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Non-targeted metabolomics constitutes a part of the systems biology and aims at

determining numerous metabolites in complex biological samples. Datasets obtained in

the non-targeted metabolomics studies are high-dimensional due to sensitivity of mass

spectrometry-based detection methods as well as complexity of biological matrices.

Therefore, a proper selection of variables which contribute into group classification is

a crucial step, especially in metabolomics studies which are focused on searching for

disease biomarker candidates. In the present study, three different statistical approaches

were tested using two metabolomics datasets (RH and PH study). The orthogonal

projections to latent structures-discriminant analysis (OPLS-DA) without and with multiple

testing correction as well as the least absolute shrinkage and selection operator (LASSO)

with bootstrapping, were tested and compared. For the RH study, OPLS-DA model built

without multiple testing correction selected 46 and 218 variables based on the VIP criteria

using Pareto and UV scaling, respectively. For the PH study, 217 and 320 variables

were selected based on the VIP criteria using Pareto and UV scaling, respectively. In

the RH study, OPLS-DA model built after correcting for multiple testing, selected 4 and

19 variables as in terms of Pareto and UV scaling, respectively. For the PH study, 14

and 18 variables were selected based on the VIP criteria in terms of Pareto and UV

scaling, respectively. In the RH and PH study, the LASSO selected 14 and 4 variables with

reproducibility between 99.3 and 100%, respectively. In the light of PLS-based models,

the larger the search space the higher the probability of developing models that fit the

training data well with simultaneous poor predictive performance on the validation set.

The LASSO offers potential improvements over standard linear regression due to the

presence of the constrain, which promotes sparse solutions. This paper is the first one

to date utilizing the LASSO penalized logistic regression in untargeted metabolomics

studies.

Keywords: statistical analysis, non-targeted metabolomics, mass spectrometry, orthogonal projections to latent

structures-discriminant analysis, least absolute shrinkage and selection operator
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INTRODUCTION

Apart from genomics or proteomics, metabolomics is a relatively
new and dynamically developing field of systems biology.
Metabolomics is focused on qualitative and quantitative analysis
of low-molecular-weight endogenous compounds in different
biological matrices (urine, blood, tissue extracts) (Nicholson
et al., 1999; Fiehn, 2001). Metabolome, analogously to a well-
defined genome or proteome, covers all metabolites present in
cells, tissues being under continuous change in physiological and
pathophysiological conditions.

There are two research approaches which have emerged in
metabolomics: targeted and non-targeted strategy (Barderas
et al., 2011). Targeted metabolomics, known as metabolic
profiling, relies on the quantitative analysis of selected group
of metabolites characterized by similar physicochemical
properties (i.e., carbohydrates, amino acids, organic acids,
nucleosides) or belonging to the same biochemical pathway (i.e.,
gluconeogenesis, citric acid cycle) (Dudley et al., 2010). Non-
targeted metabolomics is based on the qualitative measurement
and comparison of as many metabolites as possible. Most
commonly, both approaches are used to determine a wide
spectrum (or subset) of metabolites in biological samples
from different groups of individuals (e.g., healthy vs. diseased,
responsive vs. non-responsive) or between different disease
stages (cancer stage or grade) (Patti et al., 2012).

The data analysis methodology is strictly dependent on
metabolomics research strategy. In the targeted approach, the
number of samples is usually larger than the number of variables
determined. Therefore, a method of choice is to use parametric
(t-test) or non-parametric (Mann Whitney U test statistics)
methods to check whether the concentration/levels of a particular
metabolite significantly differs between the investigated groups.
However, both targeted and untargeted approach is related to
hypothesis testing if the goal is to select significant variables based
on p-values. Since we usually test more than one hypothesis (or in
other words, we determine the concentration/level of more than
one metabolite), multiple testing adjustment should always be
considered to control false positive results (Hovde, 2011; Vinaixa
et al., 2012).

