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Given the relationship between language acquisition and music processing, musical

perception (MP) skills have been proposed as a tool for early diagnosis of speech and

language difficulties; therefore, a psychometric instrument is needed to assess music

perception in children under 10 years of age, a crucial period in neurodevelopment. We

created a set of 80 musical stimuli encompassing seven domains of music perception

to inform perception of tonal, atonal, and modal stimuli, in a random sample of 1006

children, 6–13 years of age, equally distributed from first to fifth grades, from 14

schools (38% private schools) in So Paulo State. The underlying model was tested

using confirmatory factor analysis. A model encompassing seven orthogonal specific

domains (contour, loudness, scale, timbre, duration, pitch, and meter) and one general

music perception factor, the “m-factor,” showed excellent fit indices. The m-factor,

previously hypothesized in the literature but never formally tested, explains 93% of the

reliable variance in measurement, while only 3.9% of the reliable variance could be

attributed to the multidimensionality caused by the specific domains. The 80 items

showed no differential item functioning based on sex, age, or enrolment in public

vs. private school, demonstrating the important psychometric feature of invariance.

Like Charles Spearman’s g-factor of intelligence, the m-factor is robust and reliable. It

provides a convenient measure of auditory stimulus apprehension that does not rely

on verbal information, offering a new opportunity to probe biological and psychological

relationships with music perception phenomena and the etiologies of speech and

language disorders.
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INTRODUCTION

Accurate measurement of music perception (MP) domains, such
as pitch, rhythm, and meter is central to understanding the brain
processes that underlie musical behavior. Such behaviors may
have emerged early in primate evolution, since studies of pitch
perception (e.g., the pitch strength of a harmonic tone dominated
by resolved harmonics) suggest that marmosets and humans
share a common pitch perception mechanism (Song et al., 2016).
The neural coding of pitch, a primary auditory sensation, is of
practical importance, for instance in the design of neurobionic
therapies for hearing loss (Tramo et al., 2005). At present,
cochlear implant users, and to some extent hearing aid users,
struggle with complex auditory perceptual tasks, particularly
those requiring perception of pitch (Looi et al., 2015) andmelodic
contour (See et al., 2013). In some studies, even short periods
of training can strongly influence the functional organization of
the developing brain, enhancing pitch discrimination abilities in
speech (Santos et al., 2007; Moreno et al., 2009). Accordingly, the
perception of pitch contour in spoken language differs between
musicians and those without musical training (Schön et al., 2004)
and perception of musical pitch and temporal processing account
for 34.5% of the variance on speech prosody test performance
(Morrill et al., 2015).

Compared to age-matched controls, children with specific
language impairment (SLI) exhibit deficits in rhythmic cues
in speech and music, as evaluated by beat detection tasks
(Cumming et al., 2015), and dyslexic children may have
difficulties discriminating strong pitch changes that are easily
discriminated by normal readers (Besson et al., 2007). Moreover,
production of complex syntax and reorganization of grammatical
information have been related to rhythm perception, indicating
that grammar and rhythm share some degree of cognitive
resources (Gordon et al., 2015). The relation between language
acquisition and music processing has led (Sallat and Jentschke,
2015) to propose that musical material could be used for early
diagnosis of SLI.

As processing of prosodic information involves similar
skills to those required in MP (Sallat and Jentschke, 2015),
and emerging evidence supports a common cerebral network
involved in both lexical/phonological and melodic processing
(Schön et al., 2010), MP may offer a useful universal non-
verbal marker for language acquisition. Therefore, as opposed to
language tests centered on verbal skills, MP may inform a more
general understanding of speech and language disorders. An
accurate standardized assessment of MP skills would offer new
opportunities to probe non-verbal auditory skills as pitch, meter,
and melodic contour; however, few tests, batteries, or scales have
been developed for use in children under 10 years of age, a crucial
neurodevelopmental period.

Research conducted predominantly in the Western world
suggests that music perceptual abilities develop considerably
over the course of childhood. Humans are known to enter
the world with some remarkable abilities to perceive pitch and
rhythm. Infants discriminate pitch changes in a short familiar
melody (Fancourt et al., 2013), and they can discriminate
between consonance and dissonance (Trainor and Heinmiller,

1998; Zentner and Kagan, 1998). Preschoolers can also make
discriminations based on pitch changes (Fancourt et al., 2013),
and are sensitive to musical consonance and dissonance in
both behavioral (Trainor and Corrigall, 2010) and brain studies
(Koelsch et al., 2003). While frequency discrimination and
pitch change detection become adult-like at about 6–7 years
of age, sensitivity to pitch direction and harmonic perception
reach adult levels only at around 10 or 11 years of age
(Trainor and Corrigall, 2010; Fancourt et al., 2013). In terms of
rhythmic perception, infants can readily discriminate between
short contrasting rhythmic patterns (Trehub and Trainor, 1998),
as well as inferring metrical structures in a listening context
(Hannon and Trehub, 2005). Children have been shown to
attend simultaneously to pulse and rhythm between 5 and 7
(Paananen, 2006); more recent data have shown that 5-year-olds
were significantly better able to detect beat misalignments in
music in simple than in complex meter (Einarson and Trainor,
2016).

Regarding the evaluation of music skills among young
populations, the first MP test was developed by Wing (1948) to
assess acuity of musical hearing and sensitivity to performance
beginning at 8 years of age. Gordon (1986) described three
batteries: the Musical Aptitude Profile (for fourth grade students,
consisting of seven subtests including both tonal and rhythm
dimensions), the Primary Measure of Music Audiation (designed
for students below third grade), and the Intermediate Measures
of Music Audiation (for fourth grade students). The intermediate
measures are similar to the primary measures but include more
difficult items. Recently, Peretz et al. (2013) introduced the
Montreal Battery of Evaluation of Musical Abilities (MBEMA),
comprised of tests of memory, scale, contour, interval, and
rhythm, administered to 245 children in Montreal.

