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The photophysics and photochemistry of water-solvated guanine monophosphate
(GMP) are here characterized by means of a multireference quantum-chemical/molecular
mechanics theoretical approach (CASPT2//CASSCF/AMBER) in order to elucidate the
main photo-processes occurring upon UV-light irradiation. The effect of the solvent
and of the phosphate group on the energetics and structural features of this system
are evaluated for the first time employing high-level ab initio methods and thoroughly
compared to those in vacuo previously reported in the literature and to the experimental
evidence to assess to which extent they influence the photoinduced mechanisms.
Solvated electronic excitation energies of solvated GMP at the Franck-Condon (FC)
region show a red shift for the ∗

ππ La and Lb states, whereas the energy of the oxygen
lone-pair n ∗

π state is blue-shifted. The main photoinduced decay route is promoted
through a ring-puckering motion along the bright lowest-lying La state toward a conical
intersection (CI) with the ground state, involving a very shallow stationary point along
the minimum energy pathway in contrast to the barrierless profile found in gas-phase,
the point being placed at the end of the minimum energy path (MEP) thus endorsing
its ultrafast deactivation in accordance with time-resolved transient and photoelectron
spectroscopy experiments. The role of the n ∗

π state in the solvated system is severely
diminished as the crossings with the initially populated La state and also with the
Lb state are placed too high energetically to partake prominently in the deactivation
photo-process. The proposed mechanism present in solvated and in vacuo DNA/RNA
chromophores validates the intrinsic photostability mechanism through CI-mediated
non-radiative processes accompanying the bright excited-state population toward the
ground state and subsequent relaxation back to the FC region.

Keywords: DNA, purine, CASSCF/CASPT2, photochemistry, QM/MM, photostability, GMP, guanine

Introduction

The genomic material and the mechanisms that process the disposal of the excess energy
attained upon UV-light irradiation are of paramount importance from both biomedical and
biotechnological standpoints. The initially populated excited states and their fate along the
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distinct deactivation routes present in the DNA/RNA double
helix chains relate simultaneously to the intrinsic photostability
of the genomic material (Callis, 1983; Crespo-Hernandez et al.,
2004; Kohler, 2010), as well as to the damaging photo-reactions
that ultimately yield mutations and single- and double-strand
breaks that have been associated to increasingly featured dis-
eases like skin cancer (Cadet et al., 2012; Noonan et al., 2012;
Giussani et al., 2013b; Brash, 2015). Besides the biological rele-
vance, the intricate photophysical properties of nucleobases can
be also exploited to design optical photo-responsive nanoma-
chines among a long list of prospective applications (Kamiya and
Asanuma, 2014), yet it is their biological relevance that focuses
our attention.

From a bio-physical and chemical point of view, fundamental
knowledge on the deactivation processes, including the associ-
ated underlying molecular motions, are essential to rationalize
the intrinsic photostability of the genomic material and to char-
acterize the aforementioned routes leading to deleterious photo-
chemical reactions (Markovitsi et al., 2010; Cadet et al., 2012).
These different pathways increase in number and complexity
as the size of the DNA/RNA single- or double-stranded chain
enlarges, as the different de-excitation routes interact with one
another yielding a ramification of complex photoinduced path-
ways that become extremely hard to discern, disentangle, and
comprehend. This increasing degree of complexity arises partially
due to the intermolecular interactions occurring from inter- and
intra-strand conformations between the nucleobases compress-
ing the DNA/RNA chains, related to their hydrogen-bonding
motifs andπ-stacking interactions, respectively. Extensive exper-
imental work has been carried out recently in order to identify
and separate the different contributions arising from these inter-
actions, providing indicative fingerprints in the appearance of
a long-lived spectroscopic signal originating from a π-stacking
conformation within intra-strand sequences (Takaya et al., 2008;
Su et al., 2012; Vayá et al., 2012; Chen et al., 2013, 2014; Chen
and Kohler, 2014; Plasser et al., 2015) and to an ultrafast pro-
ton/hydrogen transfer stemming from a charge-transfer event
in the hydrogen-bonding motifs responsible for the inter-strand
interactions (Schwalb and Temps, 2007, 2008; Saurí et al., 2012).
Given the abstruse nature of the photo-processes under study and
their intrinsic difficulty, new development in methods and tech-
niques are expected to play a crucial role on disentangling all the
different deactivation channels (West et al., 2011, 2012; Krause
et al., 2012; West and Moran, 2012; Fingerhut et al., 2013, 2014;
Rivalta et al., 2014; Nenov et al., 2014a,b), even though the photo-
physical and photochemical studies on single nucleobases remain
at the cornerstone of the field.