In non-targeted metabolomics studies in contrast, the
number of variables highly exceeds the number of metabolic
features detected. Therefore, the method of choice in high-
dimensional andmulticolinear metabolomics data is the use of (i)
unsupervised methods such as the principal component analysis
(PCA) as well as (ii) supervised discriminant techniques, such as
the partial least squares-discriminant analysis (PLS-DA) and the
orthogonal projections to latent structures-discriminant analysis
(OPLS-DA) (Xi et al., 2014; Alonso et al., 2015).

The use of the above-mentioned techniques has been widely
reported in metabolomics. However, despite their usefulness
when analyzing high-dimensional data, the quality and predictive
performance of the models developed are often poor due to
model overfitting (Hendriks et al., 2011). Another drawback
of the PLS-based methods is that they do not provide
any statistical significance of variables expressed by p-values.
Instead, the variable importance (VIP) measure is used to

analyze the loadings which reflect the influence of each
variable on the response. The VIP values greater than one
are considered important and affect classification between the
groups.

To prevent overfitting of the model, the number of variables
should be reduced. Feature selection methods have been widely
described in the literature to reduce false discoveries, especially
when dealing with high dimensional and multicollinear data
space. Feature selection is considered the most crucial task
prior to modeling because it reduces overfitting of the model
enhancing its generalization, making the model less complex
and easier to interpret simultaneously improving its performance
(Goodarzi et al., 2012). Controlling false discovery rate (FDR)
is a statistical approach which enables controlling the FDR of
the features identified before developing PLS models (Goodacre
et al., 2007; Bum Kim et al., 2008).

Apart from the PLS-based techniques for high-dimensional
data space, an alternative approach which provides feature
selection together with model development relates to
regularization-based method, i.e., the Least Absolute Shrinkage
and Selection Operator (LASSO). The LASSO has been reported
to improve model performance in terms of multi-dimensional
andmulticollinear data analysis (Daghir-Wojtkowiak et al., 2015)
and therefore, may be considered an alternative to commonly
known PLS-based techniques.

The objective of this study was to test three different statistical
approaches for the selection of variables which contributed
the most into classification between the groups. Two datasets
from untargeted LC/MS metabolomics studies were used. We
developed models using (i) OPLS-DA without multiple testing
correction, (ii) OPLS-DA with multiple testing correction, and
(iii) LASSO regularization. Within the OPLS-DA analysis, we
additionally compared the results in terms of the autoscaling
(UV) and Pareto scaling. To the best authors’ knowledge, this is
the first study which demonstrates the concept of LASSO for the
analysis of untargeted metabolomics data.

MATERIALS AND METHODS

Study Design
In this study, three statistical approaches were tested using two
datasets. The first dataset was denoted as the RH study and
referred to a comparison between responsive (n = 81) and
non-responsive (n = 69) hypertensive-treated patients. The
compared groups were matched according to age (p = 0.79),
body mass index (p = 0.28), and sex (p = 0.36).

The second dataset was denoted as the PH study and referred
to a comparison between 20 patients suffered from pulmonary
disease and 20 healthy individuals. The studied groups were
matched according to age (p = 0.96), BMI (p = 0.87), and sex
(p = 0.62).

In terms of the RH study, plasma samples’ collection
was performed according to the ethical agreement from an
independent committee of bioethical research at the Medical
University of Gdansk (NKEBN/285/2009). The PH study was
carried out with the approval of the ethical committee of clinical
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investigations in Barcelona (CEIC, approval number CIF-G-
08431173). Both studies were conducted with the understanding
of the consent of each participant. All participants under study
provided a written informed consent.

