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Mycobacterium abscessus represents an important respiratory pathogen among the

rapidly-growing non-tuberculous mycobacteria. Infections caused by M. abscessus are

increasingly found in cystic fibrosis (CF) patients and are often refractory to antibiotic

therapy. The underlying immunopathological mechanisms of pathogenesis remain largely

unknown. A major reason for the poor advances in M. abscessus research has been a

lack of adequate models to study the acute and chronic stages of the disease leading

to delayed progress of evaluation of therapeutic efficacy of potentially active antibiotics.

However, the recent development of cellular models led to new insights in the interplay

between M. abscessus with host macrophages as well as with amoebae, proposed to

represent the environmental host and reservoir for non-tuberculous mycobacteria. The

zebrafish embryo has also appeared as a useful alternative to more traditional models

as it recapitulates the vertebrate immune system and, due to its optical transparency,

allows a spatio-temporal visualization of the infection process in a living animal. More

sophisticated immunocompromised mice have also been exploited recently to dissect

the immune and inflammatory responses to M. abscessus. Herein, we will discuss

the limitations, advantages and potential offered by these various models to study the

pathophysiology of M. abscessus infection and to assess the preclinical efficacy of

compounds active against this emerging human pathogen.

Keywords: Mycobacterium abscessus, infection, zebrafish, mouse, macrophage, amoeba, chemotherapy, cystic

fibrosis

INTRODUCTION

Mycobacterium abscessus (Mabs) is a rapidly-growing mycobacterial species, regarded as an
important pathogen responsible for a wide array of clinical manifestations in humans, ranging
from cutaneous infections to severe chronic pulmonary infections, usually encountered in
immunocompromised and in cystic fibrosis (CF) patients (Griffith et al., 1993; Olivier et al., 2003;
Jönsson et al., 2007; Roux et al., 2009; Leão et al., 2010; Qvist et al., 2015; Bryant et al., 2016).
Mabs is also responsible for nosocomial and iatrogenic infections and has been reported to induce
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lesions in the central nervous system in immunocompetent
patients with a history of trauma, otolaryngological diseases,
neurosurgery, or disseminated disease in a patient with end-
stage renal disease under steroid therapy (Talati et al., 2008;
Lee et al., 2012). Despite being a rapidly-growing mycobacteria
(RGM), Mabs shares also several pathophysiological features
with the slow-growingMycobacterium tuberculosis, the causative
agent of tuberculosis. This includes the ability to persist within
granulomatous structures and to generate pulmonary caseous
lesions (Tomashefski et al., 1996; Medjahed et al., 2010).
Alarming is the natural resistance ofMabs to most antitubercular
drugs, making these infections particularly long, difficult to
treat and associated with a significant therapeutic failure rate
(Ferro et al., 2016). Mabs manifests as either a smooth (S) or a
rough (R) colony morphotype that can result in different clinical
outcomes. Epidemiological studies indicate that the presence
of R variants are associated with the most severe cases of
pulmonary infections which can persist for years (Jönsson et al.,
2007; Catherinot et al., 2009). The morphological aspect of S
and R variants relies on the presence or absence of surface-
associated glycopeptidolipids (GPL), respectively (Howard et al.,
2006). However, our knowledge of the pathophysiological
characteristics and mechanisms governing virulence of the R
or S variants has long been obscured by the lack of animal
models that are permissive to Mabs infection. Indeed, infection
of classical immunocompetent mouse models leads to transient
colonization, thus impeding their use as a valuable animal
models to study chronic disease and the in vivo therapeutic
efficacy of drugs (Bernut et al., 2014b). However, in the past few
years the development of multiple cellular, non-mammalian and
mammalian models have helped to study the chronology and
the pathology ofMabs infection (Byrd and Lyons, 1999; Howard
et al., 2006; Ordway et al., 2008; Oh et al., 2013; Bernut et al.,
2014a; Bakala N’Goma et al., 2015; Roux et al., 2016). Among
these new model systems, a few have been validated for their
suitability for in vivo drug efficacy studies againstMabs (Ordway
et al., 2008; Lerat et al., 2014; Oh et al., 2014; Bernut et al.,
2014b). These different infection models and their applications
are discussed below in more details.

