. (B) Consistency of the profiles between samples of a same species. (C) Specificity of the assay, curves in black correspond to the targeted species, while curves in gray correspond to other tested species. Derivate, aligned melting curves, and difference plots correspond to three representations of the same data: aligned melting curves have been normalized by eliminating fluorescence variance out of the melt regions; difference plots are achieved by subtracting the normalized fluorescence data of a user-defined genotype from that of each of the other samples in the HRM analysis.

collection records as *P. purpurea* and *O. flava* were identified as *O. hederae* by HRM analysis. Samples 49 and 50 initially declared in collection records as *P. mutelii* show the same trnL profile than *P. ramosa* and *P. aegyptiaca*.

To control the identification made by HRM, sequencing of the pseudogenes trnL and rbcL was performed on all the analyzed DNA extracts. Sequences were submitted to GenBank and are available with accession numbers KX539159-KX539172. Comparison of the HRM and sequencing interpretations is presented in Table 1. Concerning the targeted species, results show a 100% match between interpretations obtained using both techniques. Furthermore, all the samples identified as non-target by sequencing are designated as non-identifiable by HRM. It is interesting to note that identifications performed by sequencing are not always consistent with primary identification based on visual criteria. For samples 38 and 39 visually identified as O. purpurea and O. flava, HRM identifications as O. hederae are consistent with sequencing results, suggesting that the HRM identification is correct and that the initial morphological identification failed. Sequencing confirmed the visual identity of the samples 49 and 50 as P. mutelii. HRM profile common to P. ramosa and P. aegyptiaca is therefore not specific to these two species but also includes close species.

Reproducibility of the Assay

The HRM profiles obtained with the trnL and rbcL primers can be considered as complex. Furthermore, reading a melting profile is performed by an analyst and is somehow subjective. To question the transferability of the technique, 20 seed lots have been analyzed by three analysts in two different laboratories (GEVES and Terres Inovia). Each analyst performed the experiment on one single seed of each seed lot. Obtained results are shown in **Table 4**. For 7 out of the 20 seed lots tested, at least one extraction did not allow the amplification. When DNA was properly extracted and amplified, obtained results were in accordance except in the cases of lots 13 and 16. In one case out of three, profiles associated with these seed lots of ramosae had the correct aspect but a different melting temperature and were noted as non-identified. These differences of melting temperature

TABLE 3 | Correspondence between HRM profiles obtained using the trnL and rbcL markers and broomrape species.

trnL	rbcL	Species
Red	NA	O. cumana
Orange	NA	O. cernua
Blue	Red	O. crenata
Blue	Blue	O. minor
Blue	Green	O. hederae
Green	NA	ramosae clade
Yellow	NA	O. foetida
NI	NA or NI	Unkn
NA	NA or NI	Unkn

NA, not amplified; NI, not identified; Unkn, unknown.

were consistently reproduced, however, sequencing of trnL PCR products showed no difference of sequence between these extracts and others. Excluding the failure of proper DNA extraction on some seeds, the reproducibility of the assay (defined as the percentage of agreements between two identifications performed on a same seed lot) is of 90.9%.

DISCUSSION

Seed producers may face contaminations of their crop seed lots by seeds of noxious broomrapes. In case of trading, they require international seed lot certificates provided by official seed testing stations. This is mainly carried out through analysis of specific purity of seed lots. However, if this analysis can identify seed lots containing broomrape seeds, it cannot allow a clear identification of the parasite species. Indeed, broomrape species identification can be achieved thanks to seed coat morphological features observed under microscopy (Joel, 1987; Abu Sbaih and Jury, 1994), but this approach is extremely difficult even for trained botanists and requires an extensive expertise usually not available in most laboratories. Molecular markers such as ITS, ISSR, plastid genes, or RAPD were developed for identification of broomrape species, but all required large amount of seeds incompatible with an isolation of few seeds from a specific purity analysis. Thus, protocols allowing DNA extraction from broomrape single seed

TABLE 4 | Data of reproducibility generated by three analysts on 20 seed lots, each analyst analyzing one single seed of each lot.