Analytical Measurements
Plasma metabolic fingerprinting in the RH study was performed
with the Agilent 1200 Series LC system (Agilent Technologies,
Waldbronn, Germany) coupled with the Agilent 6224 Series TOF
LC/MS system (Agilent Technologies, Waldbronn, Germany). In
the PH study, plasma metabolic fingerprinting was conducted
with the Agilent 1200 Infinity series (Agilent Technologies,
Waldbronn, Germany) coupled with the Agilent Technologies
QTOF (6520) mass spectrometry detector. The chromatographic
and mass spectrometer parameters of the optimized LC/MS
methods were described in detail in the Supplementary Material
section. Quality control samples (QCs) were prepared as a
pool of equal volume of each plasma samples included in each
study. The QCs were analyzed in order to monitor system’s
and method’s stability during the whole sequence run. Detailed
clinical information about studied groups in both non-targeted
metabolomics studies were described in Tables S1, S2 in the
Supplementary Material section.

Data Treatment, Filtration, and
Normalization
The acquired chromatograms representing plasma metabolic
fingerprints were extracted with the use of MFE algorithm
provided by MassHunter Qualitative Analysis B.06.00 software
(Agilent Technologies, Waldbronn, Germany). The parameters
applied for data extraction were similar to the previously
described (Ciborowski et al., 2014). The background noise
threshold was set to 200 counts and the following adducts were
included: +H, +Na, +K. Neutral water loss was also taken into
account. After data extraction, each potential compound present
in all plasma samples was described by the monoisotopic mass,
retention time, and abundance.

Alignment of the chromatography data was performed
with Mass Profiler Professional B.02.01 software (Agilent
Technologies, Waldbronn, Germany) using 1% and 5 ppm for
retention time and mass correction, respectively.

The aligned dataset was filtered based on the quality assurance
(QA) criteria (Dunn et al., 2011) which included the presence of
variables in at least 50% of QCs and the coefficient of variation
(CV) value (<20%) in QCs. A second filtering required the
presence of the variable in 80% of the samples in at least one of
the compared groups (i.e., in 80% of the samples in the responsive
or non-responsive group, as well as in the PH patients or healthy
individuals). These datasets were subsequently used for statistical
analyses.

Statistical Methods
Orthogonal Projections to Latent Structures

(OPLS)-Based Methods
The partial least-squares (alternatively partial least squares
projections to latent structures, PLS) is a latent variable regression
method based on covariance between the predictors (X) and the

response (Y) (Wold et al., 2001). A discriminant variant of PLS,
particularly PLS-DA, refers to a classification method in which
each observation is described by one out of two categories (Barker
and Rayens, 2003). The PLS components are constrained to be
orthogonal, the dimensionality-reducing transformation builds
a matrix in which columns represent the first P eigenvectors
of the matrix formed by the covariances between X and Y
(Worley and Powers, 2013). Therefore, the PLS selects a subset
of scores and loadings, namely the latent structures, which most
effectively summarize X and Y describing correlation between
them (Worley and Powers, 2013).

The implication of a class memberships in the PLS-DA
provides better class separation in the scores space. Hence,
variation which is not directly correlated with Y is still
present in the scores (Worley and Powers, 2013). This makes
interpretation of PLS-DA scores and loadings more complicated.
The OPLS in turn simplifies this interpretation by incorporating
the Orthogonal Signal Correction (OSC) filter into a PLS-
based model and in consequence, the Y -predictive variation is
effectively separated from the Y -uncorrelated variation in the
X matrix (Sjoblom et al., 1998; Wold et al., 1998; Hoskuldsson,
2001).

The main difference between PLS-DA and OPLS-DA is that
the latter one splits up the data variation into the variation related
to Y and an orthogonal (noise) variation which is not related to
Y. In turn it simplifies the interpretability of the obtained models
providing an estimation of within- and between-group variability
(Wiklund et al., 2008; Kim et al., 2009).

In this study, we developed two OPLS-DA models (i) without
and (ii) with multiple testing correction using FDR (Benjamini-
Hochberg 1995) procedure. Prior to model development, the
normality of data distribution was assessed using the Shapiro-
Wilk test followed by the application of parametric (t-test) or
non-parametric (U Mann-Whitney test) tests. The homogeneity
of variance between compared groups was checked with the use
of the Levene’s test and subsequently the standard t-test (in case of
equal variances) or Welch’s t-test (in case of unequal variances).