A proper characterization of the monomeric chromophores
is therefore essential to understand the photoinduced events
occurring in DNA/RNA from a bottom-up approach that can
yield definitive answers regarding their role in photostability
and photo-damage (Serrano-Andrés and Merchán, 2009). This
avenue of research embodies the main efforts carried out by the
research community over the last two decades (Kleinermanns
et al., 2013; Giussani et al., 2013a; Barbatti et al., 2014; Chen
et al., 2014; Mai et al., 2014), and even though plenty of advances
have been made there is still no definitive consensus regarding

the main deactivation routes present in the nucleobases (Crespo-
Hernandez et al., 2004; Hudock et al., 2007; Barbatti et al., 2010;
McFarland et al., 2014). Several decay paths have been identified
both in vacuo (Giussani et al., 2013a) and in solution (Improta
and Barone, 2014) and assigned to a number of processes, ranging
from a barrierless deactivation through a ring-puckering motion
of the bright ππ

∗ state (Merchán and Serrano-Andrés, 2003;
Gustavsson et al., 2006; Merchán et al., 2006; Serrano-Andrés
et al., 2006, 2008; Conti et al., 2009; Improta and Barone, 2014)
to a long-lived signal arising due to a possible crossing with a
dark nπ

∗ state (Hare et al., 2007), as well as an even longer-
lived pathway widely attributed to the role of triplet states, spe-
cially prominent in non-canonical nucleobases with heavy-atom
substitutions (Merchán et al., 2005; González-Luque et al., 2010;
Martinez-Fernandez et al., 2012, 2014; Pollum et al., 2014).

In this study we turn out attention to water-solvated gua-
nine monophosphate (GMP), one of the canonical DNA/RNA
nucleobases. GMP has also been recently proposed to be an
interesting compound for nanotechnological applications due to
its outstanding capacity for self-assembly (Gupta et al., 2014),
specially remarkable in its quadruplex form, which has even
been located in DNA/RNA chains (Lam et al., 2013; Murat and
Balasubramanian, 2014). Whereas, guanine in vacuo has been
extensively studied at a high-level multireference ab initio level
(Serrano-Andrés et al., 2008; Barbatti et al., 2010, 2011) as well
as experimentally (Miannay et al., 2010; Chatterley et al., 2014),
a lesser degree of scrutiny, mainly at a density functional the-
ory level (Karunakaran et al., 2009; Parac et al., 2010; Santoro
et al., 2010; Improta, 2014; Improta and Barone, 2014), has been
considered on the effect of the phosphate group and the the sol-
vent on the photoinduced processes occurring in this compound
(Crespo-Hernandez et al., 2004). In the present work we pro-
pose a theoretical assessment of the deactivation routes embody-
ing the main photophysical and photochemical features of GMP
by employing high-level ab initio multireference perturbation
theory methods coupled with a quantum-mechanical/molecular
mechanics (QM/MM) approach, in order to ascertain the role
of the environmental perturbations in these type of systems as
they remain relatively unknown (Conti et al., 2010; Nachtigallová
et al., 2010; Barbatti, 2014). Further knowledge on the envi-
ronmental effects affecting the photo-processes occurring in the
DNA/RNA chromophores upon UV-light irradiation will pro-
vide essential information that can be properly translated to
water-solvated DNA/RNA systems such as those found in cells.

Computational Details

Sections MM Dynamics and Sampling and QM/MM Calcula-
tions describe the computational strategies and methodologi-
cal details considered in the computations of the MM sam-
pling dynamics and electronic structure QM/MM calculations
carried out.

MM Dynamics and Sampling
MM simulations were performed for GMP in water to obtain
a representative starting geometry to be employed for all
subsequent computations and analyses. The MM dynamics
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calculations were carried out using the Amber-11 suite of pro-
grams making use of the Parm99 force field (Case et al.,
2005, 2011). Initially, a cubic solvent box comprising 700 water
molecules of explicit TIP3P (Jorgensen et al., 1983) with one Na+

counterion were considered. The entire system was then heated
from 0 to 300 K for 1 ns at constant volume and constant pres-
sure (1 atm), and then finally performing a production run for
100 ns recording the snapshots every 200 fs. To select the ini-
tial geometry we performed a cluster analysis based on a Root
Mean Square (RMS) coordinate deviation analysis on the guanine
moiety over all snapshots recorded along the MM dynamics run
within a 2.0 Å difference using theMMTSB toolbox.We obtained
three different clusters, denoted a, b, and c in Figure 1, with pop-
ulations relating to the 93, 6, and 1% of the total number of struc-
tures obtained along the dynamics run, respectively. The selected
initial structure was therefore chosen as the snapshot with the
closest geometrical parameters to the centroid of the average
structures obtained in cluster A, being the most representative.

QM/MM Calculations
QM/MM calculations were performed using the COBRAMM
interface developed in our group (Altoé et al., 2007a,b). The
cut between the QM and MM regions has been done so that it
includes all guanine atoms in the QM region, placing the link
atom between the N9 of guanine and the carbon of the sugar ring
directly attached to the nucleobase (see Figure 2). The choice of
the cut between the QM and MM regions is justified in terms
of charge redistribution on the nucleobase and its π-system
in order to better reflect the covalent link between guanine
and the monophosphate group. A three-layer approach (high,
medium, and low) was used throughout (Altoé et al., 2007a):
guanine was included in the QM region (high layer, ball, and stick

FIGURE 1 | GMP and its different main conformations along the MM
dynamics run obtained through a RMS deviation cluster analysis. (A–C)
depict the most important conformations extracted from the molecular
dynamics simulation (see text).

representation in Figure 2), whereas the medium layer comprises
the movable MM atoms within a 10 Å radius surrounding the
GMPmoiety, the remainder of the MM system being kept frozen
during all optimization procedures in the low layer. Equilib-
rium geometries and photoreaction paths (Garavelli, 2006) were
determined by using fully unconstrained optimizations and min-
imum energy path (MEP) computations on the relevant potential
energy hypersurfaces by employing the intrinsic reaction coordi-
nate (IRC) and optimization algorithms as implemented in the
Gaussian 09 program package (Frisch et al., 2009) interfaced with
COBRAMM. CI optimizations were performed with the gradient
projection algorithm of Bearpark et al. (1994) as implemented in
COBRAMM at the QM/MM level. Further details can be found
in Conti et al. (2015).

