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The new found ability to measure physical attributes of the marine environment at high
resolution across broad spatial scales has driven the rapid evolution of benthic habitat
mapping as a field in its own right. Improvement of the resolution and ecological validity
of seafloor habitat distribution models has, for the most part, paralleled developments in
new generations of acoustic survey tools such as multibeam echosounders. While sonar
methods have been well demonstrated to provide useful proxies of the relatively static
geophysical patterns that reflect distribution of benthic species and assemblages, the
spatially and temporally variable influence of hydrodynamic energy on habitat distribution
have been less well studied. Here we investigate the role of wave exposure on patterns of
distribution of near-shore benthic habitats. A high resolution spectral wave model was
developed for a 624 km2 site along Cape Otway, a major coastal feature of western
Victoria, Australia. Comparison of habitat classifications implemented using the Random
Forests algorithm established that significantly more accurate estimations of habitat
distribution were obtained by including a fine-scale numerical wave model, extended
to the seabed using linear wave theory, than by using depth and seafloor morphology
information alone. Variable importance measures and map interpretation indicated that
the spatial variation in wave-induced bottom orbital velocity was most influential in
discriminating habitat classes containing the canopy forming kelp Ecklonia radiata, a
foundation kelp species that affects biodiversity and ecological functioning on shallow
reefs across temperate Australasia. We demonstrate that hydrodynamic models reflecting
key environmental drivers on wave-exposed coastlines are important in accurately defining
distributions of benthic habitats. This study highlights the suitability of exposure measures
for predictive habitat modeling on wave-exposed coastlines and provides a basis for
continuing work relating patterns of biological distribution to remotely-sensed patterns
of the physical environment.

Keywords: habitat mapping, multibeam sonar, remote sensing, hydrodynamic modeling, video survey, random

forests

INTRODUCTION
A major difficulty faced by managers in developing policy and
implementing measures to safeguard ecologically important areas
of the oceans is the relative paucity of scientific information
available to direct and inform such initiatives. In comparison
to terrestrial ecosystems, spatial management of marine ecosys-
tems has been constrained by the lack of high quality, spatially
explicit data describing the basic patterns of their biophysical
constituents. This is for the most part a function of the inher-
ent difficulties and costs associated with data collection in the
marine environment. As a result quantitative spatial information
in marine ecosystems is typically sparse, localized and patchily
distributed through space and time (Kostylev and Hannah, 2007;
Foster et al., 2009).

The emergence of remotely sensed acoustic technologies
coupled with the ability to collect seabed information with

georeferenced towed camera systems, opens the possibility of
surveying large areas of seafloor and producing high resolution
maps of topography, subsurface structures, and benthic habitats
(Rattray et al., 2009). Acoustic habitat mapping utilizes sonar-
derived physical variables as proxies to describe the range of
abiotic conditions (e.g., substrate type) and processes (e.g., light
availability) that define the realized niche and subsequent distri-
bution of benthic species and assemblages. Commonly, features
used to predict the distribution of benthic assemblages are derived
directly from topographic information and acoustic backscatter
response. Thus, the role of wave exposure on habitat distribu-
tion is only indirectly considered through postulated associations
with water depth and seafloor orientation (aspect). Wave energy,
however, varies spatially and temporally, and is locally modified
by factors such as coastline geometry and bottom topography.
It is therefore unlikely in shallow coastal zones that depth and
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orientation of an area of the seafloor are fully indicative of
structuring effects of exposure on biological assemblages, espe-
cially in areas which are known to experience gradients in wave
activity.

The southern Australian coastline is one of the highest energy
coastlines in the world (Hemer et al., 2008; Hughes and Heap,
2010). As a result, wave energy is arguably one of the primary
variables influencing the morphology, community structure and
spatial organization of benthic taxa in the region (Wernberg and
Goldberg, 2008; Wernberg and Vanderklift, 2010). The effects of
wave energy on the composition, functional morphology and dis-
tribution of species and assemblages have been documented in
most areas of the shallow marine environment across a wide range
of taxonomic groups. The hydrodynamic energy regime has been
demonstrated as an important factor controlling the spatial dis-
tribution of macroalgae (Pedersen et al., 2012; Thomson et al.,
2012), sessile invertebrates (Bell and Barnes, 2000; Chollett and
Mumby, 2012), seagrasses (Fonseca and Bell, 1998; Turner et al.,
1999), mollusks (Boulding et al., 1999; Pfaff et al., 2011) and fishes
(Letourneur, 1996; Friedlander et al., 2003), and has been identi-
fied as a key indicator of species abundance and diversity (Denny,
2006).

Wave energy determines benthic habitat availability through
a number of direct and indirect processes which exert effects on
benthic organisms (Denny, 2006). Sessile benthic taxa are reliant
on water circulation for delivery of nutrients and oxygen, tim-
ing and dispersal of larvae and propagules, and removal of waste.
Hydrodynamic exposure is also an important agent of stress and
disturbance through sediment flux processes, specifically abra-
sion, burial and limitation of light availability (Airoldi, 2003), or
mechanical tearing or removal of sessile species from their places
of attachment (Thomsen et al., 2004). On shallow rocky reefs
dominated by canopy forming kelps, wave energy may also deter-
mine canopy size, morphology and spatial patchiness, influencing
understory community composition through altering light avail-
ability, water motion and direct physical abrasion (Toohey et al.,
2004).