All statistical calculations regarding the OPLS-DA were
performed using Matlab 2013b environment (Mathworks,
Natick, MA, USA). The multivariate analyses and plottings were
performed in SIMCA P+ 13.0.3 software (Umetrics, Umea,
Sweden).

Scaling Procedure
Scaling procedures are data pretreatment steps which divide each
variable by the scaling factor, which has a different value for each
variable (van den Berg et al., 2006). The aim of the data scaling
is to adjust for fold differences between the measured variables
(metabolite intensities) converting the data matrix relative to
the scaling factor. Two subclasses of the data scaling can be
distinguished, particularly dispersion-based (based on standard
deviation) and central tendency-based measures (based on e.g.,
mean) (van den Berg et al., 2006).

Autoscaling and Pareto scaling which use dispersion measure,
constitute the most commonly applied methods in metabolomics
studies. The autoscaling, also known as unit or unit variance
(UV) scaling uses the standard deviation as the scaling factor.
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As a result of UV scaling, all variables have a standard deviation
equal to one, so that the transformed dataset is analyzed based on
correlations instead of covariances (van den Berg et al., 2006).
The Pareto scaling, for which the square root of the standard
deviation is applied as the scaling factor, is very similar to the UV
scaling. As a result of the Pareto scaling, large fold changes are
decreased more than small fold changes and therefore the large
fold changes are less dominant as compared to the raw data (van
den Berg et al., 2006).

Least Absolute Shrinkage and Selection Operator

(LASSO)
The concept of regularization (also known as penalization) was
initially proposed by Tikhonov to solve integral equations (1943)
(Kalivas, 2012). The LASSO algorithm was introduced into the
field of statistics by Tibshirani (1996). Apart from LASSO,
regularization-based methods cover ridge regression, elastic net,
bridge regression, and their extensions as well (Ogutu and
Piepho, 2014). In its original form, the LASSO method estimates

the value of β 'j regression coefficients byminimizing the following

objective function (1):
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individual, x'ij is the matrix of standardized covariates, p denotes

a predictor variable, n refers to sample size and λ is a tuning
parameter (also known as penalty term).

Considering the binary response variable, the log-likelihood
function used in classical logistic regression (3) is reconstructed
after applying the penalty term (2) to form LASSO penalized
logistic regression (Pineda et al., 2014) (4).

ln L
(

yi, β
)

=

n
∑

i = 1

[

yi ln

(

πi

1− πi

)]

+

n
∑

i = 1

ln (1− πi) (3)

g
(

yi;β; λ
)

= L
(

yi, β
)

+ λ

p
∑

j = 1

∣

∣βj

∣

∣ (4)

The LASSO assumes sparse solution which means that some
regression coefficients are penalizedmore and some are penalized
less toward zero. The tuning parameter λ controls the amount
of shrinkage imposed on regression coefficients according to
(2). If λ is large, coefficients are penalized highly toward
zero (all absolute coefficients are penalized). Low value of λ

imposes little penalty on the coefficients (least square criterion is
assumed). The most common technique to estimate λ is cross-
validation, however other criteria also exist (e.g., AIC, Akaike
Information Criterion; BIC, Bayesian Information Criterion).
Considering large sample space, the advantage of LASSO lies in

the development of more stable models via reduction of variance,
however at the cost of biased estimates.

We can distinguish between three regularization methods:
the least absolute shrinkage and selection operator (LASSO) and
ridge regression, which are based on the one-norm (L1) and
two-norm (L2) minimizations, respectively. The third method
constitutes a combination of ridge and LASSO and is known as
the naive elastic net.