Energies and gradients in the QM region were computed
making use of the complete active space self-consistent field
(CASSCF) and complete active space second-order pertur-
bation theory (CASPT2) methods (Andersson et al., 1992;
Roca-Sanjuán et al., 2012), as implemented in the MOLPRO-
2010 (Werner et al., 2012a,b) and MOLCAS-7 (Aquilante et al.,
2010, 2013) suite of programs, respectively. All gradient and
non-adiabatic coupling calculations have been performed with
the CASSCF implementation of the MOLPRO-2010 code. Sub-
sequent CASPT2 calculations on the key structures obtained
along the optimizations and MEPs have been carried out as
implemented in the MOLCAS package in order to correct the
energy values due to the lack of dynamic correlation present
in the CASSCF method. This procedure is referred to as the
CASSCF/CASPT2 protocol, and has been successfully employed
over the years to tackle a variety of photoinduced phenomena
from a theoretical standpoint (Garavelli, 2006; González-Ramírez
et al., 2012; Segarra-Martí et al., 2012; Segarra-Martí and Coto,
2014). The active space selected comprised the full π space with
the exception of the lowest occupiedπ orbital plus the three lone-
pair orbitals to provide a proper description of the nπ

∗ states,
thus making 18 electrons in 13 orbitals. The removal of the low-
est occupiedπ orbital is carried out due to its occupation number
being very close to two and given that its removal does not affect
the energy values obtained while speeding up the computations.
An imaginary level shift of 0.2 a.u. was employed in the per-
turbation step to avoid intruder states. Two different basis sets
were employed throughout: 6-31G∗ was used in order to map the
hypersurfaces at the CASSCF level whereas atomic natural orbital
(ANO) type (Pierloot et al., 1995) basis set with the large (ANO-
L) primitive set C,N,O(14s9p4d3f)/H(8s4p3d) contracted to
O[3s2p1d]/C[3s2p1d]/N[3s2p1d]/H[2s1p] (ANO-L 321/21 here-
after) was employed in order to refine the single-point CASPT2
energies.

Results and Discussion

The results are divided in three different sections: First, the main
geometrical parameters of the ground-state Franck-Condonmin-
imum of 9H-guanine both in vacuo and in solvated GMP are
presented, together with its corresponding vertical spectra, draw-
ing some conclusions on the influence the solvent and phosphate
group have on the relative position of the excited states. Next,
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FIGURE 2 | GMP and the three different QM/MM partitions defined in
the present study. The high layer treating the guanine moiety at the QM level
(ball and stick representation), the medium layer encompassing the movable
MM water molecules and the phosphate group enclosed within a 10 Å radius
distance from GMP, and the low layer containing the remainder of the MM
region that is kept frozen throughout the calculations (see text).

the different minima and conical intersections describing the
photo-process are presented. Finally, a rationale of the photoin-
duced mechanisms in GMP is drawn in conjunction with previ-
ous results and experimental data acquired from the literature,
yielding concluding notes on the photophysical and photochem-
ical decay channels featuring in GMP and leading to its intrinsic
photostability.

UV Absorption at the Franck-Condon Region
The optimized FC structure of GMP in solution (Figure 3) shows
a strong resemblance with the in vacuo 9H-Guanine CASSCF/6-
31G∗ structure previously reported in the literature (Serrano-
Andrés et al., 2008). Table 1 presents the main geometrical
parameters of both structures. As can be seen, bond lengths and
dihedral angles are analogous giving rise to a planar structure.
Small solvation effects are noticed in the GS structure mainly due
to its relatively small dipole moment, providing slight shorten-
ings in the C6-N1 bond distance in the presence of the solvent.
A very shallow stationary point (La)sp, not present in the gas
phase, has been located at the end of the La MEP featuring a
pronounced elongation of the C2-N3 and a shortening of the
N3-C4 distances, similar to those featured by the conical intersec-
tions between the La and GS states both in vacuo and in solution.
The two CIs located between the La and GS states do show pro-
nounced differences due to the solvent, yielding large elongations
in the C2-N3 bond compared to its in vacuo counterparts. This is
mainly due to the large dipole moment featured by the La state,
which makes it a more influenced state upon solvation. A simi-
lar behavior can be seen in the CIs between the La and Lb states,
prompting large deviations in the C4-C5, C5-C6 and specially
pronounced in the C6-O distance, where water-solvated GMP
suffers an elongation of 0.15 Å. The nOπ