Cellular Models to Understand Early
Infection with M. abscessus
Studies using murine, human primary macrophages or cell
lines allowed for the description of early invasion of Mabs
S and R phenotypes inside phagocytic cells. Initially, the S
phenotype establishes a more silent phase while the R phenotype
forms a more aggressive infiltration in cells (Byrd and Lyons,
1999). A major hallmark of Mabs R is its high propensity to
aggregate, leading to the formation of phagocytic cups and
the presence of social phagosomes containing usually more
than one bacillus. These phagocytic cups and bacterial laden
phagosomes are associated with increased cell mortality, evoking
a typical trait of RGM (Brambilla et al., 2016; Roux et al.,
2016). In contrast, loner phagosomes containing one bacilli
are usually found within macrophages infected with the S
form (Figure 1). These studies also reported the sustained

intramacrophage survival of the S variant over the R variant
and the increased resistance of the S variant toward cellular
bactericidal mechanisms, such as phago-lysosomal fusion block
and resistance to apoptosis and autophagy. The S variant-
containing phagosome shows signs of membrane alteration,
such as breaks or partial degradation at a very early stage
of the infection, further emphasizing the ability of Mabs S
to initiate phagosome-cytosol communications (Roux et al.,
2016). In contrast to M. tuberculosis, this phagosomal escape
mechanism is ESX-1-independent as Mabs does not possess an
ESX-1 homolog (Ripoll et al., 2009). Overall, these phenotypic
features resemble more to those characterizing pathogenic slow-
growing mycobacteria than RGM. The blocking of autophagic
clearance by azithromycin, a drug administered to CF patients
as an anti-inflammatory compound, leads to the intracellular
survival ofMabs (Renna et al., 2011).

Foamy macrophages have been proposed as a reservoir
used by M. tuberculosis for long-term persistence within its
human host (Peyron et al., 2008). They represent a granuloma-
specific cell population characterized by their high lipid content.
An experimental model of foamy macrophages was recently
designed to investigate acquisition of host lipids by pathogenic
mycobacteria contained within phagosomes (Caire-Brändli et al.,
2014; Santucci et al., 2016). This cellular model, derived from
murine bone-marrow macrophages, has recently been exploited
to investigate the formation of intracellular lipid inclusion (ILI)
in Mabs and to demonstrate that, like M. tuberculosis, Mabs
can accumulate triglycerides under the form of large ILI inside
foamy macrophages (Viljoen et al., 2016). These cells allowed
to demonstrate the ability of Mabs to assimilate host lipids
and the crucial role of the diacylglycerol acyltransferases Dgat1
in ILI formation (Viljoen et al., 2016), which may represent
an important source for long-term storage and energy supply
enabling persistence.

CF lungs are characterized by an important neutrophilic
inflammation in response to pathogens, such as Staphylococcus
aureus or Pseudomonas aeruginosa. However, internalization
of Mabs by neutrophils appears less efficient as compared to
S. aureus, explained by the fact that Mabs limits neutrophil
activation which promotes pathogen survival, highlighting the
abilities of Mabs to adapt to harsh immune environments
(Malcolm et al., 2013). Like most mycobacteria,Mabs exploits its
surface-exposed lipids to interact directly with the macrophage
pattern recognition receptors. Among these receptors, Toll
Like Receptor (TLR-2) and Dectin-1 have been shown to
participate in phagocytosis of Mabs (Shin et al., 2008; Rhoades
et al., 2009; Roux et al., 2011). Interestingly, the transition
from an S to an R phenotype is associated with robust
inflammation, resulting from the loss of GPL which is unmasking
bacterial surface exposed TLR-2 agonists, such as lipoproteins
(Roux et al., 2011). In addition, Jönsson et al. (2013) studied
the response of human peripheral blood mononuclear cells
(PBMC) to Mabs R infection identifying a fibrous meshwork
comprised of DNA and histones surrounding the Mabs cords.
This suggests that the chromatin meshwork may represent
a defense mechanism against Mabs invaders. Conversely,
Mabs S, which are unable to form cords, result in rapid
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FIGURE 1 | The distinct fates of the smooth (S) and rough (R) variants of M. abscessus in macrophages and zebrafish. After injection in the blood flow,