Seed lot	Analyst				
namboi	1	2	3		
1	ramosae clade	ramosae clade	ramosae clade	3/3	
2	ramosae clade	ramosae clade	ramosae clade	3/3	
3	ramosae clade	NI	ramosae clade	1/3	
4	ramosae clade	ramosae clade	ramosae clade	3/3	
6	NI	ramosae clade	ramosae clade	1/3	
11	ramosae clade	ramosae clade	ramosae clade	3/3	
13	O. cumana	NA	O. cumana	1/1	
15	NA	NA	O. cumana	0/0	
18	O. cernua	NA	O. cernua	1/1	
20	O. foetida	O. foetida	O. foetida	3/3	
21	O. foetida	O. foetida	O. foetida	3/3	
24	O. minor	O. minor	O. minor	3/3	
29	O. crenata	O. crenata	O. crenata	3/3	
32	O. crenata	O. crenata	NA	1/1	
35	O. hederae	O. hederae	O. hederae	3/3	
37	O. hederae	NA	O. hederae	1/1	
38	O. hederae	O. hederae	O. hederae	3/3	
44	NI	NI	NI	3/3	
46	NA	NI	NA	0/0	
48	NI	NI	NA	1/1	
				90.9%	

NA, not amplified; NI, not identified; Rep, reproducibility defined as the percentage of agreements between two identifications performed on a same seed lot (absence of amplifications have been excluded of the calculation).

were developed (Portnoy et al., 1997; Osterbauer and Rehms, 2002) and used with RAPD markers (Katzir et al., 1996). Seeds of five different species could be identified using these methods: *P. aegyptiaca*, *P. ramosa*, *O. cernua*, *O. cumana*, and *O. crenata*.

The protocol developed in this study is the first work describing the application of HRM curve analysis for differentiation of broomrape species. Compared to previous technologies, the proposed protocol and markers allow to extend the identification spectrum since it was able to differentiate between eight species, the five above mentioned plus *O. foetida*, *O. hederae*, and *O. minor*. The sequences of the root parasitic plants used in this study present variation generating divergences in the HRM patterns. Deletions, insertions, and several SNPs are responsible for the differences in the observed melting curves between the different species amplicons. The two plastid genes, *rbcL*, and *trnL*, have been already used as HRM markers for identification of plants (Madesis et al., 2012; Osathanunkul et al., 2015).

By using the HRM technology and by targeting plastid sequences, it was then possible to develop a simple, reliable, and cost effective assay to identify the seven main weedy species of broomrape potentially found in crop seed lots. In addition, it allows discrimination between these weedy species and 12 species lacking agronomic interest. The high level of divergence between species in the targeted sequences provided more complex profiles than for HRM assays targeting SNP (Toi and Dwyer, 2008) or microsatellites (Mackay et al., 2008). However, in most cases, DNA extracted from single seeds allowed a proper amplification and profiles could be identified by the analyst by comparison with the reference materials introduced in each experiment. On 45 amplified samples, the assay provided results perfectly matching with sequencing. The technique was used by several analysts in two laboratories using different HRM-capable real-time PCR machine and visual analysis of the HRM profiles. In these conditions, the technique shows a reproducibility of 90%. This rate of reproducibility is higher than the one received with RAPD markers, known to be weakly reproducible when employed in different laboratories with different PCR apparatus (Jones et al., 1997). The described assay will make then reliable identification much easier for any diagnostic or research purpose. It is also a fast close tube method not requiring post-PCR manipulation such as DNA gel electrophoresis like in RAPD analysis.