∗ state minimum does
not show significant differences highlighting the scarce role polar
solvation has on these types of states. The CIs between nOπ

∗

and the polar ππ
∗ La and Lb states are profoundly influenced

by the solvent comparing them to their in vacuo counterparts,
featuring large differences in the C4-C5 bond distance. These
differences are mainly attributed to the polar character of the
ππ

∗ La/Lb states than to the effects on the nOπ
∗ state. Overall,

FIGURE 3 | Geometries and main geometrical parameters of the
Franck-Condon structure and excited-state stationary points
characterized in GMP for its lowest-lying excited states computed at
the CASSCF/6-31G* level of theory.

it can be concluded that solvation has an important effect on
the polar ππ

∗ La/Lb states, while being negligible for the nOπ
∗

state. These states feature excitations that are prominently placed
on the six-member ring of guanine featuring noticeable changes
in the structure upon solvation, whereas the five-member ring
remains relatively unchanged. A possible cause for this effect
could lie on the presence of the phosphate group, which is tied
to the five-ring member and could be shielding that molecular
moiety from the surrounding water molecules thus mitigating its
exposure as compared to the six-member ring and justifying why
the latter suffers such pronounced changes upon solvation.

Table 2 contains the vertical excitation energies at the
CASPT2 level computed in the present study, together with sev-
eral other computations and experimental values reported in the
literature. We have used Platt’s nomenclature (Platt, 1949), where
La represents the ππ

∗ excited state characterized by the largest
contribution of the configuration HOMO (H) → LUMO (L) to
the CASSCF wave function, whereas Lb depicts the ππ

∗ excited
state with a predominance of H → L+1 and H-1 → L configu-
rations. By inspection of Table 2, it can be readily seen that there
is a qualitative difference in the relative order of the lowest-lying
excited states in vacuo and in solution: both cases feature theππ

∗

La state as the energetically lowest-lying excited state, at 4.93 and
4.77 eV respectively, but while in vacuo S2 has nOπ

∗ nature (5.54
eV, involving the oxygen lone pair of the purinic base), in solu-
tion S2 isthe ππ

∗ Lb state, placed at 5.44 eV. This effect has been
widely reported in the literature being related to a bathochromic
effect (Nakayama et al., 2013), with the nOπ

∗ featuring a dipole
moment of 5.69 D (3.51 D in vacuo) being less stabilized than the
ππ

∗ Lb state (7.96 D, 4.92 D in vacuo) as it can be also noticed by
looking at their change in dipole moment. The solvent therefore
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TABLE 1 | Bond distances (in Å) characterizing the key structures involved in the photoinduced events of GMP upon UV-light irradiation.

N1-C2 C2-N2 C2-N3 N3-C4 C4-C5 C5-C6 C6-O C6-N1 C5-N7 N7-C8 C8-N9 N9-C4

GS in vacuoa 1.37 1.38 1.31 1.36 1.39 1.44 1.21 1.41 1.38 1.30 1.38 1.37

GS in solution b 1.37 1.36 1.29 1.36 1.37 1.43 1.20 1.38 1.38 1.30 1.37 1.37

(La)sp in solutionb 1.40 1.37 1.47 1.28 1.45 1.46 1.21 1.38 1.37 1.30 1.38 1.39

(La/GS)CI-1 in vacuoa 1.41 1.40 1.45 1.29 1.45 1.47 1.20 1.41 1.39 1.29 1.39 1.37

(La/GS)CI-1 in solutionb 1.37 1.38 1.50 1.24 1.48 1.47 1.23 1.37 1.37 1.30 1.38 1.42

(La/GS)CI-2 in vacuoa 1.41 1.40 1.38 1.28 1.45 1.35 1.34 1.36 1.39 1.29 1.38 1.38

(La/GS)CI-2 in solutionb 1.42 1.36 1.49 1.27 1.48 1.48 1.21 1.39 1.38 1.30 1.39 1.39

(Lb/La)CI in vacuo
a 1.38 1.40 1.32 1.31 1.45 1.43 1.24 1.36 1.35 1.44 1.42 1.40

(Lb/La)CI-1 in solutionb 1.39 1.37 1.28 1.37 1.38 1.38 1.39 1.39 1.38 1.30 1.36 1.38

(Lb/La)CI-2 in solutionb 1.46 1.35 1.37 1.21 1.59 1.54 1.18 1.30 1.30 1.47 1.41 1.39

(nO)min in vacuo
a 1.38 1.38 1.28 1.37 1.36 1.44 1.38 1.41 1.36 1.30 1.37 1.36

(nO)min in solutionb 1.38 1.38 1.29 1.38 1.36 1.44 1.41 1.40 1.38 1.30 1.37 1.80

(nO/La)CI in vacuo
a 1.41 1.40 1.38 1.28 1.45 1.35 1.34 1.36 1.39 1.29 1.38 1.38

(nO/La)CI in solutionb 1.39 1.37 1.28 1.37 1.38 1.38 1.39 1.39 1.38 1.30 1.36 1.38