Mabs are rapidly phagocytozed by macrophages, either individually (S variant) in loner phagosomes or as bacterial clusters (R variant) in social phagosomes. The

presence of GPL production in the S strain leads to a typical electron translucent zone (ETZ) that fills the entire space between the phagosome membrane and the

mycobacterial cell wall. Loss of GPL in the R variant results in disappearance of the ETZ. In some instances, disruption of the phagosome membrane releases the S

variant in the cytoplasm. Infected macrophages migrate from the vasculature the nervous tissues and become heavily infected which leads to apoptosis with the

release of the S variant that are phagocytosed by newly recruited macrophages which, together with neutrophils, form protective granulomas, resulting in chronic

infection. In contrast, the release of Mabs R is correlated with the emergence of extracellular serpentine cords, preventing phagocytosis of the bacilli by macrophages

and neutrophils, leading to abscess formation with tissue destruction and acute infection. TNF-α plays a central role in the immunity to Mabs by activating the

macrophage bactericidal response and, through IL-8 production, in neutrophil chemotaxis to the site of infection or to form protective granulomas. Adapted from

Bernut et al. (2016).
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phagocytosis and failed to induce similar fibrous structures in
PBMC.

Exploiting Amoebae to Identify New
Virulence Determinants of M. abscessus
Exploring the interaction between Mabs and eukaryotic cells
has significantly contributed to delineate the basis of the early
interaction and survival strategies between the pathogen in its
human host. Although Mabs is regarded as an emerging human
pathogen, Mabs is primarily an environmental opportunistic
microorganism. It has been proposed that free-living amoebae,
which provide an intracellular niche similar to phagocytes, are
functioning as a training ground for most environmental NTM
(Drancourt, 2014). This has recently stimulated studies aimed
at describing interactions between Mabs and Ancathamoeba
castellanii, an amoeba used as a model species to study the
interaction with many different microorganisms (Guimaraes
et al., 2016). Co-cultures have shown the induced expression of
several Mabs virulence determinants, such as the phospholipase
C or MgtC when Mabs is present inside the amoeba (Bakala
N’Goma et al., 2015; Le Moigne et al., 2016). Additionally, a
Mabs R mutant defective in cording showed severely impaired
replication in both macrophages and amoebae, presumably due
to limited inhibition of the phagolysosomal fusion. These studies
emphasize the usefulness of amoebae as a host model to identify
and study determinants important in sustaining Mabs virulence
(Halloum et al., 2016). Despite the failure of isolating Mabs
from environmental sources, studies with Acanthamoeba suggest
that Mabs has evolved in close contact with environmental
protozoa and support the view that amoebae contribute in
shaping Mabs virulence (Bakala N’Goma et al., 2015; Le Moigne
et al., 2016).

M. abscessus Infection in the Zebrafish
Model
Zebrafish (Danio rerio) have been widely exploited during the
last two decades to decipher the intricate interactions between
pathogens and the host immune system (Torraca et al., 2014).
The increasing success of this vertebrate model relies on unique
advantages that motivated its use to increase our knowledge of
many viral and bacterial infections (Davis et al., 2002; Prajsnar
et al., 2008; Phennicie et al., 2010; Alibaud et al., 2011; Mostowy
et al., 2013; Palha et al., 2013). Zebrafish embryos have also
recently been exploited to visualize, by non-invasive imaging,
the progression and fate of Mabs infection, allowing to observe
host-pathogen interactions in a live animal at a high resolution
level (Bernut et al., 2015; Figure 1). Methods were specifically
adapted for assessing Mabs virulence by measuring distinct
parameters, such as embryo survival and bacterial burden and
by monitoring the chronology of the infection using video
microscopy. These studies culminated with the description and
visualization of extracellular cording characterizing the R variant
as a new mechanism of immune subversion by preventing
the bacilli from phagocytosis by macrophages and neutrophils,
thus promoting infection and rapid larval death (Bernut et al.,
2014a). Moreover, cords were also found to initiate the formation

of abscesses, mainly disseminated within the central nervous
system (brain and spinal cord). These initial observations have
stimulated further work to shed new light on the role of cording
in pathogenesis. This has led to the recent identification of
the MAB_4780 gene encoding a dehydratase. Disruption of this
gene in Mabs R was associated with the lack of granuloma
formation in embryos and a highly attenuated phenotype
in wild-type and in embryos lacking either macrophages or
neutrophils (Halloum et al., 2016). Overall, work using the
zebrafish model confirmed the crucial role of MAB_4780
for Mabs cording to successfully establish acute and lethal
infections. In addition, in studies evaluating a loss-of-function
coupled with fluorescent reporter zebrafish lines and high
resolution imaging, the contribution of TNF-mediated signaling
to protective immunity against Mabs has been confirmed
(Bernut et al., 2016). Furthermore, identifying the crucial role
of TNF in activating macrophage bactericidal activity leading
to restriction of intracellular Mabs growth and IL8-mediated
neutrophil recruitment for development and maintenance of
protective granulomas was demonstrated (Figure 1). However,
despite their unique features, major disadvantages of zebrafish
embryos over mammalian models, resides in their anatomical
differences, such as gills instead of lungs. In addition, the
lack of adaptive immunity early in the development may also
impact the outcome of the infection. In general, embryos
appear more suited to study acute infection rather than the
chronic stages of the disease, which are better modeled in
mice.