The L1 and L2 regularization assumes shrinkage of coefficients
toward zero to prevent model overfitting introduced either by
collinearity of variables or high-dimensionality. The amount of
shrinkage assumed by L1 is greater resulting in many regression
coefficients shrunken toward zero. In contrast, L2 penalization
leads to small but non-zero regression coefficients. Combining
L1 and L2 penalties (naive elastic net) tends to give a result in
between (Goeman et al., 2014). We used “penalized” package in
R (R Core Team, 2014) to fit the LASSO model.

RESULTS

In the first step of the untargeted metabolomics data analysis
for both datasets, we used PCA to check the quality of analysis
(grouping of QCs), unveil general trends in the data and find
potential outliers based on Hotelling’s T2 range. In PCA models,
clustering of the QCs was observed which confirmed stability of
the analytical system and repeatability of the applied method.
Additionally, in the RH study, 5 samples were found to be strong
outliers and therefore were excluded from further statistical
analyses. The obtained PCA models were presented in Figure 1.

The OPLS-DA, as a supervised multivariate method, was used
to select variables representing the greatest contribution into
groups’ classification. The quality of each multivariate model
developed was described by R2 and Q2 which corresponded
to the model’s goodness-of-fit and predictive performance,
respectively. The R2 and Q2 values were calculated based on 7-
fold cross-validation. The value of VIP > 1 denoted variables
which contributed the most into groups’ classification. Both
Pareto and UV scaling methods were tested in OPLS-DA
model development. Variables which contribute the most into
group recognition were identified (http://ceumass.eps.uspceu.es/
mediator) and Human Metabolome Database (www.hmdb.ca).
The criteria of database searching included: mass error limited
to 10 ppm and possible adducts such as: neutral monoisotopic
mass, M+H+ and M+Na+.

RH and PH Study in Terms of OPLS-DA
without Multiple Testing Procedure
All the variables after data filtration, were considered when
developing the OPLS-DA model. In the RH study, as a result of
data extraction and alignment, the obtained dataset contained
126.641 measured variables. After filtration based on the QA
criteria (which included the presence of the variables in at least
50% of QCs and the coefficient of variation (CV) value <20% in
QCs), the dataset was reduced to 1344 and consequently to 650
variables for which the presence in 80% of the samples in at least
one of the compared groups, was reported.
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FIGURE 1 | (A) PCA model built after data filtration in the RH study. Red

triangles, green circles and black boxes correspond to the non-RH group, RH

group, and QC samples, respectively. (B) PCA model built after data filtration

in the PH study. Red triangles, green circles and black boxes correspond to

the PH group, control group and QC samples, respectively.

In the PH study, as a result of the data extraction and
alignment, the obtained dataset contained 225.841 measured
variables. After filtration based on the QA criteria (which
included the presence of the variables in at least 50% of QCs and
the coefficient of variation (CV) value <20% in QCs), the dataset
was reduced to 1950 and consequently to 838 variables for which
the presence in 80% of the samples in at least one of the compared
groups was reported.

For the RH study, the OPLS-DA model selected 46
and 218 variables based on the VIP criteria using Pareto
and UV scaling, respectively. The R2 and Q2 were equal
to 0.92, 0.88, and 0.83, 0.61 for Pareto and UV scaling,
respectively.

In the case of the PH study, 217 and 320 variables were
selected based on the VIP criteria using Pareto and UV scaling,
respectively. The R2 and Q2 were equal to 0.98, 0.53, and 0.92,
0.44 for Pareto and UV scaling, respectively.

The OPLS-DA models built for both datasets, using different
scaling methods, were displayed in Figure 2.

RH and PH Study in Terms of OPLS-DA
with Multiple Testing Procedure
In this strategy, we applied FDR correction to pre-select variables
and to account for multiple testing. In the RH and PH study, 62
and 47 variables were statistically significant between investigated
group after FDR correction and were further used to develop
OPLS-DA models.