(nO/Lb)CI in solutionb 1.40 1.35 1.30 1.36 1.38 1.42 1.24 1.36 1.37 1.30 1.37 1.37

aValues obtained at the CASSCF/6-31G* level of theory by Serrano-Andrés et al. (2008).
bValues computed in the present study.

affects the absorption spectra prominently at the FC region by
blue-shifting the nOπ

∗ state by 0.23 and red-shifting the ππ
∗ Lb

by 0.33 eV with respect to the gas-phase, a change comparable to
those previously reported in other QM/MM studies in solution
(Parac et al., 2010; Nakayama et al., 2013). It is worth noting that
the oscillator strengths associated to the transitions to the La and
Lb states are also affected by the effect of the solvent. Whereas, La
features as the brightest lowest-lying excited state in the gas phase
and the Lb state presents a slightly smaller oscillator strength
(0.158 and 0.145 respectively), in solvent La and Lb present an
inverse order in the values for the oscillator strength associated to
their transitions (0.09 and 0.17 respectively), being in agreement
with the experimental data reported by femtosecond broad-band
transient spectroscopy (Karunakaran et al., 2009).

The effect of the basis set on the excitation energies has also
been studied by employing both 6-31G∗ and ANO-L 321/21
basis sets. The 6-31G∗ CASPT2 computations report values
of 4.77, 5.44, and 5.77 eV for the La, Lb, and nOπ

∗ transi-
tions, respectively, whereas the ANO-L yields absorption energy
values of 4.50, 5.10, and 5.71 eV for the La, Lb, and nOπ

∗

states respectively, consistent with those reported experimentally
(Karunakaran et al., 2009), which place the absorption maxi-
mum of La at 4.50 eV. Table 2 also reports several theoretical
approaches found in the literature employing different methods
to simulate solvated GMP. As can be seen, more sophisticated
DFT/MRCI methods agree qualitatively with the values here
reported at the CASPT2 level of theory, yielding values within
0.33 and 0.02 for the La and Lb states respectively with respect to
the CASPT2/ANO-L values here obtained, and a slight energetic
deviation is also found when comparing to the values computed
at a TDDFT level. This small difference present in TDDFT results
employing a polarization continuum model (PCM) (see Table 2)
could also be due to the fact that (Karunakaran et al., 2009)
used a methylated guanine to model the effect of the phosphate

group whereas here the phosphate group is explicitly included
even if just at the MM level. On overall we can conclude that the
absorption values reported here at the CASPT2/ANO-L level are
consistent with the experimental data and with the highest-level
theoretical estimates present in the literature, thus highlighting
the capabilities of the CASSCF/CASPT2 protocol to treat excited
states in a balanced manner (Roos et al., 1996) and its usage for
mapping photochemical reaction paths (Garavelli, 2006).

Excited-State Evolution
The excited-state evolution is here tracked by means of static
approaches through excited-state optimizations and the char-
acterization of the conical intersections representing the cross-
ings among the energetically lowest-lying excited states, ultimate
protagonists in the deactivation photo-process. Additionally, the
MEPs connecting the initially accessed states and subsequent
photoinduced events have been mapped making use of the IRC
technique.

The lowest-lying excited state is the ππ
∗ La state, which is

expected to be the main spectroscopic state due to its lowest-
lying position and relatively large oscillator strength. This state
is generally assumed to present an easily accessible CI along
its relaxation pathway toward the ground-state characterized by
a ring-puckering motion (see Figure 4) widely featured in the
DNA/RNA nucleobases (Giussani et al., 2013a) in vacuo. This
profile is slightly altered in the presence of polar environments
as it has been previously reported for other purine nucleobases
(Conti et al., 2010), where a shallow stationary point (La)sp arises
along the MEP close to the CI with the ground state being
placed at 1.15 eV vertically and adiabatically at 3.30 eV from
the ground state (see Figure 5). Two different CIs have been
characterized in the vicinity of this stationary point, one opti-
mized directly in solvent corresponding to the minimum energy
conical intersection (MECI) also reported by Serrano-Andrés
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TABLE 2 | Vertical absorption energies (1E, in eV), oscillator strengths (f)
and dipole moments (µ, in Debye) computed at the FC region, together
with previous theoretical and experimental data.

States 1E f µ

9H-GUANINE IN VACUOa

GS 0 5.81

ππ* La 4.93 0.158 5.23

nOπ* 5.54 0.002 3.51

ππ* Lb 5.77 0.145 4.92

GMP IN SOLVENT (6-31G*)b

GS 0 8.58

ππ* La 4.77 0.09 8.97

nOπ* 5.77 0.00 5.69

ππ* Lb 5.44 0.17 7.96

GMP IN SOLVENT (ANO-L 321/21)b

GS 0 8.88

ππ* La 4.50 0.17 9.62

nOπ* 5.71 0.00 5.64

ππ* Lb 5.10 0.20 8.31

EXPERIMENTc

ππ* La 4.50 0.094

nOπ*

ππ* Lb 4.96 0.167

9Me-GUANINE*5H2O (TDDFT/PCM)c

ππ* La 4.68 0.16

nOπ* 5.77

ππ* Lb 5.18 0.34

9H-GUANINE (TDDFT/TZVP)d

ππ* La 4.93 0.158

nOπ* 5.36 0.106

ππ* Lb 5.28 0.117

9H-GUANINE (DFT/MRCI/TZVP)d

ππ* La 4.83 0.22

nOπ* 5.32 0.001

ππ* Lb 5.08 0.368

aValues obtained at the CASSCF/6-31G* level of theory by Serrano-Andrés et al. (2008).
bResults obtained in the present study.
cResults obtained by Karunakaran et al. (2009).
dResults obtained by Parac et al. (2010).