In general adult populations, the Profile of Music Perception
Skills (PROMS), proposed by Law and Zentner (2012), assesses
musical ability under two higher order factors (i.e., sequential
and sensorymusic processing). The Clinical Assessment ofMusic
Perception (CAMP) was developed by Kang et al. (2009) to
evaluate MP in adults with cochlear implants. The Montreal
Battery Evaluation of Amusia (MBEA), proposed by Peretz et al.
(2003), has emerged as the “gold standard” to assess Amusia
(Wilcox et al., 2015), being the most widely used tool for the
evaluation of musical disorders in adults (Stewart et al., 2006).
This latter battery has proven informative in several different sub-
disciplines, for example, to specify musical difficulties in subtypes
of amusia (Sloboda et al., 2005; Pfeifer andHamann, 2015;Wilcox
et al., 2015), and to demonstrate relationships between music
and speech perception (Hausen et al., 2013) and auditory sensory
processing (Korzyukov et al., 2012).

Existing music perception batteries for both children and
adults are generally composed of items that require accurate
discrimination of pitch, contour, scale and meter. Law and
Zentner (2012) hypothesized the existence of a general factor for
MP encompassing all of these domains, but that assertion has not
been formally tested. Here we describe a new set of 80 musical
stimulus items (composed by CGB) that assesses seven domains
(contour, pitch, scale, duration, dynamics, meter, and timbre), in
a manner suitable to formally test whether all of the items will
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inform ameasurable generalMP factor that reflects the variability
in responses common among all items.

Commonly, specific domains of music perception are
measured using subscales derived from various instruments, and
their correlations are assessed with neurobiological features or
with linguistic skills; however, no evidence has been provided to
support the reliability or viability of those subscales. Moreover,
robust psychometric studies validating available MP scales,
batteries and tools, and describing the latent structure of MP,
remain sparse. Through more sophisticated aspects of item
response theory, we can evaluate how the variance common to
only the items designed to measure the same specific factor (e.g.,
a “pitch” subscale), can explain variance in the item responses
that is not better accounted for by the general factor. Specifically,
the bifactor model has emerged as a tool to evaluate hypothetical
models comprised of two parts, a more general factor (i.e., music
perception) and more specific factors (e.g., subscales related to
pitch, contour, scale, etc.).

The first aim of this study is to confirm that the proposed
battery conforms to the hypothesized bifactor model,
unifying the responses to each item to estimate a general
MP factor, here called the “m-factor,” along with the seven
specific factors proposed. The hypothesized conceptual
bifactor model is shown in Figure 1. The bifactor model
concomitantly evaluates the viability and reliability of variances
attributable to both the general and specific factors (see
Methods).

The secondary aim of this study is to show that the
proposed battery performs similarly across the population
regardless of differences in common demographics unrelated
to MP. Although this psychometric feature is of fundamental
importance, especially for cross-cultural comparisons and
comparisons between subgroups (e.g., between boys and girls),
to our knowledge invariance has not been evaluated for any of
the available MP batteries.

METHODS

MP Battery
Eighty pairs of stimuli (items E1–E80 described musically in
Image 1 in Supplementary Material) were composed based on
the two alternative forced choice paradigm, as in the majority
of previously presented batteries, where the child decides if a
pair or stimuli are equal or different. The 80 pairs were designed
to evaluate seven MP subdomains: contour (13 items), timbre
(12 items), meter (10 items), pitch (5 items), scale (15 items),
duration (20 items), and loudness (5 items):

• Contour: we used continuous and discrete sounds, many
types of pitch structures (e.g., major and minor scales
for E1 and E6, respectively, and a 12-tone row for E12),
different places in the instrument range, and so on. Other
compositional strategies were considered in domains, such as:
the same note in a different octave, a different note in the same
diatonic scale, percussion with indefinite pitch (woodblocks),
a different note in an atonal pitch set, and a synthesized
saw-tooth waveform in continuous lines (glissando).

• Pitch: in our model differentiation between high and low
notes should be independent of determination of pitch. To
measure this, it is important to keep sounds with definite and
indefinite pitch in the same subtest. We used a sampled piano
tone, a saw-tooth waveform, and filtered white noise.

• Scale: we used three paradigms based on historical musical
systems in Western music: modal, tonal, and atonal (e.g.,
Ionian/major on E3, Lydian E9, Dorian on E13, Octatonic
on E67, diatonic vs. chromatic/atonal difference on E71).
“Atonal” is actually not a systematized musical code, but uses
musical parameters that contradict the common patterns of
the previous two. We did not alter contour/shape for any of
the items, in order to isolate the aspect of scale.

• Duration: In this domain, we changed note durations but
maintained the meter, where applicable. Changes in tempo,
and simple comparisons of two sounds were also included
(e.g., E42 and E53, respectively). We used percussion with
undefined pitch (snare drum and woodblock), sampled piano,
flute, a synthesized saw-tooth waveform, and white noise.

• Dynamics (loudness): synthesized saw-tooth waves and white
noise were used. We used both prolonged and “percussion
type” sounds. The sounds differed only in wave amplitude.

• Meter: We used sampled cowbell, bass drum, guitar (a
synthetic one and one recorded to include the effect of
rasgueado in muted strings in E17), piano, woodblocks, violin
and flute. Most of the items contain binary or ternary metrics
and two contain meters with 5 (E50) and 7 beats (E56). We
used a wide variety of timbres and instruments with defined
and undefined pitches in order tomeasure perception of meter
in different ways.

• Timbre: The changes in timbre in our items were mostly
created with electronic effects. We used high and low-pass
filters and reverberation. This procedure differs from that
used in the construction of the PROMS (Law and Zentner
(2012), in which changes in timbre were created by changing
instrument groups playing a chord. In the present battery,
only one item (E39) had two instruments (cymbal and tom-
tom) in the first stimulus, with the tom-tom removed in the
paired stimulus. Some items with synthesized sounds were
included with “prolonged” vs. “percussive”’ sound types (E38).
Again, a wide variety of sampled instruments and synthesized
sounds were used, including piano, cymbals, tom-tom drums,
filtered white noise, sinusoid waves, oboe and timpani. A
comprehensive measurement of timbre is challenging and
would require extensive separate study. For instance, Schaeffer
(1966) built a highly complex theoretical framework for the
study of “sound objects” that greatly surpasses what is possible
in our battery.