There are relatively few studies that use a direct proxy of
hydrodynamic exposure as a variable for predictive mapping.
Quantitative estimation by cartographic fetch models or more
complex mathematical simulations of sea state have been used to
derive exposure/organism relationships and also to predict their
distributional patterns (Bekkby et al., 2008). At the local scale,
cartographic fetch models based on the distance from a given
location over which wind waves are able to generate (i.e., distance
to barrier) have also been used to quantify a metric of exposure
often assigned to a fixed number of ordinal categories (Lindegarth
and Gamfeldt, 2005). Fetch-based exposure models have been
demonstrated to respond well in enclosed or semi-enclosed areas
where coastal perturbations, inlets or islands are the principal
mediators of local wave energy (Ekebom et al., 2003; Greenlaw
et al., 2011), but are potentially less applicable to open coasts
where submarine topography such as offshore banks or reefs are
often the significant factors mediating fully-developed wave con-
ditions from remote synoptic events (Chollett and Mumby, 2012).
Numerical wave modeling approaches are commonly used in
coastal engineering applications and are capable of incorporating

the combined effects of complex seabed topography and coast-
lines as well as spatial variation in wave energy caused by
shallow water processes such as refraction, diffraction, wave on
wave interactions and energy dissipation due to white-capping
and wave breaking. Their use in local-scale ecological studies
however has not been widely reported (England et al., 2008).
This is potentially due to the computational complexity and
expert knowledge required for their implementation (Hill et al.,
2010).

While sonar methods have been well demonstrated to pro-
vide useful proxies of the relatively static geophysical patterns that
reflect distribution of benthic species and assemblages, the spa-
tially and temporally variable influence of hydrodynamic energy
on benthic habitat distribution has been less well studied. Given
the strong associations between marine taxa and their hydro-
dynamic environment, it is expected that measures of wave
energy will also provide useful information for benthic habitat
characterization and mapping. The principal hypothesis under
investigation in this study is that a surrogate measure of wave
energy can be used to improve the predictive accuracy of acoustic
mapping techniques for sublittoral benthic habitat characteriza-
tion. We investigate the effectiveness of a proxy for wave energy
by comparing classified maps and measures of variable impor-
tance derived using predictors of depth and seafloor morphology,
to those derived inclusive of a model of wave-induced orbital
velocity.

MATERIALS AND METHODS
STUDY AREA
The study was conducted on the Otway coast of Victoria, south-
eastern Australia. The site extends ∼95 km from east to west
around Cape Otway, the prominent coastal feature of western
Victoria (Figure 1). Acoustic data for the site were acquired in
four survey blocks of approximately equal area using a Reson
Seabat 101 multibeam echosounder (MBES) operating at a fre-
quency of 240 kHz aboard the Australian Maritime College vessel
R.V. Bluefin. Block 1 was surveyed in November 2005 and blocks
2–4 in November 2007. Together, the four survey blocks encom-
pass 624 km2 of seafloor ranging in depth from 8 to 79 m.
Large sandy embayments characterize the site with topographi-
cally complex rocky reef systems extending offshore from major
headlands. Areas of shallow reef (10–30 m) were populated by
diverse assemblages of macroalgae which are characterized by
the canopy forming kelps Phyllospora comosa and Ecklonia radi-
ata, while deeper reefs were populated by diverse communities of
sponges and other sessile invertebrates.

The wave climate at the site, like much of the continental mar-
gin of southern Australia, is largely dominated by swell waves
propagating from west to east moving low pressure systems in the
Southern Ocean (Hemer et al., 2008). The majority of Australia’s
southern shelf is subject to persistent high energy swells of above
3.5 m 30–50% of the time (Porter-Smith et al., 2004) and annual
return significant wave heights of up to 8.7 m (Harris and Hughes,
2012). The orientation of Cape Otway to prevailing swells origi-
nating from the south-west quadrant causes a gradient of wave
energy across the site from highly exposed on the western side to
moderately exposed in the east.
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FIGURE 1 | Location and depth structure of the 624 km2 study site at

Cape Otway south-eastern Australia superimposed with hill-shaded

MBES bathymetry. Numerals (1–4) represent each of the four MBES survey
blocks (outlined in blue) undertaken at the site. Letters (A–E) identify major

reef systems that are referred to throughout the study. Representative
contiguous reef systems (B, D, and E) are shown in detail panels. Black lines
indicate recorded path of acoustically-positioned towed video transects
undertaken in February 2006 (Block 1) and February 2008 (Blocks 3–4).

MBES DATA ACQUISITION AND PROCESSING
Prior to each survey, calibration offsets for pitch, roll, yaw and
latency were applied after conducting a detailed patch test. Daily
sound velocity profiles were collected at the deepest area of
the site during survey period to correct for local variations
in sound velocity through the water column during process-
ing. Positioning was accomplished using a real-time differen-
tial GPS integrated with a positioning and orientation system
for marine vessels (POS MV) for dynamic heave, pitch, roll
and yaw corrections (± 0.1◦ accuracy). Navigation, data log-
ging, real-time quality control and display were carried out
using Starfix suite 7.1 (Fugro proprietary software). The sound-
ing data were edited on board ship and corrections for tides,
sound velocity, vessel draft, settlement, squat and relative posi-
tion of the transducer head were applied. The raw xyz data
were then used to produce a bathymetric grid at 2.5 m horizon-
tal resolution and a range resolution of ±12.5 mm. Backscatter
values were corrected for gain and time varied gain using the
University of New Brunswick (UNB1) algorithm (Starfix suite
7.1). Backscatter processing also corrected for transmission loss,
the actual area of ensonification on the bathymetric surface,
source level, and transmit and receive beam patterns. Additionally
backscatter was corrected for seafloor bathymetric slope derived
from the MBES bathymetry dataset. This resulted in normalized

corrected grid (2.5 m resolution) representing relative backscatter
intensity (dB).