However, the success of the developed assay depends on the concentration and/or quality of the extracted DNA. Indeed for some seed lots it was not possible to reach the minimal concentration and/or quality from some tested seeds or even from any of the tested seeds. HRM technique also requires homogenous DNA extract compositions among samples to compare. Composition may indeed impact the melting temperature of the amplification products. By extracting DNA from single seeds, extracts are relatively homogeneous. However, during the evaluation of the reproducibility, some profiles showed the expected melting profile but with a different melting

temperature. In a seed lot, heterogeneity of the seeds may therefore occasionally be an issue for profiles comparison.

Using the identified plastid targets, it was not possible to differentiate the species of the taxonomically difficult ramosa aggregate (*P. mutelii*, *P. ramosa*, and *P. aegyptiaca*) referred to as *ramosae clade*. Further development of the assay by adding a third marker could provide the ability to differentiate species in the ramosa aggregate. If a species identification is necessary after a *ramosae clade* or a NI result, the product obtained after the HRM amplification and denaturation can be used for sequencing as any regular PCR product.

The development of an assay able to identify broomrape species from single seeds allows testing of seeds found in commercial seed lots but also identification of mature plants from the field. Broomrape seeds are indeed a material easy to collect and transport, it can be stored at room temperature for many years. For the identification of plants at early stages (before the presence of seeds), the assay can be extended to vegetative material.

AUTHOR CONTRIBUTIONS

MR planned and designed the research; PD and AP performed the plastid genome sequences analysis; AD performed the experiments. MR wrote the paper with the help of PD.

FUNDING

Funding for this work was provided by the CASDAR "Orobanche" project (N° C-2012-07) financed by the French Ministère de l'Agriculture, de l'Agroalimentaire et de la Forêt (MAAF).

ACKNOWLEDGMENT

The authors want to thank Julien Carpezat (Terres Inovia) for his participation to the evaluation of the reproducibility of the assay.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpls.2016.01838/full#supplementary-material

IMAGE 1 | Alignment of partial sequences of the *trn*L gene obtained by amplification using the primers trnL C (F) and trnL HRM R of total DNA extracted from individual seeds belonging to the 8 species of interest.

IMAGE 2 | Alignment of partial sequences of the *rbcL* gene obtained by amplification of total DNA extracted from individual seeds belonging to 7 of the 8 species of interest.