An important difference between the proposed battery and
previous batteries is the inclusion of items beyond the paradigm
of tonality. Most previous batteries, such as the MBEMA (Peretz
et al., 2013) and The Primary Measure of Music Audiation
(Gordon, 1986) consist exclusively of stimuli built around
tonality; however, there is little a priori reason to restrict
items to a single musical code. Moreover, increased variety
will permit exploration of how each item and its respective
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FIGURE 1 | Diagram representing the bifactor model’s structure underlying the 80 items of the music perception test.

parameters behave psychometrically within a multidimensional
model. Although atonal stimuli are included in the PROMS (Law
and Zentner (2012), these are restricted to the set of melody
subtests, and are restricted to free chromaticism (i.e., using the
12 tones of the Western chromatic scale with no particular
underlying structure), a likely consequence of the authors’ choice
of “basic,” “abstract,” and “stylistically neutral” stimuli. As seen in
the description of the items in each domain above, we deliberately
chose musical paradigms based on historical systems of Western
music: tonal, atonal and modal, as well as sounds without defined
pitch (i.e., percussion and electronic noise) to circumvent such
restrictions in a systematic way. Moreover, while the MBEMA
uses exclusively synthesized piano sounds, and the Primary
Measure of Music Audiation uses sinusoidal waves, we adopted
a wide range of timbres (i.e., different musical instruments,
electronic sounds, filtered white noise, etc.) in order to be less
restrictive.

Finally, by having a systematic set of musical paradigms as
the basis of stimulus composition, we take into account the
particularity of each domain in the manipulation of musical
parameters. For example, while rhythmic changes in all three of
the previously cited batteries have been associated with strong
and weak beats in musical measures, we manipulated sound
durations, and in the domain of meter, we changed types
of meters (from binary to ternary and vice versa) including
“unusual” meters, such as 5 and 7 beats. We also used different
types of scales and continuous sounds (glissandi) in the domain
of contour, to afford increased opportunity to assess musical
discrimination. Details of the musical modes of the stimuli and
their paradigms (i.e., equal or different) are shown in Table 2 (left
side).

The proposed battery can be administered within 30 min, as
suggested by teachers in a pilot study to avoid interference due to
attention. Among adults, active listening tasks of even a few hours
can lead to reorganization of certain cortical representations
(Pantev et al., 1999), and although evidence is lacking for
children, restricting the number of items may be advisable to
avoid practice effects.

The following software were used: Rosegarden for midi tracks,
Linux Sampler for sampling, Piano and instruments gig: Maestro
Concert Grand V2 (piano), Philharmonia Orchestra (percussion,
clarinet and guitar), Vienna Symphonic Orchestra Pro (Oboe,

flute, violin), Pure Data for sound synthesis and filtering
(Puckette, 2007), Lilypond for score engraving (Nienhuys and
Nieuwenhuizen, 2003), and Snd to create wave and spectral
graphs.

Evaluator Training
Fourteen evaluators (one per school) undertook training to
ensure that equivalent instructions were given. Providing
feedback to participants in the form of demonstrative facial signs
or oral positive/negative cues was discouraged. To counter loss
of attention or demotivation, the motivational phrases “you are
almost finished,” “do not give up” and “it is almost complete” were
used. Phrases, such as “you are doing well” were discouraged, as
they could be perceived as feedback in relation to the answers
given and thus interfere with performance.

Application of the Battery
This research was approved by the Ethical Committee from the
Federal University of Sao Paulo (CAEE: 00751812.3.0000.5505).
Written informed consent was given by parents or children’s legal
guardians.

All children were tested alone in a quiet setting at school using
Philips headphones (model SHL 9560). Prior to beginning the
test, a standardized set of instructions was read by the evaluator.
Six pre-test stimuli were played to evaluate whether the child fully
understood the instructions:

“You, [child’s name], will hear two sound sequences separated
by a short silence. You should decide if these sound sequences
are the same or different. Then, press the different button if the
two sequences are at all different, no matter how small. Press the
equal button if you believe that the two sequences of sounds are
exactly the same.”

During the six pre-test stimuli, the evaluator was permitted to
help the child, explaining why and when the stimulus pairs were
the same or different. The six pre-test stimuli and instructions
were repeated until the child understood; for these six pre-tests,
the program gives feedback for the evaluator and child, informing
them if the response was correct or not.

The 80 items from the battery were then played, and responses
were recorded by the software as 1 if the question was correctly
answered and 0 if answered incorrectly. The child and evaluator
did not receive any feedback about howmany items were marked
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correctly or incorrectly. There was no limit to the amount of
time allowed for the child to press the button. Items were
presented only once during testing. The test duration was on
average 30 min. The children were not allowed to take a break
since the test was automatized such that the subsequent stimulus
began immediately after the previous answer was given. In
contrast to other batteries, stimuli were presented in a random
order (described in Supplementary Material) to avoid local
independence (i.e., contingencies in responses) and artifacts due
to fatigue.

Clinical Methodology
Sample Size Calculation
We considered at least 10 participants per observed indicator
variable (i.e., the 80 items) as a rule-of-thumb for a lower bound
adequate sample size as suggested by Nunnally (1967), totaling at
least 800 children. To accurately perform invariance testing, that
number was inflated to 1000.

Selection of Children
For each school, teachers were given instructions on how to
randomly select 14 students per grade, from first to fifth, using
www.random.org, returning on average 70 children per school.

Teachers, nominated by the school principals, evaluated the
children on the MP test. Based on the school’s enrollment
list for each grade, five working days were allowed for the
students’ parents or guardians to return informed consent
about their selected child’s participation in the research. If
there was no interest in participating or no return of informed
consent, another child was selected to replace them using
the same process. This method of random selection without
any kind of inclusion/exclusion criteria was used to maximize
generalizability and representative sampling of the MP spectrum.
For the same reason, no exclusions were made based on teacher
or parent report of previous medical or psychological conditions,
intellectual disabilities, hearing loss or language impairment.