et al. (2008), and another relating to the CI found in the same
study along the MEP in vacuo, which we have tentatively named
(La/GS)CI-1 and (La/GS)CI-2 in the present study, respectively.
Both CIs as well as the (La)sp present ring-puckering structures
in the A6 cycle yielding slight bond-length alterations (C2-N3,
N1-C2, N3-C4, and C4-C5) compared to the FC structure and
featuring prominent N1-N-C2-N3 dihedral angle distortions at
133◦, 132◦, and 140◦ for the (La/GS)CI-1, (La/GS)CI-2, and (La)sp
structures, respectively. These distortions are quantitatively dif-
ferent to those reported in vacuo, stressing out the importance
of the solvent where the (La/GS)CI-1 presents a ∼143◦ dihe-
dral angle as compared to its 133◦ solvated counterpart, together
with slightly pronounced bond-length differences as can be seen
in Table 1. Both CIs here characterized present very similar
structures (see Figure 4) and charge distributions very close to

those found in the gas phase, presenting an inversion in their
energetic order in solution being (La/GS)CI-1 the energetically
lowest-lying adiabatically at 3.31 eV, (La/GS)CI-2 being placed
0.3 eV higher in energy and 3.60 eV adiabatically from the FC
region.

Two different CIs connecting the ππ
∗ La and ππ

∗ Lb
states have also been located. Direct CI optimization leads to
(Lb/La)CI-2, its geometry presenting a deformation near the N9-
C8-N7 angle with respect to the ground state. The bond lengths
suffer large distortions, observing a shortening of the N1-C6, C5-
N7, C4-N3, N3-C2, C6-O, and C2-N bonds, and an increase in
the length of the remaining bonds with respect to the FC region
(see Figure 4). This CI is placed at 7.62 eV vertically from the FC
region, which is higher in energy than both ππ

∗ La and ππ
∗ Lb

vertical excitation energies, placed at 4.77 and 5.44 respectively,
thus hinting toward a sloped CI profile preventing their non-
adiabatic interaction. A second CI, (Lb/La)CI-1, obtained along
the Lb MEP computed within a 4in4 active space to avoid exces-
sive wave function mixing, has been located being placed ∼5 eV
adiabatically from the FC region. This CI presents geometrical
similarities with its in vacuo counterpart and provide an accessi-
ble channel to funnel the initially populated Lbstate down to La.
Further attempts to optimize the Lb state toward a possible min-
imum have been fruitless due to the large wave function mixing
and root flipping problems experienced along the optimization
procedure, preventing us to obtain further information on this
specific state.

As previously stated, nOπ
∗ represents the third energetically

wise excited state for the GMP in solvent. The optimized nOπ
∗

minimum found in solvent is prominently characterized by an
elongation of the C6-O bond distance with respect to the ground
state. Table 1 shows the main differences in bond lengths, where
the C6-O bond is elongated in this minimum from 1.22 Å at the
FC region to 1.41 Å. The minimum of this excited state in sol-
vent is very similar to the one reported in vacuo (Serrano-Andrés
et al., 2008), as would be expected given the small effects provided
by the solvent on nπ

∗ excited states. Energetically it is placed 3.97
eV adiabatically and 2.67 eV vertically with respect to the ground
state (see Figure 6), which constitutes a stabilization of 1.8 eV
from its initial value at the FC region.

We have also located the CI between the states nOπ
∗ and ππ

∗

La, (nO/La)CI, its geometry presenting a planar structure like the
ground state, but showing an elongation of the C6-O bond and a
shortening of the C6-C5 bond. We observe similarities between
this geometry and that of the CI optimized in vacuo, as they both
present the same kind of geometrical distortions given the small
solvent effects in the nOπ

∗ state, yielding a relative energy of
4.90 eV with respect to the FC region. The CI connecting the
nOπ

∗ and ππ
∗ Lb states, (nO/Lb)CI, has also been located, featur-

ing a planar structure and differences in the bond lengths in the
six-member ring, in particular in the differences in the N1-C2,
N1-C6 bonds.

The differences observed in the geometries of the excited state
minima and of the different CIs characterized both in vacuo and
in solvent highlight the importance of the solvent that is consid-
ered explicit in our calculations, together with the explicit pres-
ence of the ribose and phosphate groups onGMP, providingmore
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FIGURE 4 | GMP geometries and main geometrical parameters of the characterized conical intersections between the lowest-lying excited states
computed at the CASSCF/6-31G* level of theory.

accurate estimates to relate to the photoinduced events in the
cellular system.