The Mouse Model of M. abscessus Lung
Infection
Early studies confirmed that most immunocompetent mouse
strains result in clearance of Mabs in the first weeks after
infection with Mabs isolates (Ordway et al., 2008; Bernut et al.,
2014b; Obregón-Henao et al., 2015), making model development
and selection challenging. In these earlier studies, C57BL/6 and
leptin-deficient (Ob/Ob) mice infected with Mabs with a low-
dose aerosol inoculum (LDA, ∼100 bacilli per mouse) did not
develop a sustained progressive infection. Conversely, when
infected with a high-dose aerosol inoculum (HDA,∼1,000 bacilli
per mouse), C57BL/6 and Ob/Ob mice established an infection
resulting in an early influx of IFN-γ+ CD4+ T cells in the
lungs. This primary immune response preempted the clearance
of Mabs in both C57BL/6 and Ob/Ob mice. On the other hand,
IFN-γ knockout (GKO) mice infected with a LDA or HDA of
Mabs resulted in a low amount of persistentMabs lung infection
inducing influx of T cells, macrophages and dendritic cells,
which contributed to granuloma formation. Interestingly, a HDA
Mabs infection of the GKO mice provoked CD4+ and CD8+

T cells capable of producing IL-4 and IL-10 in the pulmonary
cavity.

Despite the aforementioned challenges associated with
establishing a high level of Mabs infection, further research has
led to establishment of mouse models with deficits in innate or
acquired immunity, resulting in a high level of Mabs disease.
Initial studies established that immunocompromised mice with
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defects in innate or acquired immunity infected intravenously
with 1 × 106 Mabs controlled the infection (Obregón-Henao
et al., 2015). Mouse strains able to clear Mabs include Beige
(dominant TH2 immunity), iNOS−/−, Cybb−/− (devoid of
super-oxide generating enzyme), TNFαR−/−, C3HeB/FeJ, GKO,
and MyD88−/− mice. Through a 40 days chronic infection,
Mabs was still present at low levels in the lungs of the
C3HeB/FeJ, GKO and MyD88−/− mice. Furthermore, the GKO
and MyD88−/− mice sustained diminished amounts of Mabs
in the spleen and liver after 40 days, whereas SCID, nude and
GM-CSF−/− mice infected intravenously with Mabs showed
progressive Mabs burden (Rottman et al., 2007; Obregón-Henao
et al., 2015), which revealed the requirement of functional
T and B cell immunity and GM-CSF reliant cell phenotypes
for establishment of protective immunity against Mabs. It is
clear that deleting single genes for NOS, ROS, TNF, IFNγ,
and MyD88 alone results in other immune mechanisms
compensating for their loss, resulting in low levels of Mabs
persistence or complete removal of Mabs. However, multiple
deficits in innate and acquired immunity result in a high
level Mabs progressive infection. A major advantage of using
severely immunocompromised mice (SCID, nude, and GM-
CSF−/−) for modeling Mabs infection was the presence of
foamy cells and necrotizing and non-necrotizing granulomas
in the lungs after 40 days of infection, commonly observed in
the histopathologic sections of human NTM lung disease. The
challenge remains to overcome RGM avirulence and immune
clearance in immunocompetent models for future research
advances. Multiple CF models have also been developed for
other human CF pathogens. Current studies are focused on
developing these CF models for Mabs infection advancing into
the development of pulmonary infection rather than using the
intravenous route.