School Selection
A stratified random sample of 14 elementary schools was chosen
from a pool of Sao Paulo districts and cities where the last author
had prior agreement with the Department of Education to collect
and conduct research. The cities included were São Paulo, Jacarei,
Marilia, and Oscar Bressani. Thirty five percent of the invited
schools were private schools in order to provide an adequate
sample for invariance testing. The number of private schools
was almost twice oversampled compared to official enrollment
reports from 2014 (18.6%). The stratified random sample of
schools was selected based on the list of schools from the
Departments of Education of the four cities; if a school Principal
was unwilling to participate, another school was selected.

Data Collection
A Java program, Armonikos, running offline on Java Virtual
Machine (JVM) was installed on a computer in the school. The
JVM platform was chosen because it is an independent operating
system, and offers scalability to meet future demands. Answers
were collected and stored in a local database; IDs were assigned

to each computer, to each child, and also to each collection of
results (time stamped) to facilitate audit of operator, site, date and
machine. The local database files were sent to a centralized server
to create a merged dataset. That server was queried to extract
consolidated data for analysis. The Armonikos testing procedure
is available for research purposes from the corresponding author
free of charge.

Statistical Analysis
Fitting the Model
Confirmatory factor analysis is an important analytical tool
to test constructs (also called latent variables, factors or
dimensions) underlying sets of observed variables (i.e., items
in a questionnaire, set of stimulus within a battery). Normally
the items in MP batteries (the stimuli) are dichotomous (i.e.,
correct or incorrect) and when the items are categorical, CFA
is also referred to as item response theory analysis (Takane and
De Leeuw, 1987; Du Toit, 2003; Baker and Kim, 2004). CFA
is used to validate constructs of psychological scales because
CFA accurately estimates underlying latent factors (Embretson,
2004); however these techniques have yet to be transposed into
the field of musical perception (MP) and cognition. Since a
latent modeling approach has not been used to investigate the
constructs underlying previous MP batteries, knowledge of how
well the hypothesized models fit the empirical data remains
lacking. One study used classical test theory to validate the
MBAE in a Brazilian population (Nunes-Silva and Haase, 2012);
however, classical test theory does not present a statistical model
that permits testing of falsifiable assertions about the properties of
a scale (Zimmerman, 1975; Raykov andMarcoulides, 2011; Steyer
and Eid, 2012).

The bifactor model has been recently rediscovered as a
useful tool to better understand issues regarding the viability
and reliability of subscales (Reise, 2012) where the “... general
factor runs through all the items effectively capturing their
shared content with a unifying concept” whereas the specific
factors “... account for response variation that is unique or
particular to item subsets” Stucky and Edelen (2015). Further
advantages of the bifactor model are discussed in Chen et al.
(2012). The bifactor model, with its model fit indices, evaluates
(a) the unique contribution of the general MP factor and
(b) specific factors, to scale each individual on a single trait,
but at the same time, to control for the distorting effects of
multidimensionality caused by specific item content (Reise et al.,
2010). The general factor reflects the battery’s target construct,
MP, and the seven orthogonal (i.e., not correlated) group factors
(also called subscales) represent subdomain constructs based on
clusters of items with similar content. For major details about the
bifactor model and its derived fit indices that assess viability and
reliability of subscales, see Rodriguez et al. (2016a).

Confirmatory factor analysis was used to test the conceptual
bifactor model (also known as a general-specific model) a priori
underlying the 80 items as shown in Figure 1. CFA was chosen to
illuminate the latent structure underlying the observed variable,
whereas principal components analysis is sometimes used to
provide construct validity for MP tasks (Gordon, 1986; Law and
Zentner, 2012); however, principal components analysis is better
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suited to data reduction (Bartholomew, 2004; Borsboom, 2006;
Raykov and Marcoulides, 2012) and it would not allow us to
evaluate the latent structure or even to test a model.

Using CFA, alternative models about the construct of MP
might be conceptually tested as, for example, a correlated-factor
model (Figure 2) where the seven factors are all free to be
correlated with each other, or even considering a second-order
model (Figure 3). where the seven first-order factors would
be predicted by a higher-order factor (m-factor). In the latter
model, the m-factor would be assumed to have a direct effect
on the lower-order factors (e.g., contour, scale, timbre, etc.).
Both bifactor and second-order factor models are alternative
approaches for representing general constructs comprised of
several highly related domains (Chen et al., 2006). However,
second-order models do not directly model a common latent
variable that runs among the whole set of items (Reise et al., 2010)
because it imposes a measurement structure on the correlations
between primary factors, attempting to model the correlations
between the primary factors instead of directly on the items per
se (Reise, 2012). Our interest in the bifactor model for MP is
justifiable:

1) The bifactor model solution is the least restrictive model when
compared to (a) the correlated-factor model, (b) the second-
order model, (c) a unidimensional model (all the items loaded
onto a single factor). Therefore, these alternative models,
which are nested within the bifactor model, significantly
degrade that fit. As advised by Yuan and Bentler (2004), it is
advisable to consider applying a more restricted nested model
only if the least restricted model (in this case the bifactor) is
judged to fit the data. In other words, if the bifactor model fits
the data, other more restricted models might be tested. The
numbers of free parameters in these alternative models, direct

indicators of how restrictive the competing models are, range
from 240 in the bifactor model, to 181 in the correlated-factor
solution, to 167 in the second-order solution, and 160 free
parameters in the unidimensional model, which is the most
restrictive.

2) Separating the reliable variance of the m-factor (the general
MP factor) from the seven specific factors should be
conducted exclusively via a bifactor model due to its
orthogonality among the specific factors and general factor.
The bifactor model can directly examine the strength of the
relationship between the domain specific factors and their
associated items because the relationship is reflected in the
factor loadings, whereas these relationships cannot be directly
tested in the second-order model because the domain specific
factors are represented by disturbances of the first-order
factors (Chen et al., 2006).