REFERENCES

- Abu Sbaih, H. A., and Jury, S. L. (1994). Seed micromorphology and taxonomy in *Orobanche* (Orobanchaceae). *Flora Mediterr.* 4, 41–48.
- Benharrat, H., Delavault, P., Theodet, C., Figureau, C., and Thalouarn, P. (2000). rbcL plastid pseudogene as a tool for *Orobanche* (subsection Minores) identification. *Plant Biol.* 2, 34–39. doi: 10.1055/s-2000-9457
- Benharrat, H., Veronesi, C., Theodet, C., and Thalouarn, P. (2002). Orobanche species and population discrimination using intersimple sequence repeat (ISSR). Weed Res. 42, 470–475. doi: 10.1046/j.1365-3180.2002.00305.x
- Cusimano, N., and Wicke, S. (2015). Massive intracellular gene transfer during plastid genome reduction in nongreen Orobanchaceae. New Phytol. 210, 680–693. doi: 10.1111/nph.13784
- Dongo, A., Leflon, M., Simier, P., and Delavault, P. (2012). Development of a high-throughput real-time quantitative PCR method to detect and quantify contaminating seeds of *Phelipanche ramosa* and *Orobanche cumana* in crop seed lots. Weed Res. 52, 34–41. doi: 10.1111/j.1365-3180.2011.00891.x
- Druml, B., and Cichna-Markl, M. (2014). High resolution melting (HRM) analysis of DNA – Its role and potential in food analysis. Food Chem. 158, 245–254. doi: 10.1016/j.foodchem.2014.02.111
- Fernández-Aparicio, M., Reboud, X., and Gibot-Leclerc, S. (2016). Broomrape weeds. Underground mechanisms of parasitism and associated strategies for their control: a review. Front. Plant Sci. 7:135. doi: 10.3389/fpls.2016.00135
- Gori, A., Cerboneschi, M., and Tegli, S. (2012). High-Resolution melting analysis as a powerful tool to discriminate and genotype *Pseudomonas savastanoi* Pathovars and Strains. *PLoS ONE* 7:e30199. doi: 10.1371/journal.pone.0030199
- Harris, S. (1999). RAPDs in systematics: a useful methodology. Mol. Syst. Plant Evol. 57, 211–228. doi: 10.1201/9781439833278.ch11
- Jaakola, L., Suokas, M., and Haggman, H. (2010). Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species. Food Chem. 123, 494–500. doi: 10.1016/j.foodchem.2010.04.069
- Joel, D. M. (1987). Detection and identification of *Orobanche* seeds using fluorescence microscopy. Seed Sci. Technol. 15, 119–124.
- Joel, D. M. (2009). The new nomenclature of Orobanche and Phelipanche. Weed Res. 49, 6–7. doi: 10.1111/j.1365-3180.2009.00748.x
- Jones, C. J., Edwards, K. J., Castaglione, S., Winfield, M. O., Sala, F., van de Wiel, C., et al. (1997). Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. *Mol. Breed.* 3, 381–390. doi: 10.1023/a: 1009612517139
- Katzir, N., Portnoy, V., Tzuri, G., CastejonMunoz, M., and Joel, D. M. (1996). Use of random amplified polymorphic DNA (RAPD) markers in the study of the parasitic weed *Orobanche*. *Theor. Appl. Genet.* 93, 367–372. doi: 10.1007/ s001220050290
- Krypuy, M., Ahmed, A. A., Etemadmoghadam, D., Hyland, S. J., deFazio, A., Fox, S. B., et al. (2007). High resolution melting for mutation scanning of TP53 exons 5–8. BMC Cancer 7:168. doi: 10.1186/1471-2407-7-168
- Lochlainn, S. O., Amoah, S., Graham, N. S., Alamer, K., Rios, J. J., Kurup, S., et al. (2011). High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes. *Plant Methods* 7, 43. doi: 10.1186/ 1746-4811-7-43
- Lopez-Granados, F., and Garcia-Torres, L. (1996). Effects of environmental factors on dormancy and germination of crenate broomrape (*Orobanche crenata*). Weed Sci. 44, 284–289. doi: 10.2307/4045680
- Lopez-Granados, F., and Garcia-Torres, L. (1999). Longevity of crenate broomrape (*Orobanche crenata*) seed under soil and laboratory conditions. *Weed Sci.* 47, 161–166. doi: 10.2307/4046192
- Mackay, J. F., Wright, C. D., and Bonfiglioli, R. G. (2008). A new approach to varietal identification in plants by microsatellite high resolution melting analysis: application to the verification of grapevine and olive cultivars. *Plant Methods* 4, 8. doi: 10.1186/1746-4811-4-8
- Madesis, P., Ganopoulos, I., Anagnostis, A., and Tsaftaris, A. (2012). The application of Bar-HRM (Barcode DNA-High Resolution Melting) analysis for authenticity testing and quantitative detection of bean crops (Leguminosae) without prior DNA purification. Food Control 25, 576–582. doi: 10.1016/j. foodcont.2011.11.034
- Manen, J. F., Habashi, C., Jeanmonod, D., Park, J. M., and Schneeweiss, G. M. (2004). Phylogeny and intraspecific variability of holoparasitic *Orobanche*

