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The type III secretion system (T3SS) of plant and animal bacterial pathogens directs
the secretion and injection of proteins into host cells. Some homologous genes of
T3SS were found also in non-pathogenic bacteria, but the organization of its machinery
and basic function are still unknown. In this study, we identified a T3SS gene cluster
from the plant growth-promoting Pseudomonas fluorescens 2P24 and isolated the
corresponding T3SS apparatus. The T3SS gene cluster of strain 2P24 is similar
organizationally to that of pathogenic P. syringae, except that it lacks the regulator
hrpR and the hrpK1 and hrpH genes, which are involved in translocation of proteins.
Electron microscopy revealed that the T3SS supramolecular structure of strain 2P24
was comprised of two distinctive substructures: a long extracellular, filamentous pilus,
and a membrane-embedded base. We show that strain 2P24 deploys a harpin homolog
protein, RspZ1, to elicit a hypersensitive response when infiltrated into Nicotiana
tabacum cv. xanthi leaves with protein that is partially purified, and by complementing
the hrpZ1 mutation of pHIR11. The T3SS of strain 2P24 retained ability to secrete
effectors, whereas its effector translocation activity appeared to be excessively lost.
Mutation of the rscC gene from 2P24 T3SS abolished the secretion of effectors, but
the general biocontrol properties were unaffected. Remarkably, strain 2P24 induced
functional MAMP-triggered immunity that included a burst of reactive oxygen species,
strong suppression of challenge cell death, and disease expansion, while it was not
associated with the secretion functional T3SS.

Keywords: type III secretion system, PGPR, harpin, MTI, Pseudomonas fluorescens

INTRODUCTION

In natural systems, plants are attacked continuously by a broad spectrum of pathogens and, at
the same time, they are protected by a large number of beneficial microorganisms. For plant
pathogenic bacteria such as Pseudomonas, Erwinia,Xanthomonas, andRalstonia, non-flagellar type
III secretion system (T3SS) is deployed to secrete and deliver repertoires of effector proteins to
suppress innate immunity and cause diseases (Mansfield et al., 2012). The T3SS apparatus, which
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is referred to as a needle complex, is comprised of three functional
modules: (i) a cylindrical basal body that spans the bacterial
inner and outer membranes with a presumed central rod to build
a channel, (ii) a needle/pilus structure that extrudes from the
bacterial outer membrane and functions as a conduit for effector
transfer, and (iii) a translocon complex that produces a pore in the
host plasmamembrane to inject the effectors (Galán and Collmer,
1999; Wei and Collmer, 2012). In recent years, a large variety
of structural studies on animal and human bacterial T3SS was
conducted. Parts of the system have been described at molecular
resolution (Deane et al., 2006; Moraes et al., 2008; Spreter et al.,
2009; Schraidt and Marlovits, 2011; Fujii et al., 2012; Bergeron
et al., 2013), but few plant-associated bacterial T3SS have been
studied, and most of these studies have been in P. syringae (Roine
et al., 1997; Hu et al., 2001; Jin et al., 2001; Li et al., 2002). In
Pseudomonas syringae pv. tomato DC3000, a pilus is comprised
of a major subunit of the T3SS, the HrpA1 protein, which extends
to the plant cell (Roine et al., 1997). This pilus is flexible and its
length of ∼2 μm is much greater than that of the needles found
in animal pathogens (Roine et al., 1997). An in situ immunogold
labeling was used to visualize the extrusion of the effector and
harpin proteins from the tip of the Hrp pilus, which demonstrates
that the bacterial pilus can function as a conduit for protein
delivery (Jin et al., 2001; Li et al., 2002).

Pseudomonads, which are distributed widely in many natural
niches, are an environmentally significant group of bacteria that
includes both pathogenic and saprophytic species. Among the
pathogenic fluorescent pseudomonads, the importance of the
T3SS and its effectors has been well-studied in the opportunistic
human and animal pathogen P. aeruginosa (Hauser, 2009)
and the plant pathogen P. syringae (Alfano and Collmer,
2004; Xin and He, 2013). However, in the last 15 years the
presence of a T3SS is continuously being reported in a few
plant growth-promoting pseudomonads with partial and whole
genome sequencing (Preston et al., 2001; Mazurier et al., 2004;
Rezzonico et al., 2004, 2005; Mavrodi et al., 2011; Viollet et al.,
2011; Barret et al., 2013; Duan et al., 2013; Berendsen et al.,
2015). But unlike the plant pathogenic T3SS, the distribution and
structure of the plant growth-promoting T3SS are not conserved
highly, which results in a poor understanding of its function. For
instance, a 20-kb type III gene cluster (rsp/rsc) that resembles
the hrp/hrc locus of P. syringae was identified initially in the
sugar beet isolate, P. fluorescens SBW25, which lacks the harpin-
encoding gene, hrpZ1, but elicits a hypersensitive response (HR)-
like cell death in Nicotiana clevelandii (Preston et al., 2001). In
Q8r1-96, which is another well-studied P. fluorescens strain, a
gene-encoding putative harpin-like protein (RspZ) was identified
from the T3SS gene cluster, and the overall arrangement of the
rsp/rsc genes in Q8r1-96 differed from that in P. fluorescens
SBW25 (Mavrodi et al., 2011). A phylogenic analysis of biocontrol
Pseudomonas strains based on partial hrcN sequences addressed
the issue that horizontal gene transfer of the T3SS might take
place from pathogenic bacteria to PGPR and that the T3SS
apparatus may be maladaptive evolutionarily in some PGPR
(Rezzonico et al., 2004). To date, no single T3SS machinery
has been isolated from plant growth-promoting rhizobacteria
(PGPR).