To evaluate the goodness of fit of the proposed bifactor model,
the following indices were used: chi-square (χ2), Confirmatory
Fit Indices (CFI), the Tucker-Lewis index (TLI), and root mean
square error approximation (RMSEA). The cutoff criteria used
to determine the goodness of fit are described as following:
chi-square with no statistical significance (>0.05), RMSEA near
or less than 0.08 (Little et al., 2013), and CFI and TLI near
or greater than 0.9 (Hu and Bentler, 1999). CFI and TLI
are penalized under complex models (i.e., multidimensional
models with many items per factor), and such models, as
proposed here, tend to worsen as the number of variables in
the model increases (Kenny and Mccoach, 2003). Accordingly,
CFI and TLI’s values near to 0.9 were considered a good fit.
We used the weighted least square using a diagonal weight
matrix with standard errors and mean- and variance-adjusted
(WLSMV) estimator. This estimator is the default in Mplus

FIGURE 2 | Diagram representing the seven-correlated factor structure underlying the 80 items of the music perception test.

FIGURE 3 | Diagram representing the second-order model structure underlying the 80 items of the music perception test.
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under categorical data (Muthén and Muthén, 2012) and it has
been observed that the magnitude of the loadings are more
precisely estimated under it (Beauducel and Herzberg, 2006).
Due to the cluster structure of the current data (i.e., children
nested in schools), the standard errors and chi-square test of
the model fit took into account this non-independence using the
implementation proposed by Asparouhov (Asparouhov, 2005,
2006). The statistical significance level adopted was 0.05.

Invariance Testing
A common issue recurrent in the psychometric literature but
which has yet to be resolved in MP data relates to population
heterogeneity and exploration of the stability of the items under
different background variables (e.g., sex and age). Invariance
testing is a fundamental psychometric procedure to determine
if the measurement properties of the items, and of the model,
are comparable across important demographic features (e.g.,
sex, age, race). Invariance testing is pertinent in the context of
MP since cultural aspects of MP have been explored using the
MBEA, and parts of the original version were shown not to be
suitable for evaluating musical abilities across populations with
different musical traditions (Paraskevopoulos et al., 2010). In
other words, if the researcher or clinician seeks to compare MP
across cultures, the items and their underlying factors need to be
comparable (invariant). There are different procedures to study
the invariance of a given model including multiple indicators,
multiple causes (also known as MIMIC also called CFA with
covariates Jöreskog and Goldberger, 1975; Muthén, 1989), multi-
group CFA, and a more recent method called alignment (Muthén
and Asparouhov, 2014). For a review of these procedures and
other modern invariance testing techniques see Van De Schoot
et al. (2015).

We used MIMIC model to explore the effects of
sociodemographic variables (i.e., age, sex, and school type
[private vs. public]) on the general MP factor and separate items.
This procedure clarifies aspects of measurement invariance
and heterogeneity. The former results from inspection of direct
relationships between the sociodemographic variables and items
that are not mediated by the general MP factor. If significant, this
indicates measurement non-invariance due to differential item
functioning (DIF). Because we have no a priori hypothesis about
which items might exhibit differential functioning, we used the
approach described by Brown (2015) where direct relationships
between the sociodemographic variables and the items were fixed
at zero; then, upon inspection of modification indices, we freed
the effect of sociodemographic variables on the items with the
highest modification indices (superior to 4.00) and determined
whether this enhanced the model.

Population heterogeneity was explored via relationships
between the sociodemographic variables and the general MP
factor. If significant, this indicates that the factor means are
different for different levels of the sociodemographic variables.
For two dichotomous covariates (school type and sex), the
heterogeneity effect on the m-factor is given as Cohen’s d
(standardized effect size) where 0.2 to 0.3 is considered a “small”
effect, 0.5 a “medium” effect and anything higher than 0.8 a

“large” effect (Cohen, 1977). For age, the effect is expressed in
terms of a standardized regression coefficient.

Viability of Subscales
The following indices were used to better understand the
viability of subscales: (a) coefficient omega (ω; Revelle and
Zinbarg, 2009; Mcdonald, 1999), a factor analytical model-based
reliability estimate, originating from the work of Jöreskog (1971)
estimating the proportion of variance in the observed total scores
attributable to all modeled sources of common variance; (b)
a coefficient omega hierarchical (ωh; Mcdonald, 1999; Zinbarg
et al., 2005), model-based reliability index, which judges the
degree to which composite scale scores are interpretable as a
measure of a single common factor. ωh is was computed by
dividing the squared sum of the factor loadings on the general
factor by the model estimated variances of total scores; (c) omega
subscale (ωs), a reliability estimate for a residualized subscale
controlling for that part of the reliability due to the general
factor (Reise, 2012); and (d) the explained common variance
(ECV) defined as the ratio of variance explained by the general
factor divided by the variance explained by the general and
group factors. Key details about each index, its calculation, and
interpretation are described in Rodriguez et al. (2016b).

RESULTS

Demographic Characteristics
In total, 1006 children were tested, 69.9% of whom were enrolled
in public schools, 45% male, with approximately 200 children
from each grade 1 through 5. The mean ages and standard
deviations (SD) by grade were: first grade (mean = 6.44, SD =

0.83), second grade (mean= 7.25, SD= 0.63), third grade (mean
= 8.37, SD = 0.80), fourth grade (mean = 9.35, SD = 0.8), and
fifth grade (mean = 10.29, SD = 0.7). Five out of 14 schools
were private schools, representing the non-proportional enrolled
students in São Paulo State. Table 1 shows the number of boys
and girls across the grades, by type of school (private/public).

TABLE 1 | Sex distribution across grades and type of school.

School type Grade Sex Total

Female Male

Private First Grade 32 31 63

Second Grade 28 31 59

Third Grade 33 30 63

Fourth Grade 36 16 52

Fifth Grade 32 29 61

161 134 295

Public First Grade 77 62 139

Second Grade 72 69 141

Third Grade 67 63 130

Fourth Grade 90 71 161

Fifth Grade 86 54 140

392 319 711
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TABLE 2 | The 80 items’ factor loadings under bifactor model on the M−factor and on specific factor.