Preclinical Models to Assess Drug Efficacy
against M. abscessus
Due to the intrinsic and acquired resistance mechanisms of
Mabs to most commonly used antimicrobials, the discovery
of new and active compounds is urgently needed. A major
step in drug discovery relies on in vivo evaluations of
the identified hits, requiring studies in adequate animal
models. As already mentioned, immunocompetent mice are
characterized by a transient infection with a rapid clearance
of Mabs (Bernut et al., 2014b), thus impeding their use
as valuable animal models for drug susceptibility testing.
Alternative immunocompromised models have, therefore,
been developed (Figure 2). GM-CSF knock-out mice have
been shown to recapitulate chronic pulmonary Mabs infection
and to be particularly suited for preclinical drug efficacy
testing (De Groote et al., 2014). In particular, exposure of
Mabs-infected GM-CSF KO mice to azithromycin resulted
in reduced bacterial loads in the lungs and spleen and
weight gain with significant improvement in lung pathology.
Nude mice have also been proposed as appropriate for
in vivo drug efficacy assessments (Lerat et al., 2014). The
anti-Mabs activity of multiple drugs have been tested for

efficacy in both the GKO and SCID mice model (Obregón-
Henao et al., 2015). Drug efficacy in ascending order were
clarithromycin, clofazamine, amikacin, bedaquiline, and
clofazamine-bedaquiline. The treatment of Mabs infected SCID
mice with a combination of clofazamine-bedaquiline resulted
in increased efficacy against Mabs compared to the other drug
regimens.

However, despite the fact that immunocompromised mice
present a significant advance in comparison to wild-type mice
in preclinical assessments, they remain costly, time-consuming
and may not reflect the predictive value required for compound
testing. Zebrafish were also successfully developed to test the
suitability and sensitivity of clarithromycin and imipenem, two
clinically relevant drugs in Mabs-infected embryos (Bernut
et al., 2014b). One major advantage of this model is that it
allows to visualize in a dose- and time-dependent manner the
resorption/disappearance of cords and abscesses in the presence
of an active molecule (Figure 2). The demonstration of the
efficacy of a combination consisting of a β-lactam (amoxicillin or
imipenem) and aMabs β-lactamase specific inhibitor (avibactam)
further validated the zebrafish as a potent preclinical model
(Dubée et al., 2015; Lefebvre et al., 2017). Recently, the in
vivo activity of a new piperidinol-based compound, PIPD1,
inhibiting mycolic acid transport in Mabs was evaluated in
zebrafish (Dupont et al., 2016). Exposure to PIPD1 increased
embryo survival and reduced the bacterial burden and the
number of abscesses. Moreover, because zebrafish allows to
mimic a CF micro-environment by silencing cftr expression
(Phennicie et al., 2010), this biological system would be suited
at comparing the therapeutic efficacy of drugs in a cftr-deficient
environment as it is currently not known whether a CFTR
defect affects susceptibility to antibiotics. Of note, embryos are
particularly conducive to high throughput screening, as shown
forMycobacterium marinum (Carvalho et al., 2011; Takaki et al.,
2012), which may speed up the process of identifying promising
drug candidates. Another advantage of this model is the ease
and rapidity of experimentation within a restricted time scale
and low cost. In this context, Drosophila melanogaster has
also been reported for the rapid evaluation of potential drug
candidates againstMabs (Oh et al., 2014), offering the advantages
of speed, cost, technical convenience and ethical acceptability
(Figure 2).

CONCLUSION AND PERSPECTIVES

Herein, we have summarized compelling models developed
to better understand the interplay between Mabs, its
environmental and human hosts. These biological systems
have undoubtedly allowed to better elucidate the pathogenesis
of Mabs disease and to highlight the distinctive intra- and
extracellular traits characterizing the lifestyle of the R and S
forms. However, despite considerable progress, our knowledge
of the immunopathology of Mabs infection remains largely
incomplete. As discussed here, these recently developed
models represent innovative tools for better manipulating
both the pathogen and the host immune response and
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FIGURE 2 | The most commonly used preclinical models to study the in vivo activity of compounds against M. abscessus. The methods of infection, the

drug treatment conditions and the assays used to monitor drug activity of anti-Mabs molecules in drosophila, zebrafish embryos and immunocompromised mice are

illustrated. The advantages and limitations of each model, from the early stages of drug screening to assessments of the preclinical efficacy of the more advanced

compounds are also indicated. CFU, colony-forming unit; FPC, fluorescent pixel count.

should lead to an in-depth comprehension of the intricate
interactions between the pathogen and its hosts, which may
also unveil novel strategies to combat the infection and
disease progression. Although several challenges still need

to be overcome, these models hold also great promises for
future development of novel and improved drug combinations
to control one of the most difficult-to-treat mycobacterial
species.
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