Taking into account different scaling procedures and based on
VIP criteria, in the RH study, 4 and 19 variables were selected
as statistically significant in terms of Pareto and UV scaling,
respectively. The R2 and Q2 of OPLS-DA models were equal to
0.47, 0.39, and 0.46, 0.41 for Pareto and UV scaling, respectively.

For PH study, 14 and 18 variables were selected as statistically
significant based on VIP criteria in terms of Pareto and UV
scaling, respectively. The R2 and Q2 were equal to 0.68, 0.58, and
0.64, 0.52 for Pareto and UV scaling, respectively.

The OPLS-DA models built for both datasets, using different
scaling methods, were displayed in Figure 3.

RH and PH Study in Terms of LASSO
Method
For both datasets, we developed the LASSO model with
simultaneous 5-fold cross-validation (CV) to select the optimal
value of λ for which minimum AIC was obtained. Using this
methods, we selected a subset of metabolites, which contributed
the most into classification between groups. The variables’
coefficients were biased, thus no statistical significance (p-value)
can be provided, as the standard errors cannot be calculated
under a biased estimator. For this reason, the robustness of each
metabolite selected in the LASSO model was evaluated using the
resampling-based bootstrap procedure. This procedure assumed
generation of 1000 resamples for which, the LASSO model was
developed. The reproducibility of the results was calculated as a
proportion (per 1000 times) each metabolite was introduced into
the model.

In the RH study, out of 650 variables, the LASSO algorithm
selected 14 variables with non-zero coefficients with the
corresponding reproducibility for each metabolite ranging from
99.3 to 100%. Among 14 metabolites selected, 11 were found
in metabolomics databases. Out of 11 metabolites mentioned
earlier, 6 represented known biochemical role.

In the PH study, out of 838 variables, the LASSO
algorithm selected 4 variables with non-zero coefficients with the
corresponding reproducibility for each metabolite ranging from
91.4 to 94.6%. Among 4 metabolites selected, 2 were found in
metabolomics databases. Out of 2 metabolites mentioned earlier,
only 1 represented known biochemical role.

To sum up, considering the RH and PH study, 2 variables
were statistically significant and were found to be in common
in three tested approaches (Figures 4, 5). In case of the RH
study, selected features were identified in publicly available
databases as decanamide and C16 sphinganine. In case of the
PH study, selected features were identified in publicly available
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FIGURE 2 | OPLS-DA models built on data without multiple testing procedure. (A) RH study, Pareto scaling; (B) RH study, UV scaling; (C) PH study, Pareto

scaling; (D) PH study, UV scaling. Red triangles, green circles correspond to the RH or PH group and non-RH or control group, respectively.

databases as tryptophan and palmitoylcarnitine. The results of
statistical analyses using three different approaches as well as
putative identification of the selected variables were collected in
Tables 1, 2, as well as in Tables S3, S4 in the Supplementary
Material.

DISCUSSION

Considerations on Modeling Techniques
Used in the Study
In the present study, we compared the OPLS-DA models built
on the LC/MS-based datasets without and with multiple testing
correction. Additionally, we presented the concept of the LASSO
for the analysis of large (n = 150) and quite small (n = 40)
metabolomics data. Selection of metabolites, which contribute
the most into group classification constitutes a crucial step
in metabolomics research. However, there is no universal and

ideal method dedicated for statistical analysis in non-targeted
metabolomics approach.