Photophysics and Photochemistry of GMP:
Elucidating Its Intrinsic Photostability
Figure 7 features a scheme with the tentative photo-processes
occurring upon UV irradiation in GMP based on our present
computations and the theoretical and experimental data available
in the literature. Experimentally, time-resolved transient absorp-
tion in solution by Karunakaran et al. (2009) suggest either bi- or
triexponential decay depending on the spectral region measured,
providing τ 1 = 0.25 ps, τ 2 = 1.0 ps, and τ 3 = 2.5 ps for
the 270–400 nm region in the non-protonated GMP at neutral
pH. (Karunakaran et al., 2009) justify these ultrafast signals in
terms of TDDFT calculations due to ring-puckering CIs between
the ππ

∗ La and GS states, in accordance to what was previously
proposed in vacuo by Serrano-Andrés et al. (2008) on the basis
of CASSCF/CASPT2 computations. Molecular dynamics simu-
lations by Serrano-Andrés et al. (2008) proposed that the ultra-
fast decay from the ππ

∗ La state could occur already within the
first 100 fs, an assumption that has been challenged by Barbatti
et al. (2011), pushing the timescale toward the 500 fs mark. (Lan
et al., 2009), on the other hand, support a biexponential decay

based on their MD simulations where they obtain a faster ∼190
fs and a slower∼400 fs decays through two different CIs between
the ππ

∗ La and GS states, thus highlighting the complex process
under study and the difficulty to simulate it coherently (Mai et al.,
2014). The most recent experimental data to our knowledge is
based on the photoelectron spectroscopy of GMP both in vacuo
and in solution (Chatterley et al., 2014), yielding a biexponential
decay of τ 1 = 50 fs and τ 2 = 600 fs in vacuo and τ 1 = 120 fs
and τ 2 = 680 fs in solution, which reveals a striking similarity
among the two different set of values as they are within experi-
mental error and therefore provide evidence of the negligible role
played by the solvent in the photoinduced decay paths present
in this system. This biexponential decay is obtained through a
4.66 eV pump, which also suggests the possibility of only probing
those kinetic processes undergone after direct ππ

∗ La popula-
tion, whereas the time-resolved transient data by Karunakaran
et al. (2009) yields a third exponent related to a slower timescale
possibly arisen through an initial population of the ππ

∗ Lb state.
Our present results point toward an ultrafast deactivation

along the La MEP characterized by a ring-puckering motion
centered in the C2 atom, which brings the excited-state popu-
lation to interact non-adiabatically with the ground state, fun-
neling down the population that is further relaxed to the FC
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FIGURE 5 | CASPT2 energies of the ground (GS) and lowest-lying singlet excited states (ππ
* La, ππ

* Lb and nOπ
*) of the GMP from the FC geometry

and along the ππ
* La CASSCF MEP.

FIGURE 6 | CASPT2 energies of the ground (GS) and lowest-lying singlet excited states (ππ* La, π π* Lb and nOπ*) of the GMP from the FC geometry
and along the nOπ

* CASSCF MEP.

region. This kind of process has been widely attributed to the
DNA/RNA nucleobases and is permanently linked with their
intrinsic photostability (Serrano-Andrés andMerchán, 2009) and
therefore extends to the photostability of the genomic material.
Our calculations in the presence of the solvent and the sugar
and phosphate groups reveal a very shallow stationary point at
the end of the MEP right before reaching the intersection seam
(see Figure 5), which has also been previously documented in
other nucleobases at a TDDFT level of theory to be related to a
transition state with an imaginary reaction coordinate that drives

the system toward the ring-puckering CI (Picconi et al., 2011).
This stationary point is explained in terms of the planarity of
the ππ

∗ potential energy hypersurfaces of all nucleobases (Gius-
sani et al., 2013a; Improta and Barone, 2014), and is expected
to be overcome in order to reach the CIs with the ground state
in an ultrafast manner. In contrast, we have shown recently
(Conti et al., 2010, 2015) that the corresponding internal con-
version path in adenine is controlled by a larger barrier, which
may explain its longer lifetimes. Two different CIs have been
located between the ππ

∗ La and GS states, namely (La/GS)CI-1
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FIGURE 7 | Scheme of the photoinduced processes occurring in
solvated GMP upon UV-light irradiation. The energetic values (in eV) and
the different crossing points and minima depicted refer to the CASPT2
computations carried out in the present study. The associated time constants
marked in yellow have been taken tentatively from the ultrafast pump-probe
transient absorption experiments reported by Karunakaran et al. (2009). Three
different decay channels have been assigned to the experimental evidence: τ1
refers to the ultrafast decay path from an initially accessed ππ

* La excitation to
the ring-puckering CI with the GS, τ2 to the initial population of the ππ

* Lb
state and subsequent non-adiabatic population transfer to the La state
finalizing in the CI between La and GS, and τ3 that is tentatively assigned
mainly to deactivation processes along the Lb state (See text for details).