Processed bathymetry and backscatter grids from each of the
4 survey blocks were combined at their highest resolution of
2.5 m. Edges between each of the survey blocks were normal-
ized whereby overlapping values at a distance of 50 pixels (250 m
on ground) from the edge of each block were averaged using a
linear ramping technique. In order to minimize misregistration
error between MBES products and in situ video observations,
bathymetry and backscatter images for the entire site were resam-
pled to a resolution of 5 m cell size before further processing.

A suite of environmental data was derived from the MBES
datasets using a variety of neighborhood based topographic and
spectral methods (see Rattray et al., 2013 for further infor-
mation regarding derivative products). Prior to analysis, multi-
collinearity of derivative variables was assessed using a step-wise
procedure where at each iteration the variable with the great-
est variance inflation factor (VIF) was removed until remaining
covariates displayed VIF values less than 10. MBES bathymetry,
backscatter and retained derivatives were geographically overlaid
to form an image stack of 12 predictor variables (Table 1). Further
to the previously described set of MBES-derived predictor vari-
ables, a model representing energy exposure at the seabed was
developed.
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Table 1 | Environmental predictor variables used to inform the Random Forests models.

Code Variable Analysis Scale (m) Resolution (m)

Bath Bathymetry (m) – 5
Back Backscatter intensity (dB) – 5
Slope Slope (degrees) 3 × 3 5
Comp Complexity 3 × 3 5
Maxc Maximum Curvature 3 × 3 5
East Aspect (Eastness) 3 × 3 5
North Aspect (Northness) 3 × 3 5
Rug Rugosity 3 × 3 5
HSIr HSIR (Red band) High pass 11 × 11, Low pass 5 × 5 5
HSIg HSIG (Green band) High pass 11 × 11, Low pass 5 × 5 5
HSIb HSIB (Blue band) High pass 11 × 11, Low pass 5 × 5 5
BPI Benthic Position Index Inner radius 10, Outer radius 50 5
Maxu Maximum Orbital Velocity - umax (m.s −1) – 60

All predictors except maximum orbital velocity (umax ) were derived from MBES bathymetry and backscatter intensity.

WAVE ENERGY MODEL
A fine-scale (60 m cell size) estimation of wave-induced orbital
velocities at the seabed, used here as a surrogate for wave expo-
sure, was created using a 3 step process:

(1) Results of a global wave hindcast model were downscaled to
a regional scale (Victorian coastline) spectral wave model.

(2) A Detailed spectral wave model of the Otway coastline (study
area) was created by incorporating local bathymetric vari-
ation (MBES and LIDAR derived). The wave boundaries
for the detailed spectral wave model were downscaled from
the regional wave model based on 1 year of representa-
tive annual wave conditions derived from a longer term
wave climate assessment undertaken with the regional wave
model.

(3) Wave-induced orbital velocities were transferred to the
seabed by applying linear wave theory to surface spectral
wave conditions.

Regional-scale model parameterization
Numerical wave modeling was accomplished using a MIKE 21
spectral wave (SW) model developed by Water Technology Pty
Ltd using the DHI MIKE software suite (DHI, 20121) applied to a
bathymetry mesh generated from the LIDAR / Multibeam mosaic
and boundary depths derived from the Geoscience Australia 2009
bathymetry grid (0.025◦) (Whiteway, 2009). MIKE 21 SW is a
3rd generation spectral wind-wave model capable of simulating
wave growth by action of wind, non-linear wave-wave interaction,
dissipation by white-capping, dissipation by wave breaking, dissi-
pation due to bottom friction, refraction due to depth variations,
and wave-current interaction. The model domain incorporated
the western and eastern coastlines of Victoria, Tasmania and adja-
cent areas of continental shelf including Bass Strait (Figure 2).
Long-term directional distribution and size of significant wave
heights from the Wavewatch 3 model between the years 2000
and 2010 were obtained for the region. We compared the direc-
tional distribution and magnitude of significant wave heights for

1Available online at: http://www.dhigroup.com/ [Accessed 20/08 2012].

each year against the 10-year average, and selected the year that
displayed the most similarities to the long-term record. Annual
variability in significant wave heights and mean wave direction
was generally low across the 10-year period. The year 2000 was
selected as it contained the fewest extreme values (outliers) with
respect to the 10-year average (Figure 3). Global hindcast results
(10 m u and v wind velocity) from the National Oceanic and
Atmospheric Administration (NOAA) Wavewatch 3 model were
extracted and linearly interpolated (0.25◦ spatial, 3-hourly tem-
poral) to provide boundary inputs for the regional scale spectral
wave model. Spatially and temporally varying open wave results
from the NOAA model provided wave boundary conditions along
the western, southern and eastern model boundaries.