Pseudomonas fluorescens 2P24 is a PGPR strain isolated
from wheat take-all decline soil in Shandong Province, China
(Wei et al., 2004a). This strain produces several secondary
metabolites, such as 2,4-diacetylphloroglucinol (2,4-DAPG),
hydrogen cyanide (HCN), and siderophore(s), and it inhibits
growth of a range of phytopathogenic fungi (Wei et al., 2004a).
The antibiotic 2,4-DAPG was a key determinant in the antibiosis
of plant pathogens (Wei et al., 2004b). In addition, strain 2P24 has
excellent colonization ability in tomato and cotton rhizospheres
to protect against tomato bacterial wilt and cotton rhizoctoniosis,
respectively (Wei et al., 2004a). The biocontrol activity of strain
2P24 is regulated by the GacA/GacS two-component system and
the quorum sensing regulation system (Wei and Zhang, 2005,
2006). In this work, we report the existence and organization of
the T3SS cluster and characterization of a functional harpin-like
protein in strain 2P24, and we isolate the T3SS machinery from
P. fluorescens for the first time. Finally, we demonstrate that strain
2P24 induces strong MAMP-triggered Immunity (MTI), which is
not associated with the T3SS.

MATERIALS AND METHODS

Bacterial Strains, Plasmids, and Plant
Material
Escherichia coli strains were grown in Luria–Bertani (LB) broth
at 37◦C. P. fluorescens and P. syringae were grown in King’s
medium B (KB) broth (King et al., 1954) at 28◦C. Construction
of the cosmid library in E. coli DH5a was described in Wei
and Zhang (2006). A summary of bacterial strains and plasmids
is provided in Table 1. Antibiotics were used at the following
concentrations unless otherwise stated (μg/ml): ampicillin, 100;
gentamicin, 20; kanamycin, 50; rifampicin, 50; spectinomycin,
50; and tetracycline, 20. Nicotiana benthamiana and tobacco
(N. tabacum cv. xanthi) plants were grown in a greenhouse with
16 h light/8 h dark, 65% humidity, and a temperature of 24◦C
during daylight and 22◦C at night.

DNA Manipulations
Recombinant DNA techniques were performed according to
standard protocols (Sambrook et al., 1989). Electroporation
was performed using a Bio-Rad GenePulser according to the
manufacturer’s protocol (Bio-Rad). Triparental mating was
carried out using helper plasmid E. coli HB101 (pRK2013)
according to the standard protocol. Plasmid DNA preparation
and DNA gel extraction were done using the QIAprep Spin
Miniprep Kit and QIAquick Gel Extraction Kit, respectively
(Qiagen, China). Gateway recombination was conducted with LR
clonase II, as recommended by the manufacturer (Invitrogen,
China). DNA sequences of pN11-7, pN13-41, and pN31-20
were subcloned into pBluescript using EcoR I, Hind III, and
Kpn I. Subclones were mapped, and selected subclones were
sequenced using T3 and T7 primers. Additional sequences
were obtained from subclones using specific oligonucleotide
primers. All DNA sequencing was done at Invitrogen China.
DNA sequences were assembled and analyzed with the sequence
analysis software package of the Genetics Computer Group.
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TABLE 1 | Bacterial strains and plasmids used in this study.

Strain or plasmid Genotype or relative phenotype Source

Escherichia coli

DH5α F− recA1 endA1 hsdR17 supE44 thi-1 gyrA96 relA1�

(argF-lacZYA)I169�80lacZ�M15
Sambrook et al., 1989

Pseudomonas fluorescens

2P24 Plant growth-promoting bacterium Wei et al., 2004a

�C rscC deletion mutant This study

�Z1 rspZ1 insertion mutant This study

�fliC fliC insertion mutant This study

Pf0-1 Non-T3SS bacterium Compeau et al., 1988

P. syringae

DC3000 Wild type; Rifr Buell et al., 2003

�hopQ1 hopQ1 deletion mutant of strain DC3000 Wei et al., 2007

plasmids

pBluescript II SK+ ColE1 origin; Apr Stratagene

pHSG299 ColE1 origin; Kmr TaKaRa

pRK2013 ColE1 replicon with RK2 transfer region, helper plasmid; Kmr Figurski and Helinski, 1979