The proportion between the number of observations
(samples) and variables should always be considered. The
sample size in non-targeted metabolomics studies is usually
small as compared to the number of variables. Therefore,
the use of any variable selection method before multivariate
model development should be consider to reduce the curse of
dimensionality, avoid overfitting of the model via reduction of
false positive findings and consequently providing generalization
of the developed model (Bum Kim et al., 2008). There are
few methods which account for multiple testing e.g., FDR,
Bonferroni correction, which are often applied in metabolomics-
based experiments to avoid false discoveries and to remove
irrelevant variables (Broadhurst and Kell, 2006). At this point,
it should be noted, that Bonferroni correction is considered the
most stringent and assumes independency of the variables tested,
which may not be the case for metabolomics studies.
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FIGURE 3 | OPLS-DA models built on data with multiple testing procedure. (A) RH study, Pareto scaling; (B) RH study, UV scaling; (C) PH study, Pareto

scaling; (D) PH study, UV scaling. Red triangles, green circles correspond to the RH or PH group and non-RH or control group respectively.

TABLE 1 | Results of statistical analyses using three different approaches and putative identification of the selected variables in case of the RH study.

Variables OPLS-DA without a priori variable selection OPLS-DA with a priori variable selection LASSO

Pareto scaling UV scaling Pareto scaling UV scaling

Selected variables 46 218 4 19 14

Found in databases 35 120 3 10 11

Involved in biochemical pathways 20 54 2 7 6

According to the available literature, there are numerous
approaches of feature selection based on orthogonal projections:
recursive algorithm, support vector machine, genetic algorithm,
or random forest, which aim at selecting spectral features
contributing the most into class separation (Ramadan et al.,
2006; Wongravee et al., 2009; Lin et al., 2011). The MS-
based metabolomics datasets usually contain a large number
of variables, of which only a small proportion could be

considered relevant. The PLS-DA and OPLS-DA as multivariate
discriminant methods, are the most commonly applied in
non-targeted metabolomics studies (Holmes et al., 2008; Triba
et al., 2015).

In the present study, prior the development of OPLS-DA
model, both Pareto and UV scaling were tested. For the RH
and PH study, a far more variables were selected when the
UV scaling was applied. As a result of the UV scaling, all
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TABLE 2 | Results of statistical analyses using three different approaches and putative identification of the selected variables in case of the PH study.

Variables OPLS-DA without a priori variable selection OPLS-DA with a priori variable selection LASSO

Pareto scaling UV scaling Pareto scaling UV scaling

Selected variables 217 320 14 18 4

Found in databases 112 179 8 10 2

Involved in biochemical pathways 82 89 6 8 1

FIGURE 4 | Venn diagram representing the summary of variables

selected with the use of three different approaches exemplified by the

UV scaling in case of OPLS-DA for the RH study.

variables (metabolites) became equally important. The Pareto
scaling in turn, is more sensitive to large fold changes and
therefore variables with lower fold changes may be treated
as irrelevant. It can be the reason why more variables were
selected in the OPLS-DA models when the UV scaling was
implemented. Data scaling is an important step before PLS-
DA and OPLS-DA multivariate statistical analysis, aimed at
providing a proper selection of relevant variables. There are
many different scaling methods which can be applied (e.g.,
vast, range, level etc.) and detailed information describing their
advantages and disadvantages can be found in the literature
(van den Berg et al., 2006; Gromski et al., 2015). Moreover, it
should be underlined that data scaling has a great influence on
accuracy of the classification model in metabolomics studies.
It can be concluded that data scaling before multivariate
analysis may affect the selection of relevant variables in non-
targeted metabolomics experiments. Therefore, testing toward
various scaling methods is recommended to be performed and
compared.

However, apart from popularity of PLS-DA and OPLS-DA
methods in metabolomics, it should be highlighted that they
do not control the type I or type II errors, but only arbitrarily
establish a cut-off value for the loadings. Such multivariate model
represents high goodness-of-fit to the data, however the risk of
overfitting increases relevantly.

FIGURE 5 | Venn diagram representing the summary of variables

selected with the use of three different approaches exemplified by the

UV scaling in case of OPLS-DA for the PH study.