- (Orobanchaceae) inferred from plastid rbcL sequences. *Mol. Phylogenet. Evol.* 33, 482–500. doi: 10.1016/j.ympev.2004.06.010
- Osathanunkul, M., Madesis, P., and de Boer, H. (2015). Bar-HRM for authentication of plant-based medicines: evaluation of three medicinal products derived from Acanthaceae species. *PLoS ONE* 10:e0128476. doi: 10. 1371/journal.pone.0128476
- Osterbauer, N. K., and Rehms, L. (2002). Detecting single seeds of small broomrape (*Orobanche* minor) with a polymerase chain reaction. *Plant Health Progress* doi: 10.1094/PHP-2002-1111-01-RS
- Paran, I., Gidoni, D., and Jacobsohn, R. (1997). Variation between and within broomrape (*Orobanche*) species revealed by RAPD markers. *Heredity* 78, 68–74. doi: 10.1038/hdy.1997.8
- Parker, C. (2009). Observations on the current status of *Orobanche* and *Striga* problems worldwide. *Pest. Manag. Sci.* 65, 453–459. doi: 10.1002/ps.1713
- Perez-De-Luque, A., Fondevilla, S., Perez-Vich, B., Aly, R., Thoiron, S., Simier, P., et al. (2009). Understanding *Orobanche* and *Phelipanche*-host plant interactions and developing resistance. *Weed Res.* 49, 8–22. doi: 10.1111/j.1365-3180.2009. 00738 x
- Pineda-Martos, R., Velasco, L., and Perez-Vich, B. (2014). Identification, characterisation and discriminatory power of microsatellite markers in the parasitic weed *Orobanche cumana*. Weed Res. 54, 120–132. doi: 10.1111/wre. 12062
- Plaza, L., Fernandez, I., Juan, R., Pastor, J., and Pujadas, A. (2004). Micromorphological studies on seeds of *Orobanche* species from the Iberian Peninsula and the Balearic Islands, and their systematic significance. *Ann. Bot.* 94, 167–178. doi: 10.1093/aob/mch124
- Portnoy, V. H., Katzir, N., and Joel, D. M. (1997). Species identification of soil-borne Orobanche seeds by DNA fingerprinting. Pestic. Biochem. Physiol. 58, 49–54. doi: 10.1006/pest.1997.2281
- Reed, G. H., Kent, J. O., and Wittwer, C. T. (2007). High-resolution DNA melting analysis for simple and efficient molecular diagnostics. *Pharmacogenomics* 8, 597–608. doi: 10.2217/14622416.8.6.597
- Taberlet, P., Gielly, L., Pautou, G., and Bouvet, J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. *Plant Mol. Biol.* 17, 1105–1109. doi: 10.1007/bf00037152
- Takano, E. A., Mitchell, G., Fox, S. B., and Dobrovic, A. (2008). Rapid detection of carriers with BRCA1 and BRCA2 mutations using high resolution melting analysis. BMC Cancer 8:59. doi: 10.1186/1471-2407-8-59
- Toi, C. S., and Dwyer, D. E. (2008). Differentiation between vaccine and wild-type varicella-zoster virus genotypes by high-resolution melt analysis of single nucleotide polymorphisms. J. Clin. Virol. 43, 18–24. doi: 10.1016/j.jcv.2008. 03.027
- Westwood, J. H. (2013). "The physiology of the established parasite-host association," in *Parasitic Orobanchaceae: Parasitic Mechanisms and Control Strategies*, eds M. D. Joel, J. Gressel, and J. L. Musselman (Berlin: Springer Berlin Heidelberg), 87–114.
- Wicke, S., Muller, K. F., Pamphilis, C. W. D., Quandt, D., Wickett, N. J., Zhang, Y., et al. (2013). Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. *Plant Cell* 25, 3711–3725. doi: 10.1105/tpc.113.113373
- Wojdacz, T. K., and Dobrovic, A. (2007). Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. *Nucleic Acids Res.* 35, e41–e41. doi: 10.1093/nar/ gkm013
- Wolfe, A. D., and dePamphilis, C. W. (1997). Alternate paths of evolution for the photosynthetic gene rbcL in four nonphotosynthetic species of *Orobanche*. *Plant Mol. Biol.* 33, 965–977. doi: 10.1023/a:1005739223993
- **Conflict of Interest Statement:** The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
- Copyright © 2016 Rolland, Dupuy, Pelleray and Delavault. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.