Item Paradigm Musical modus M−factor Contour Duration Scale Metric Pitch Timbre Dynamics

E1 Different Tonal 0.506 0.283

E6 Equal Tonal −0.455 −0.294

E12 Different Atonal 0.496 0.204

E18 Equal Atonal −0.621 −0.114

E24 Different Percussion/Eletronic Noise 0.534 0.161

E28 Different Tonal 0.551 0.036

E34 Different Atonal 0.619 0.100

E40 Different Percussion/Eletronic Noise 0.635 0.111

E47 Equal Percussion/Eletronic Noise −0.629 −0.157

E52 Equal Atonal (with eletronic noise) −0.584 0.192

E58 Different Atonal (with eletronic noise) 0.616 −0.254

E62 Different Atonal (with eletronic noise) 0.584 −0.270

E65 Equal Atonal (with eletronic noise) −0.594 0.309

E2 Equal Percussion/Eletronic Noise −0.443 0.348

E7 Different Simple sound comparison 0.422 0.384

E8 Different Percussion/Eletronic Noise 0.490 0.291

E13 Different Simple sound comparison 0.468 0.201

E14 Different Percussion/Eletronic Noise 0.517 0.178

E19 Equal Percussion/Eletronic Noise −0.482 0.066

E25 Different Percussion/Eletronic Noise 0.576 0.207

E29 Equal Percussion/Eletronic Noise −0.513 0.178

E35 Different Percussion/Eletronic Noise 0.497 −0.084

E41 Equal Simple sound comparison −0.507 0.245

E42 Different Percussion/Eletronic Noise 0.599 0.274

E48 Different Atonal 0.621 −0.002

E53 Different Simple sound comparison 0.493 0.437

E54 Equal Tonal −0.486 0.417

E59 Equal Tonal −0.595 0.263

E63 Equal Atonal −0.519 0.208

E66 Different Atonal 0.612 −0.044

E68 Equal Modal −0.552 0.389

E70 Different Tonal 0.593 −0.020

E73 Equal Simple sound comparison −0.444 0.258

E3 Equal Tonal −0.431 −0.294

E9 Different Modal 0.481 0.338

E15 Different Modal 0.516 0.252

E20 Different Tonal 0.574 0.263

E26 Equal Modal −0.587 −0.333

E30 Different Tonal 0.585 0.439

E36 Equal Modal −0.616 −0.055

E43 Different Modal 0.601 −0.084

E49 Equal Tonal −0.594 −0.171

E55 Different Modal 0.649 0.161

E60 Equal Modal −0.582 −0.053

E64 Different Tonal 0.660 −0.054

E67 Different Modal 0.570 0.166

E69 Different Atonal 0.595 0.069

E71 Different Atonal 0.657 −0.288

E4 Different Percussion/Eletronic Noise 0.518 0.364

E10 Equal Percussion/Eletronic Noise −0.506 0.128

E17 Equal Atonal −0.532 0.076

(Continued)
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TABLE 2 | Continued

Item Paradigm Musical modus M−factor Contour Duration Scale Metric Pitch Timbre Dynamics

E22 Different Atonal 0.588 −0.037

E27 Different Percussion/Eletronic Noise 0.570 0.317

E31 Equal Percussion/Eletronic Noise −0.597 0.080

E37 Different Tonal 0.495 −0.059

E44 Equal Tonal −0.598 0.448

E50 Equal Tonal −0.594 0.445

E56 Different Modal 0.565 0.215

E5 Different Simple sound comparison 0.348 0.285

E61 Different Simple sound comparison 0.517 −0.391

E76 Equal Simple sound comparison −0.488 0.271

E77 Different Simple sound comparison 0.407 0.132

E79 Different Simple sound comparison 0.556 −0.426

E11 Different Modal 0.350 0.453

E23 Different Atonal 0.393 0.541

E32 Different Percussion/Eletronic Noise 0.352 0.714

E33 Equal Modal −0.574 0.003

E38 Different Simple sound comparison 0.188 0.760

E39 Different Percussion/Eletronic Noise 0.400 0.293

E45 Different Simple sound comparison 0.213 0.742

E46 Equal Percussion/Eletronic Noise −0.498 −0.032

E51 Different Atonal (with eletronic noise) 0.598 −0.011

E57 Equal Percussion/Eletronic Noise −0.541 0.040

E72 Different Atonal 0.396 0.456

E74 Different Tonal 0.616 0.351

E16 Equal Simple sound comparison −0.463 0.170

E21 Different Simple sound comparison 0.427 0.461

E75 Different Simple sound comparison 0.489 0.444

E78 Different Simple sound comparison 0.390 0.486

E80 Different Simple sound comparison 0.551 0.434

Modeling Music Perception
The goodness of fit for the bifactor model’s seven specific factors
and general m-factor returned a satisfactory adjusted model:
χ
2
(3000) = 3415.408, p < 0.001; RMSEA = 0.012 (90% confidence

interval [CI]= 0.010 to 0.014), Cfit=1.000; CFI= 0.931 and TLI
= 0.927.

The standardized factor loadings for each item on the m-
factor and on specific factors are shown in Table 2, where
the items are grouped by the specific factor. Details about the
music mode (i.e., tonal, atonal, electronic noise, and others) and
paradigm (i.e., same or different) are also identified. Details of the
bifactor model, standard errors for each factor loading, and their
respective p-values are available from the corresponding author.
The corresponding musical stimuli descriptions are presented in
Supplementary Material.

Standardized factor loadings represent the degree to which
each item is associated with its underlying factor; values
closer to 1 represent stronger correlations with the underlying
factor. A negative correlation indicates that the item is
inversely correlated with the underlying factor. The “same”
items (i.e., two identical sequences of sounds) loaded onto
the m-factor with negative factor loadings. The factor loadings

onto the m-factor are higher than those onto the specific
factors.