The regional spectral wave model was calibrated and validated
against measured wave buoy data from Cape Sorell on the west
coast of Tasmania (42◦ 7.2′S 145◦E) and Point Lonsdale, south
west of Melbourne (38◦ 18.2′S 144◦ 34.2′E) for the year 2000.
Comparative agreement of hindcast wave conditions (significant
wave height and peak period) to measured data was considered
appropriate to use this model to assess wave climate along the
Victorian coastline.

Local-scale model parameterization
A site-specific spectral wave model was generated for the waters
around Cape Otway with western, southern and eastern bound-
ary conditions provided by the regional scale model (Figure 4).
A spectral wave hindcast was generated using a combination
of the 0.0025◦ bathymetry grid, local MBES bathymetry (5 m)
and bathymetric LIDAR (5 m) (Zavalas et al., 2014) to provide
depth attenuation inputs in order to accurately propagate waves
to uppermost extent of the sublittoral zone.

Modeled wave conditions corresponding to significant wave
height and spectral peak period for the year were used to cal-
culate a spatially explicit estimate of maximum instantaneous
bottom orbital velocity (umax), used here as a surrogate for expo-
sure to wave-induced energy. Linear wave theory was then used
to predict the horizontal component of the wave orbital veloc-
ity (uo) at a particular area on the seabed for small-amplitude,
monochromatic waves as follows:
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FIGURE 2 | Domain of the regional spectral wave model incorporating

the eastern and western coastlines of Victoria, Tasmania and Bass

Strait. The triangular irregular network used to inform the numerical wave
model was created from the 0.0025◦ Australian national bathymetry grid.

Boundary inputs were obtained from the NOAA Wavewatch III global
hindcast model. Wave buoy locations used to calibrate the model are located
at Point Lonsdale (Victoria) and Cape Sorell (Tasmania). Extents of study area
(Figure 1) are shown in box.

FIGURE 3 | Summary of significant wave heights (Hsig), direction and percentage occurrence for Cape Otway showing prevailing swell conditions for

(A) the year 2000 and (B) the 10-year average (2000–2010).

uo =
[

Hπ

Tsinh(kd)

]
· cos(kx − wt)

Where H = wave height (m), T = wave period (s), d = water
depth (m), k = wave number, w = radian frequency. As uo

varies sinusoidally through a wave period, the maximum velocity
umax occurs when cos (kx − wt) = 1. Instantaneous maximum
seabed orbital velocity was calculated for the entire study site at a
resolution of 60 × 60 m and subsequently resampled to a 5 × 5 m
grid to match the resolution of the other physical predictor lay-
ers. While resampling did not alter the resolution of the dataset
it rendered it compatible with the remaining grids for further
processing.

Biological observation data
Observational data were collected using acoustically located
towed video in February 2006 (MBES survey block 1) and
February 2008 (MBES survey blocks 2–4). The towed video

platform was maintained at ∼1 m from the seabed by a shipboard
operator viewing a real-time video feed via an umbilical control
and data cable. An Ultra Short Base Line (USBL) transponder
attached to the video unit allowed 3-dimensional positioning
of the video unit relative to the vessel’s dGPS antenna which
was located directly above the pole mount housing the USBL
transceiver. Angular rates of roll, pitch and azimuth (±0.1◦) at
the dGPS antenna were measured and corrected using a KVH
motion sensor. A total of 35 video transects covering ∼129 lin-
ear kilometers of seabed were used to capture the range of depths,
topographic and textural diversity at the site determined by visual
examination of the MBES bathymetry and backscatter intensity
products. Video frames were individually reviewed and assigned
to 4 benthic habitat classes (Table 2).

Habitat classification
The Random Forests (RF) classification algorithm (Breiman,
2001) was used to quantify relationships between environmental
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FIGURE 4 | Local scale spectral wave model hindcast for the year

2000 for the Cape Otway coast, Victoria, Australia (A). Depth
attenuation information was provided using MBES (5 m) and LiDAR (5 m)
bathymetry, while boundary conditions were obtained from the regional

spectral wave model (Figure 2). Summaries of significant wave height
(Hsig) and direction under typical prevailing south westerly swell
conditions for (B) west and (C) east of the southernmost point of Cape
Otway.

Table 2 | Summary of the four category classification scheme used in the study.

Habitat Code Description of habitat attributes

ALGDOM Dominant canopy forming macroalgal species—small patches of the kelp Phyllospora comosa and occasional Sargassum and
Cystophora spp. in the bathymetric highs giving way to dense canopies of the common kelp Ecklonia radiata on deeper reefs with
sparse to medium understorey of mixed red algae

ALG/INV Mixed class of generally massive and encrusting sponge forms in a mosaic of patches under a thinning canopy of E. radiata with
mixed red algal understorey

INVDOM Dense sponge dominated invertebrate communities displaying high morphological diversity on high profile solid reef to small globular
and pedunculate sponges on sand swept pavement reef and in dune troughs

SED Unconsolidated sandy sediments—Inshore fine sandy sediments with low morphological complexity to coarse shelly sand in irregular
dune formations offshore—wavelengths to 30 m

The four habitat classes used in the study are ALDOM, Algae dominant; ALG/INV, Mixed algae and sessile invertebrates; INVDOM, Sessile invertebrates dominant;

SED, Unconsolidated sandy sediments.

data layers and video observations. The RF algorithm uses boot-
strap samples of the training data and randomly selected subsets
of available predictor variables to grow multiple classification
trees. At each bootstrap iteration of the RF process the resultant
tree is used to predict those data not included in the training
process (“out of bag” or OOB observations) and calculate a mis-
classification rate. Probabilities of membership for the various

classes are estimated by the proportions of OOB predictions in
each class (Cutler et al., 2007). Each tree provides a unit vote for
the most popular class at each input instance and the final classi-
fication label is determined by a majority vote of all trees in the
ensemble.