Therefore, in this study we proposed and implemented the
concept of LASSO to perform variable selection and model
development simultaneously. When modeling a binary outcome,
the LASSO algorithm uses the log-likelihood function (similar
as for the logistic regression) together with the penalty term.
The resulting LASSO penalized logistic regression is then
capable of shrinking the coefficients toward zero which is
not possible when applying the maximum likelihood alone.
The shrinkage reduces the variance at the cost of bias of
coefficients which is known to improve prediction performance
of the model, especially when we deal with the so-called
“small n large p” problem. The LASSO operates by including
n variables into the model and selecting only those which
are mostly associated with the response (Tibshirani, 1996).
Therefore, the sparsity assumption offered by the LASSO helps
recovering the underlying signal from the high dimensional
data.

As mentioned earlier, the strength of LASSO lies in
the variable selection, however it should be noted that
it is not applicable when grouped selection for strongly
correlated predictors is the case. In contrast, ridge regression
accounts for the grouped selection. A compromise between
the ridge regression and LASSO is served by the elastic net.
It builds a regression model penalized with both the L1-
norm and L2-norm, which results in shrinking coefficients
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(as in ridge regression) and penalizing some of them toward
zero (as in LASSO). In contrast to ridge regression, elastic
net provides sparse estimates of the coefficients (Tibshirani,
1996).

In this study, instead of calculating the standard errors for
biased coefficients, we used bootstrap to assess the reproducibility
of the results. We obtained high robustness for selected
metabolites and therefore we can conclude, that this method may
be considered for untargeted metabolomics study. The number
of variables selected via LASSO in the RH and PH study is much
lower in comparison to the OPLS-based methods and this results
from the basic principles of this method and the presence of the
constrain.

Biological Considerations on
Discriminating Features
In the RH study, the discriminating features selected by three
different approaches, were putatively identified as decanamide
and C16 sphinganine. Decanamide constitutes an example
of free fatty acid amides (FFAMs) which can be a product
of two different routes, i.e., ammonolysis of fatty acyl-CoA
thioesters and oxidative cleavage of N -fatty acylglycines (Farrell
et al., 2012). Recent studies on FFAMs have indicated their
importance as signaling molecules involved in various biological
processes such as sleep, motion, angiogenesis, release of Ca2+

and blood vessels relaxation (Farrell et al., 2012). The C16
sphinganine is a ceramide-related sphingolipid. Sphingolipids
are a major class of lipids employed in eukaryote membranes
composition, especially in the central system, however they
constitute bioactive signaling molecules playing a crucial role
in cell growth, apoptosis, signal transduction, and recognition
(Bartke and Hannun, 2009).

In case of the PH study, the discriminating features
selected by three different approaches, were putatively identified
as tryptophan and palmitoylcarnitine. Tryptophan is amino
acid converted into serotonin by tryptophan hydroxylase
enzyme. Serotonin has been suggested to enhance pulmonary
arterial smooth muscle cell proliferation, vasoconstriction and
microthrombosis (MacLean et al., 2000). The second identified
metabolite, namely palmitoylcarnitine belongs to the group of
long-chain acylcarnitines, which facilitates the transfer of long-
chain fatty acids from the cytoplasm tomitochondria during fatty
acid β-oxidation (FAO). The changes of palmitoylcarnitine in
plasma level reported in this study, may suggest incomplete FAO,

which might be associated with impairment of the tricarboxylic
acid cycle known to occur in pulmonary diseases (Archer et al.,
2013).

CONCLUSIONS

High-dimensional data space is a domain of untargeted
metabolomics. The larger the search space, the higher the
probability of developing models that are well fitted to the
training data, even though they might not have any predictive
performance. This phenomenon may explain the discrepancy

between R2 and Q2 values frequently observed in PLS-
based models, leading to high variance of the coefficients
and model overfitting. Regularization plays a key role in
high-dimensional problems as it assumes sparse solutions by
imposing a constrain on the coefficients’ value, shrinking
them toward zero and simultaneously reducing their variance.
Such an approach reduces overfitting and thus provides more
accurate models offering an alternative to widely used PLS-based
methods.
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