Viability of the Five Subscales
The following indices were derived from the bifactor model: ω =

0.977, ωH = 0.938, and EVC = 0.754. From ωH, we found that
93.80% the variance in the unit-weighted total scores could be
attributed to the differences between participants in the general
MP factor. The square root of ωH (0.968) indicates an excellent
correlation between the general factor and the observed total
scores. The reliabilities of the five specific factors [calculated as
ω(s)] were very low when controlling for reliability of the general
MP factor: ω(s)Contour = 0.088, ω(s)Duration = 0.142, ω(s)Meter =

0.112, ω(s)Timbre = 0.367, and ω(s)Loudness = 0.309, ω(s)Scale =

0.097, ω(s)Pitch = 0.205.

DIF and Heterogeneity Population
None of the 80 items showed DIF. It can be concluded that
girls and boys with the same level of the m-factor do not differ
in their likelihood to respond to any given stimulus correctly.
Similarly, no DIF was observed for children enrolled at public
vs. private schools, or based on age. Children of different ages,
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FIGURE 4 | Histogram of the music perception factor (M-factor) distribution in z-score.

or in different types of schools, who have the same amount of
m-factor do not have a higher likelihood of responding correctly
to any given item.

Boys showed a higher mean for the m-factor as compared to
girls, but this difference was very small in terms of magnitude
(d = 0.122, p = 0.033). Children from public schools had
moderately lower values of m-factor as compared to those
enrolled in private schools (d = −0.416, p < 0.001). No effect
of age (β = 0.052, p= 0.099) was observed; therefore, there is no
evidence to suggest that age is associated with MP achievement.

Information curve for all items and latent trait distribution for
the general factor.

The distribution of the m-factor (histogram) is shown in
Figure 4, demonstrating a normal-like distribution (skewness =
−0.062 and kurtosis = 0.970), and the total information curve
for the m-factor is presented in Figure 5. The total information
curve shows a peak around zero (the mean in the z-score scale),
indicating that the 80 items have optimal precision in children
with an average amount of MP skill, and less precision in
assessing very skilled or very impaired children (greater than 2
standard deviations from the norm). In this figure, the y-axis
shows information (precision) of the m-factor (not a probability
function to infer normality).

DISCUSSION

In Support of an M-Factor
We find strong evidence that the items within each of the seven
specific factors converge to inform a general (MP) factor, the
m-factor. Statistically, the set of 80 items encompassing eight
domains (seven specific factors + one general factor) returned
excellent fit indices. Musically, the compositional hybrid model
used herein extends the content of available scales, balancing
items based on the tonal paradigm of the so-called common-
practice period with two others present in Western music: the
modal paradigm and post-tonality. The latter is not a paradigm
per se, but rather a way to organize musical parameters (i.e., pitch,
duration/rhythm, intensity, timbre) in a way that contradicts

tonality. These elements of musical language beyond tonality
(Boucourechliev, 1993) originate from the musical avant-garde
(Griffiths, 2011). Hence, the m-factor offers a more flexible
exploration of musical possibilities that does not rely on the
assumption that the tonal system is musically universal, allowing
assessment of musical understanding beyond a narrowly defined
conception of Western tonal music. Although the idea of a
general music factor had been described in Law and Zentner
(2012) alluding to Charles Spearman’s g-factor for intelligence,
formal procedures (i.e., bifactor modeling) to evaluate if the data
fit to such model had not previously been conducted. Moreover,
as in the case of the g-factor, the distribution of the m-factor
across a random sample of children was normal.

A Lack of Support for Subscale Viability
Through the bifactor model, we observed that the viabilities
and reliabilities of MP subscales were poor. Moreover, when ωH

(0.938) is compared with ω (0.977), almost all of the reliable
variance in total scores (0.938/0.977 = 0.96) can be attributed
to the general factor, which reflects individual differences in MP
taken as a whole. Only 3.9% (the difference between 0.977 and
0.938) of the reliable variance in total scores can be attributed
to the dimensionality associated with the specific domains.
Only 2.3% (i.e., the difference between 1.000 and 0.977) of the
estimated variance is due to random error. It is important to
stress that although the data advocate for parceling analytically
(to recreate the m-factor at a latent level), they do not support
reporting at the level of the subscales, because the subscales are
not reliable; instead, it is advisable to report only the general
m-factor. Summing the number of 80 items answered correctly
can be interpreted as an essentially unidimensional reflection of
MP, regardless of the multidimensionality evident in the data.
In other words, the m-factor is robustly reliable even though
it is a multidimensional construct, and the specific subdomains
displayed weak viability beyond the general MP factor.

This lack of subscale viability is consistent with the findings
from bifactor models applied to other areas of child evaluation
(Jovanović, 2015; Wagner et al., 2016), and applied to 50 other
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FIGURE 5 | Total information curve for the music perception factor (M-factor).

different scales assessing various aspects of psychopathology
and personality (Rodriguez et al., 2016a). From those studies,
two main results have arisen: (1) although all measures had
been assumed to be multidimensional, unit-weighted total scores
overwhelmingly reflected variance due to a single latent variable;
and (2) unit-weighted subscale scoresmostly reflected the general
trait, not specific dimensions (Rodriguez et al. (2016a).

In common practice, findings ofmultidimensionality are often
considered to be a sufficient justification for reporting subscale
scores. There are several important concerns, however, with this
practice (Reise et al., 2013). Moreover, even in the presence of
multidimensionality, the use of total scale scores can be justified
(Gustafsson and Åberg-Bengtsson, 2010), whereas findings of
multidimensionality do not guarantee that subscales can provide
meaningful and reliable information about subdomains that is
unique from the general construct.

Despite our lack of evidence supporting subscale viability and
reliability, MP subscales have been useful in several different
contexts. For instance, the MBEA melodic discrimination ability
subscale provided a way of finding out treatment development
and cognitive remediation in schizophrenia (Kantrowitz et al.,
2014) and the domain of rhythm perception is clearly associated
with prosody perception (Hausen et al., 2013). Evaluating the
subscale viability of these instruments may help to determine if
those correlations are truly subscale-specific.