Trees are left unpruned (i.e., fully fitted to the training data)
in order to diminish potential bias introduced by any stopping
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rules. The algorithm yields an ensemble that can achieve both low
bias and low variance (from averaging over a large ensemble of
low-bias, high-variance but low correlation trees).

In this study the RF procedure was applied using a MATLAB
implementation (Jaiantilal, 2009) of the code proposed by
Breiman and Cutler (available online at http://www.stat.berkeley.
edu/users/breiman/). The number of decision trees (ntree) was
specified at 500 and variables selected from the pool of predictor
variables for splitting at each node (m) was the square root of the
number of available predictors, a value which has been commonly
used in other implementations of the routine (Breiman, 2001;
Cutler et al., 2007). Classification rules and importance measures
were obtained from two separate implementations of the RF pro-
cedure. The first model included 12 predictor variables derived
from and including the primary bathymetry and backscatter
products (hereafter referred to as the MBES model). The proce-
dure was run again with the addition of a grid layer representing
annual maximum orbital velocity at the seabed (hereafter referred
to as the wave energy model). The performance of the RF mod-
els was evaluated by comparing each one against a subset (30%)
of video observation data that were withheld from the modeling
process. Global accuracy of each model was established using
confusion matrices (Overall accuracy and κ-statistic), similarly
class specific accuracy was derived using metrics of user’s and
producer’s accuracies.

Importance indices from each implementation of RF were
obtained by randomly permuting the values for each input vari-
able in the classification in the OOB samples for each tree.
Decrease in accuracy caused by effectively removing a particu-
lar feature from a tree denotes its relevance to the classification
accuracy of that tree. Changes in accuracy as a result of permu-
tation were averaged across all trees in the forest and used to
calculate a relative measure of variable importance (permutation
importance measure) based on mean decrease in accuracy for
each feature used in the classification across all classes.

RESULTS
A model representing maximum bottom orbital velocity (umax)
was created using inputs from a global wave model attenuated by a
bathymetric surface composed of coarse-scale (∼270 m) regional
bathymetry and then fine-scale (5 m) local bathymetry. Values of
umax ranged from 0.5 to 1.36 m/s (Figure 5). The spatial pattern
of bottom orbital velocities reflects the bathymetry and orienta-
tion to surface wave conditions which arrive predominantly from
the south-west quadrant. As a result, highly energetic hydrody-
namic conditions at the seabed are evident in the western half of
the site reducing to moderate conditions in the eastern portion of
the site which is largely sheltered from prevailing wave conditions
by Cape Otway.

Cross-validated classification accuracy metrics corresponded
well with those obtained from internal validation using the OOB
data. The overall accuracy of the model that considered both
MBES derived information and wave exposure was found to
be higher (93%) than the model considering only the MBES
derived predictors (88%). Accuracy as defined by κ was higher
for the exposure classification (0.87) than the MBES classifi-
cation (0.77). A pairwise test for significance of the κ statistic

for each error matrix (Congalton and Green, 2009) revealed
a significant difference between the two error matrices (z =
13.3) with the exposure model performing significantly bet-
ter than the MBES model. User’s and producer’s accuracies
for each habitat class were universally higher for the exposure
model. Increase in accuracy was most evident for the ALG/INV
class which was commonly misclassified as either ALGDOM
or INVDOM in the MBES classification. Producer’s accuracy
increased from 47 to 76% and user’s accuracy increased from 68
to 82% in this class with the addition of the exposure layer to the
classification.

Further accuracy assessment was done to assess the relative
influence of each set of predictor variables between the shel-
tered eastern side of the site and the more exposed west. Similar
patterns of improved accuracy with the addition of the wave
energy variable were observed in all cases. Accuracy gains in the
east of the site, however, were comparatively small and non-
significant (z = 1.82) (Table 3). The greatest increases in overall
accuracy and corresponding κ-values were observed in the west
of the site. Overall accuracy increased from 84 to 93%, and κ

was significantly higher (z = 13.84), increasing from 0.75 to 0.89.
Improvements in model accuracy corresponded largely with bet-
ter discrimination of the ALGDOM and ALG/INV classes in the
wave energy model. Producer’s accuracy increased from 78% to
93% and 42% to 69% for each class respectively.

Variables identified as most important over all classes for
the MBES classification in order of decreasing importance
were bathymetry, rugosity, the backscatter derivative HSIr and
backscatter intensity (Figure 6). These predictors were also most
important in varying degrees to the discrimination of individual
habitat classes except for the ALG/INV class which was not well
resolved by backscatter intensity. Maximum curvature, the vari-
ables representing aspect (northness and eastness) and Benthic
Position Index (BPI) were the least important predictors across
all habitat classes.