and (La/GS)CI-2. These two CIs are analogous to those found in
vacuo by Serrano-Andrés et al. (2008) but present an energetic
inversion due to the embedding effect of the solvent. Both are
expected to belong to the same intersection seam given their sim-
ilar structures, and both are considered to be accessible from the
La stationary point previously characterized. (La/GS)CI-1, being
the lowest-lying energy wise is expected to embody the fastest
decay route, relating to the τ 1 = 0.25 ps recorded through time-
resolved transient and τ1 = 120 fs in time-resolved photoelec-
tron spectroscopy experiments. This assignment is analogous to
that previously reported for 9H-Guanine in vacuo, and supports
recent experiments reporting analogous excited-state decays for
GMP in gas-phase and in solution (Chatterley et al., 2014). The
second conical intersection with the ground state, (La/GS)CI-2,
might be responsible for the second exponential measured at
τ 2 = 1.0 ps and τ 2 = 680 fs in time-resolved transient and
photoelectron spectroscopy, respectively, given its higher-lying
energetic position and a relatively small barrier of ∼0.3 eV to
be overcome in order to access it once reaching the intersection
seam. Nevertheless, the existence of another CI between the La
and GS states not characterized in the present contribution could
better explain that second lifetime, which will be related to the
La surface as it has been recently reported experimentally (Chat-
terley et al., 2014). These assignments are in line with the MD
studies by Lan et al. (2009), reporting two different decay routes
with their associated timescales to two distinct CIs between the
ππ

∗ La and the ground state, and are in line with other theoreti-
cal CASPT2 and TDDFT studies that point toward the La state as
the responsible for both ultrafast decay timescales.

The ππ
∗ Lb state is predicted to be involved in the photoin-

duced events being related possibly only to the longest-lived τ 3.
This is explained in terms of an initial population of the Lb state,
which presents a sizable oscillator strength, and subsequent fun-
neling of the population toward the La state mediated by the
(Lb/La)CI-1, placed at∼5 eV along the Lb relaxation pathway. The
second CI characterized between Lb and La states, (Lb/La)CI-2, is
expected to be irrelevant to the photo-process due to its high-
lying energetic position preventing its accessibility. The lone-pair
excited state, nOπ

∗, is blue-shifted in solution as has been already
mentioned above. Its elevated vertical absorption energy prevents
it to be one of the main spectroscopic states, yet its close-lying
position to the absorbing ππ

∗ Lb state facilitates a possible pop-
ulation of this state and subsequent relaxation toward its min-
imum, (nOπ

∗)min. This minimum is placed at 3.97 eV adiabat-
ically and 2.67 eV vertically from the GS, and could be partly
responsible of the longest-lived signal reported experimentally
at τ 3 = 2.5 ps or at τ3 = 167 ps at low pH, given that such
nπ

∗-mediated processes have been already characterized experi-
mentally to be close to the∼100 ps timescale on pyrimidines both
in vacuo and in solution (Hare et al., 2007).

The present study elucidates the photoinduced events in GMP
in terms of an ultrafast decay along the main spectroscopic and
initially accessed ππ

∗ La state characterized by a ring-puckering
motion, which would cover the experimental timescales τ 1 and
τ 2 through different CIs with the ground state, whereas the
longest-lived component would be attributed to the decay routes
mediated through theππ

∗ Lb and, to a minor extent, to the nOπ
∗

state.

Conclusions

The present study encompasses a photophysical and photochem-
ical appraisal of water-solvated GMP by means of theoretical
multireference perturbation theory QM/MM techniques. An ini-
tial MD simulation has been carried out in order to charac-
terize the geometrical parameters of the FC region. The verti-
cal excitation energies have been computed and compared to
recent data found in the literature and to the results obtained
in vacuo, highlighting the importance of the environment yield-
ing qualitative differences for the ππ

∗ La and ππ
∗ Lb states

being red-shifted and for the nOπ
∗ state being blue-shifted as

compared to their gas-phase counterpart. The ππ
∗ La state is

predicted to be the main spectroscopic state driving the ultra-
fast deactivation processes occurring in GMP upon UV-light
irradiation based on a ring-puckering motion that enhances its
non-adiabatic interaction with the ground state in a radiation-
less manner. A shallow stationary point toward the end of the
ππ

∗ La MEP has been characterized, together with two dif-
ferent CIs with the ground state that help rationalize the two
fastest decay times measured experimentally. Upon initial Lb
absorption, two CIs between the ππ

∗ Lb and La states have
also been located, one of them along the Lb decay path point-
ing toward a population funneling down to the La state and
another being too high in energy to contribute prominently in
the photo-process. The CIs connecting the nOπ

∗ state and the
ππ

∗ Lb and La states have also been characterized along its
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relaxation route, yielding a minimum in the nOπ
∗ state expected

to emit vertically at ∼2.7 eV. Both ππ
∗ Lb and nOπ

∗ are sug-
gested to contribute to the longest-lived experimental timescale,
the latter providing a lesser contribution given the relatively
fast kinetic timescale and the long-lived timescales expected in
nπ

∗ fluorescent states. Upcoming QM/MM dynamics simula-
tions are expected to shed some more light on the photoinduced
events occurring in water-solvated GMP and its specific decay
timescales in order to provide a more specific molecular coun-
terpart to the experiment and better explain the photochemical
and photophysical processes resulting in the intrinsic stability of
the genomic material.
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