Item Level Features
Given the large sample size, modeling at the item-level was viable
in this study. Tools measuring MP and its components tend to
use parcels to represent the domains, where the achievement in
a given domain is a composite (normally a sum) of the correctly
endorsed items. In this procedure, each parcel is treated as the
observed indicator rather than evaluating the items individually.
When properly modeled, item-level analyses and parcel-level

analyses should generally converge on the same centroid (Little
et al., 1999). For our battery, we offer evidence in favor of
parceling. Researchers interested in using our model for MP at a
latent level (i.e., distinguishing common from residual variances)
can use a facet–representative parceling procedure for the seven
specific factors, even with small sample sizes (Little et al., 2002).
By taking the average of the correct items that were assigned
to each parcel, the researcher can model a unidimensional trait
via confirmatory factor analysis, having seven parcels as the
items. We recommend using the average of correct answers per
parceling due to the unbalanced number of items per parcel. This
procedure will reduce the complexity of the model making the
analysis more viable than a full item-level decomposition.

We observed that items under an equal paradigm (pairs
of stimuli exhibiting no difference) were negatively related to
the m-factor while different items (pair of stimuli where there
are differences) were positively related to the m-factor. This
indicates a methodological effect on the way the different types
of items capture MP skills. Because the other available MP
batteries did not investigate features at item-level, inverse factor
loading patterns have not yet been described, partially due
to noise introduced by parceling procedures adopted in the
interpretation of the available MP batteries. Future psychometric
investigations might incorporate this new source of variance
(the paradigm) into a specific type of confirmatory model called
“multitrait-multimethod,” where variance due to paradigm (the
multimethod part of the model) and variance due to the seven
domains (the multitrait part) are modeled. Thus, CFA offers
multiple possibilities for evaluating the psychometric features
of MP models and their fit to empirical data. Our decision
regarding how to group and test the items was based on the
traditional organization of MP batteries (e.g., pitch, scale, meter
and so on); however, many other factor structures could be
tested. For instance, given 80 stimuli, many of which extend

Frontiers in Neuroscience | www.frontiersin.org 11 January 2017 | Volume 11 | Article 18

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Barros et al. The Music Perception Factor

beyond the diatonic paradigm, completely novel specific factors
beyond those traditionally conceptualized could be constructed
by grouping items based on musical modes (tonal, atonal, modal,
electronic noise). These alternative models, if found to fit the
data, might allow exploration of novel MP features, particularly
if novel subscales are found to be reliable under a bifactor model.

Stability of the Measurement
To our knowledge, invariance testing has not been described
in the MP literature. In the present study, we found that none
of the items showed differential item functioning regarding
age, sex, or type of school. In other words, none of the 80
items have a different probability of being answered correctly by
children of different ages, sexes, and school type. Thus, the items
are stable indicators of MP. Previously, different hypotheses
have been raised in terms of comparing cultures on their MP
skills (Zatorre, 2016) and language background (Peretz et al.,
2013). However, without precise information regarding batteries
designed to measure MP and their invariance features in those
target groups, results may be biased due to differential item
functioning. In that case, a given musical task might be answered
differently between groups (i.e., two groups perceive a given
musical paradigm differently given the same amount ofMP trait).

Musical Heterogeneity in the Population
The present study reports that children enrolled in public schools
exhibited a lower amount of m-factor (with a moderate effect
size). In contrast, only a very small effect of sex on m-factor was
observed–one that would require a similarly large sample size to
replicate. Even in this very large sample size including a range
of ages, there was no evidence that the m-factor was correlated
with age. This contrasts with Peretz et al. (2013), who found
a small correlation between the Montreal Battery of Evaluation
of Musical Abilities (MBEMA) with age (Pearson’s r varying
from 0.29 for untrained children to 0.31 for musically trained
children) in a population from 6 to 8 years old). Regarding our
lack of correlation with age, it is important to emphasize that
this is a cross-sectional study. Therefore, inferences regarding
the development of MP across childhood are not possible.
Moreover, because this is the first study to evaluate invariance
across different ages, the finding cannot be compared reliably
with studies using other batteries which may be susceptible to
differential item functioning based on age. Ideally, longitudinal
studies would be necessary to first evaluate the stability of MP
across age and then to establish growth trajectories of MP
development.

A total information curve for the m-factor showed that the
80 items measure MP most accurately among children with
average skills (peak of information at zero on the Z-scale).
Therefore, the m-factor can be considered optimal for use with
averagely skilled children, and consequently our battery may
not optimally measure MP among children with amusia or with
exceptional musical skills. Children with congenital amusia are
“... unable to recognize well-known tunes in the absence of lyrics,
and they have difficulty differentiating melodies on the basis of
pitch cues alone, despite having normal hearing, speech, and
intellectual ability, and ample opportunity for musical exposure”
(Peretz et al., 2013). To optimize assessment of such a poorly

skilled population, it would be necessary to know two parameters
obtained via confirmatory factor analysis: each item’s factor
loading and threshold. To identify children with amusia, items
exhibiting very low thresholds and with high factor loadings
would be needed. Previously, the available batteries to evaluate
MP have not reported these data at item-level, and therefore how
the constituent items might behave psychometrically in extreme
populations remains to be formally tested.

LIMITATIONS

As a potential limitation, only basic socio-demographic features
were collected for this study, which aimed to validate the
battery and describe its underlying psychometric features.
Therefore, information regarding the distribution of IQ,
hearing acuity and language impairment were not ascertained;
however, since the m-factor was normally distributed it is
unlikely that these factors would have introduced significant
skewness, and because this large sample was obtained via
a true random algorithm selection, the findings are likely
to generalize to school-age children in Sao Paulo with their
expected distributions of neuropsychological, developmental,
and behavioral attributes.

CONCLUSION

The present multidimensional battery offers a reliable measure
of the m-factor, a new universal non-verbal measure of auditory
stimulus apprehension stable across sex, grade at school, and type
of school, suitable to study the underlying neurobiology of music
perception, the etiology of speech and language disorders, and
innate determinants of musicality.
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