The introduction of the wave energy variable to the clas-
sification did not appreciably change the relative patterns of
contribution of the MBES variables to classification accuracy.
The wave energy proxy umax was identified as an important fea-
ture (second only to bathymetry) across all habitat classes except
for the ALG/INV class where it was of primary importance to
the discrimination of that class from all others. The relationship
between depth, wave energy and habitat categories east and west
of Cape Otway is evident in Figure 7. Habitat classes are particu-
larly well partitioned along the wave energy axis into observations
made west and east of Cape Otway. Observations occurring west
of Cape Otway display higher separability between classes, again
along the wave energy axis, than those east of Cape Otway which
overlap along the depth axis.

Decision rules derived from the two RF classifications were
executed over the full extents of their respective sets of predic-
tor variables to create full coverage habitat maps of the site. Class
coverages in the MBES classification were lower for the ALGDOM
class (8.7%) and the SED class (3.5%) (Table 4) and higher for
the INVDOM class (8.8%). Most notably, the area covered by the
ALG/INV class was 33.8% greater in the wave energy classification
than the MBES classification.
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FIGURE 5 | Distribution of modeled maximum orbital velocity (umax )

values across the Cape Otway study site for the year 2000. Maximum
bottom orbital velocities were calculated by extending outputs of the local

scale numerical wave model to the seabed using linear wave theory. Boxes
(A–E) delineate major reef systems at the site and are analogous to those
shown in Figure 1.

Table 3 | Confusion matrices for the classified images derived from the MBES and wave energy models models east and west of Cape Otway.

Reference data %Producer’s %User’s

ALGDOM ALG/INV INVDOM SED Total Accuracy Accuracy

MBES-EAST (OVERALL ACCURACY = 90%; κ = 0.76)

ALGDOM 265 55 27 37 384 92 69

ALG/INV 8 103 44 8 163 57 63

INVDOM 7 13 885 169 1074 72 82

SED 7 8 268 4664 4947 95 94

Total 287 179 1224 4878 6568

MBES-WEST (OVERALL ACCURACY = 84%; κ = 0.75)

ALGDOM 329 58 7 2 396 78 83

ALG/INV 48 148 7 1 204 42 72

INVDOM 36 143 1425 104 1708 83 83

SED 5 3 270 1641 1919 93 85

Total 418 352 1709 1748 4227

WAVE ENERGY-EAST (OVERALL ACCURACY = 93%; κ = 0.79)

ALGDOM 256 20 7 18 301 89 85

ALG/INV 11 124 24 9 168 69 73

INVDOM 9 22 973 125 1129 79 86

SED 11 13 220 4726 4970 96 95

Total 287 179 1224 4878 6568

WAVE ENERGY-WEST (OVERALL ACCURACY = 93%; κ = 0.89)

ALGDOM 389 30 9 1 429 93 90

ALG/INV 21 280 18 5 324 79 86

INVDOM 7 42 1630 109 1788 95 91

SED 1 0 52 1633 1686 93 96

Total 418 352 1709 1748 4227

Each column corresponds to the ground reference pixels used for accuracy assessment for a single class. The values in the columns indicate the number of those

ground observation pixels classified into each class, while the values on the main diagonal (italicized) indicate agreement between validation data and classified

maps.
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FIGURE 6 | Variable importance assessed by mean decrease in

permutation accuracy obtained from the Random Forests classification

(y-axis). Mean decrease in permutation accuracy is calculated using the
difference between the misclassification rate of the out of bag (OOB) data,
and the misclassification rate if values of a given variable are randomly

permuted for the OOB observations and passed down the tree to create new
predictions. Results from the model incorporating only MBES predictor
variables are shown in the top graph, while those incorporating both MBES
predictors and modeled maximum bottom orbital velocity are shown at
bottom. Variable codes on the x-axis are detailed in Table 2.

Major contiguous reef systems at the site, (identified in
Figures 1, 4), from the exposed western end of the site (Reef A)
through to its more sheltered eastern extent (Reef E) showed a
clear trend in the zonation of benthic habitat types achieved by
each of the models in the study. In the exposed west of the site
the MBES classification predicted a zone of change (ALG/INV)
between the ALGDOM and INVDOM classes in accordance with
other areas of reef at similar depths, although there are no records
of that habitat in the ground observations (Figure 8). The wave
energy classification however, showed an obvious delineation
between macroalgal dominated reef and invertebrate dominated
reef with the ALGDOM class extending to ∼34 m, notably deeper
than at any other area of the site.

Reef systems depicted in insets B and C showed an opposing
trend. While reef coverage of the ALGDOM class appear very sim-
ilar, predictions of the ALG/INV class by the wave energy model

showed it to cover a considerably more extensive area and extend
to greater depths (ca.40 m) than the MBES model (ca.32 m). It
also appears that these areas of the site may be the principal source
of differences in estimated area of the ALG/INV class between the
two classifications.

By contrast, there appear to be only relatively small differences
between the two habitat classifications on the sheltered eastern
side of the site (Reefs D and E). Both classifications visually show
a similar pattern of habitat distributions.

DISCUSSION
This study has demonstrated that a reef habitat classification
model incorporating modeled wave-induced orbital velocity per-
forms significantly better than one incorporating indirect proxies
derived from depth and seafloor morphology in describing pat-
terns of benthic habitat distribution at a wave-exposed site in
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FIGURE 7 | Depth (y-axis) plotted against maximum bottom orbital

velocity (umax ) for classified video observations. Hollow circles indicate
observations from east of the study site and filled circles those from the

west. Habitat classes are described in Table 2. ALGDOM, Algal dominated
reef; ALG/INV, mixed algae and sessile invertebrates; INVDOM, reef with
sessile invertebrates; SED, unconsolidated sandy sediments.

Table 4 | Class area estimations and areal differences derived from

the model containing only MBES variables (Acoustic) and the model

containing both MBES and wave energy variables.

Habitat area Areal difference

MBES Wave energy Difference Difference

(km2) (km2) (km2) (%)

ALGDOM 22.1 20.3 1.8 8.7
ALG/INV 12.6 19.1 6.4 33.8
INVDOM 115.4 126.5 11.0 8.8
SED 473.6 457.8 15.8 3.5

Total 623.7 623.7

temperate Australia. Improvement in the model was largely due
to increased classification capacity of shallow reef habitat types
along a gradient of wave energy, allowing their distribution to
be more accurately predicted. This pattern corroborated with
cross-validation measures which showed an improvement in the
classification accuracy for all habitat categories defined in the
study. The area covered by each habitat class differed between
the two models. Differences were most evident in a transitional
habitat between algal dominated reefs and reefs characterized by
sponge dominated sessile invertebrates.

In the present investigation, variables of primary impor-
tance to classification accuracy of the best performing model
were bathymetry, bottom orbital velocity, rugosity, backscatter
intensity and HSI backscatter derivatives. A similar pattern is
reported by Bekkby et al. (2009) in their distribution model-
ing study of the kelp Laminaria hyperborea where depth, terrain

curvature, wave and light exposure were found to be the most
important geophysical factors explaining the distribution of the
species. Similarly depth, slope, wave and light exposure were
found to best explain the potential distribution of the fucoid
kelp Saccharina latissima in Norwegian waters (Bekkby and Moy,
2011).

Differentiation of benthic habitats in this study was also largely
determined by proxies of light availability (bathymetry), availabil-
ity of suitable substrate for attachment (rugosity) and hydrody-
namic energy (seabed orbital velocity). While the contribution of
backscatter intensity and its HSI derivatives is more difficult to
interpret. It is surmised that these products are important to the
classifier in distinguishing textural differences between inhomo-
geneous substrate types that are indicative of suitable areas for
attachment of sessile species.

The high relative contribution of the depth and wave energy
variables in explaining habitat distribution, in particular for the
two classes defined by the presence of the canopy forming kelp
E. radiata (ALG/INV and ALGDOM), is well supported by the
ecological relevance of these features in explaining distribution
of the species. Bathymetry acts as an indirect mediator for light
availability, and limits the depth at which the basic requirements
for photosynthesis can be met. The influence of wave energy is
also attenuated by depth although it is evident that bathymetry
alone did not capture the full influence of wave energy as a
variable structuring the distribution of habitats across the site.
Differences between classifications can be attributed largely to
the contrasting regimes of wave energy on each side of Cape
Otway. When analyzed independently, classification accuracy for
the eastern section of the site did not improve significantly with
the addition of the bottom orbital velocity variable which was
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FIGURE 8 | Classified habitat maps of representative reef systems west

of Cape Otway overlaid with classified observation data from towed

video transects. Locations of reefs A, B and C are shown in Figures 1, 4.

Classifications on the left hand side of the figure were derived using MBES
only variables, while those on the right were derived using both MBES
predictor variables and maximum bottom orbital velocities.

limited in its range from 0.54 to 0.74 ms−1. This indicates that
the variable describing bottom orbital velocity improves the pre-
dictive capacity of the model only where wave energy is a more
restrictive environmental factor. In both models the kelp dom-
inated (ALGDOM) class transitions to invertebrate dominated
reef (INVDOM) through a narrow depth band (5–7 m) of the
mixed algae and invertebrates class (ALG/INV) (Figure 9, reefs D
and E). The kelp E. radiata is restricted in vertical distribution to
depths less than 30 m beyond which invertebrate dominated reef
becomes the primary reef habitat type.

West of Cape Otway a different pattern emerges, with observa-
tions of E. radiata extending to depths of 49 m and the transition
zone between algal and invertebrate dominated reef types span-
ning a greater depth range (∼25 m). This east-west variation in
depth distributions is captured to some extent by the model incor-
porating only MBES variables which predicts the ALG/INV class
occurring marginally deeper (33 m) than in the east but is better
described by the wave energy model which predicts the ALG/INV
class to occur both deeper (42 m) and across a greater depth range
(∼20 m).
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FIGURE 9 | Classified habitat maps of representative reef systems east

of Cape Otway overlaid with classified observation data from towed

video transects. Locations of reefs D and E are shown in Figures 1, 4.

Classifications on the left hand side of the figure were derived using MBES
variables alone, while those on the right were derived using MBES variables
and maximum bottom orbital velocities.

Differences in patterns of distribution of the ALGDOM class
between reef A, and reefs B and C on the western side of the
site are potentially caused by a temporal mismatch in collection
of observation data which in MBES survey block 1 (Figure 1)
was collected 2 years prior to the remainder of the study site.
Although observation data were collected in February of each year
there is evidence to suggest that canopy density of E. radiata is
temporally variable and largely dependent on the timing of opti-
mum environmental conditions conducive to growth, for exam-
ple, temperature, nutrient and light availability (Wernberg and
Goldberg, 2008). It is therefore conceivable that the observation
data associated with survey block 1 represents a different stage on
the annual senescence to peak biomass cycle of the species and in
that respect is not consistent with observational data from the rest
of the site.

Alternatively, these differences may reflect the interaction of
incoming wave energy with local reef geometry which is notice-
ably different between reefs. Reef A displays a relatively steep
and regular offshore gradient with little topographic diversity
descending to depths of 60 m close to the coast. Reefs depicted in
insets B and C by comparison have a shallower offshore gradient

and are characterized by rugged terrain composed of medium
to high-profile crests (<1–2 m), troughs and ridges extending
farther offshore. While modeled maximum orbital velocity is of
similar magnitude for all of these areas, the complexity of the
reef surface at areas B and C may provide a wider range of
hydrodynamic conditions caused by localized topographic diver-
sity allowing the establishment of invertebrate communities in a
mosaic of lower flow areas within the reef. This theory is corrob-
orated by the work of Toohey and Kendrick (2008) who linked
greater species richness on reefs with complex topography to
a reduction in the structuring effects of E. radiata canopy on
understorey communities.

Our results suggest that the importance of depth as a predic-
tor of reef habitat distribution is strongly mediated by variation
in hydrodynamic energy. This may indicate that light is not the
limiting factor in the vertical distribution of E. radiata in the east
of the site. The limited depths attained by the species compared
to the west of the site are potentially the result of competitive
interactions with sessile invertebrates for limited hard substrata
suitable for attachment. Under this assumption it can also be sug-
gested that stronger wave energy conditions in the west of the site
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afford some measure of competitive advantage to E. radiata allow-
ing the species to successfully occupy space to a greater depth.
This contention is supported by the known ecology of the species
which exhibits a plastic morphology in response to hydrodynamic
stress. Individuals at exposed sites have been reported to display
drag reducing morphological characters such as smaller size, nar-
rower laterals and blades as well as thicker holdfasts and stipes
(Wernberg and Thomsen, 2005; Wernberg and Vanderklift, 2010).
Higher energy conditions may additionally mediate the influ-
ence of E. radiata on understorey communities through increased
effects of direct physical abrasion by fronds (Toohey et al., 2004;
Fowler-Walker et al., 2005). There is also evidence to suggest that
some kelp species achieve a higher rate of primary productiv-
ity, increasing both individual density and canopy biomass in
high vs. low wave energy environments (Hurd, 2000). Pedersen
et al. (2012) relate this pattern to higher epiphytic load and self-
shading in low energy sites and speculate that higher energy
conditions may increase light availability to the canopy through
continuous and frequent movement.

The results presented have increased our knowledge of the
structuring effects of wave energy on subtidal habitats and
demonstrated its relevance to benthic habitat mapping. There are
however a number of limitations concerning derivation of the
wave energy model that should be considered when interpreting
these results. Foremost, the temporal resolution of the spectral
wave model used to calculate orbital velocity at the seabed is
restricted to a single year which may not have fully captured the
upper range of extreme wave conditions experienced at the site.
Significant wave heights modeled in this study did not exceed
6.2 m for the year 2000 although Hemer et al. (2008) estimate
a centennial return significant wave height of 15.51 m for Cape
Sorell and cite a 13.2 m event measured by the wave buoy in
1985. Therefore, habitat structuring by wave energy at the site
could well be the result of larger wave events occurring outside
the temporal resolution of the study.

Secondly, the spatial grain of the wave energy model (60 m)
was observed in a small number of cases to cause block artifacts
in the habitat classification, predominantly in the areas classified
as ALG/INV. This is presumably a function of the value of the
wave energy dataset in defining these areas and is of consequence
as it potentially masks fine-scale variation in habitat boundaries
important in analysis of patch metrics (e.g., Ierodiaconou et al.,
2011).

Exposure to hydrodynamic energy is one of the fundamental
variables of the coastal environment (Nishihara and Terada, 2010)
and has been well demonstrated to play in integral role in the life
histories and evolutionary biology of the organisms found there
(Hurd, 2000). There is a wealth of evidence to suggest that the
degree of adaptation to varying levels of hydrodynamic energy
strongly influences the available niche of many species. Despite
the evidence linking the distributional ecology of marine taxa to
the physical aspects of their hydrodynamic environment, there are
relatively few studies (e.g., Galparsoro et al., 2013) that explore the
application of these variables for local-scale (10’s–100’s km2) pre-
dictive distribution modeling. In this study benthic habitats at a
wave-exposed site were characterized according to environmen-
tal variables obtained from MBES variables only, and compared
with a characterization based on the addition of a fine-scale

wave energy model. Measures of classification accuracy obtained
with the addition of the wave energy variable to the model were
significantly higher overall and contributed to greater resolvabil-
ity between habitat classes than MBES derived variables alone.
Furthermore, an insight was gained into the interaction between
the structuring effects of depth (a proxy for light availability) and
exposure to wave energy over the full depth range of a foundation
kelp species that affects biodiversity and ecological functioning on
shallow reefs across temperate Australasia. This study highlights
the suitability of exposure measures for predictive benthic habi-
tat modeling on wave-exposed coastlines and provides a basis for
continuing research relating patterns of biological distribution to
measurable aspects of the physical environment.
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