pENTR/SD-TOPO Entry vector for Gateway cloning; Kmr, Cmr Invitrogen

pET-22b(+) Expression vector; Apr Novagen

pLAFR5 oriT cosmid; Tcr Keen et al., 1988

pN11-7 rsp genes positive cosmid clone This study

pN13-41 rsp genes positive cosmid clone This study

pN31-20 rsp genes positive cosmid clone This study

pBS11-7a pBluescript containing 1.5 kb Hind III fragment from pN11-7 This study

pBS11-7b pBluescript containing 5.8 kb EcoR I fragment from pN11-7 This study

pBS11-7c pBluescript containing 6.4 kb EcoR I fragment from pN11-7 This study

pBS31-20b pBluescript containing 4.1 kb EcoR I fragment from pN31-20 This study

pBS31-20a pBluescript containing 6.6 kb Kpn I fragment from pN31-20 This study

pBS13-41 pBluescript containing 14 kb Kpn I fragment from pN13-41 This study

pHSG�C pHSG299::rscC This study

pHSG�Z1 pHSG299::rspZ1 This study

pHSG�fliC pHSG299::fliC This study

pHIR11 pLAFR3 containing the P. syringae pv. syringae 61 hrp-hrc gene region Huang et al., 1988

pLN18 pHIR11 derivative with shcA and hopA1 replaced by an nptII cassette Huang et al., 1991

pCPP3297 pLN18 containing an unmarked hrcC deletion Huang et al., 1991

pCPP2274 pHIR11 containing an unmarked deletion hrpZ1 Gopalan et al., 1996

pCPP5371 pBBR1MCS containing avrPto1 promoter, Gateway reading frame B cassette,
and codons 2 to 406 of cya; Gmr, Cmr

Oh et al., 2007

pCPP5372 pBBR1MCS containing avrPto1 promoter, Gateway reading frame B cassette,
and C-terminal HA tag; Gmr, Cmr

Oh et al., 2007

pEN-rspZ1 pENTR/SD-TOPO containing full length of rspZ1without stop codon This study

pET22-rspZ1 pET22b expressing rspZ1 This study

pET22-hrpZ1 pET22b expressing hrpZ1DC3000 This study

p5372-rspZ1 pCPP5372 expressing rspZ1 This study

p5371-hopQ1 pCPP5371 expressing hopQ1 This study

p5372-hopQ1 pCPP5372 expressing hopQ1 This study

DNA sequences were deposited in GenBank under the accession
number KT582783.

Construction of the fliC, rspZ1, and rscC
Mutants
To make a fliC mutant of P. fluorescens 2P24, a 0.5-kb
fragment of fliC gene was amplified by PCR using primers
P141 (5′-GCCGGCCTGCAAATCGCTACC-3′) and P655

(5′-ACCTCTACCACGACCAGTCTGC-3′) cloned into the
SmaI site of pHSG299. The resulting pHSG299 derivative
was transformed into P. fluorescens 2P24 to produce
2P24�fliC with kanamycin resistance. The fliC mutant was
confirmed by the swimming mobility test on KB medium
containing 0.3% agar. The rspZ1 mutation of 2P24 was
made using a similar procedure as described above after a
0.5-kb fragment of rspZ1 gene was amplified using primers
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P181 (5′- GGTTCGACGGGCGGACAGTCTC -3′) and P681
(5′-GCGCGCCGGGTGCTGGTCCAT-3′). To delete the rscC
gene from strain 2P24, two 1.1-kb fragments carrying the left
and right flanking regions of rscC were amplified by PCR using
primer pair P2658 (5′-CCGCCCATGAATTCCGCCG-3′) and
P3740 (5′-GGTACGGGATCCGCGGACAC-3′) and primer pair
P4332 (5′-TCGGGATCCACCGCACGCAAC-3′) and P5548
(5′-CGGCTGCAGGCATCGCCCTG-3′), respectively. Each
fragment of the left and right regions was digested with relative
restriction enzymes and was cloned into the EcoRI and PstI sites
of pHSG299. The resulting pHSG299 derivative was transformed
into P. fluorescens 2P24. The kanamycin resistance colonies were
cured of pHSG299. The final kanamycin-sensitive mutants were
screened by PCR.

Isolation of Type III Secretion Machinery
from P. fluorescens 2P24
The methods used for P. syringae (Roine et al., 1997; Jin and
He, 2001) and Salmonella (Kubori et al., 1998) were modified to
isolate the P. fluorescens type III secretion machinery. Briefly, a
2 ml aliquot of overnight culture was inoculated into 200 ml KB
liquid media, and the bacteria were grown until OD600 0.8. The
bacteria collected by centrifugation were suspended in 20 ml of
0.5 M ice-cold sucrose solution containing 0.15 M Tris, 10 mM
EDTA (pH 8.0), and 1 mg/ml lysozyme, followed by incubation
for 1 h at 4◦C. The resulting spheroplasts were lysed by addition
of 30% Triton X-100 to the final concentration at 0.1% and
incubated for 2 h at 4◦C. Then, we added 2.3 ml 100 mMMgSO4
and centrifuged at 8000 r/min for 20 min. The supernatant was
transferred to a new tube and adjusted to pH 11 with 1 M NaOH,
followed by incubation at 4◦C. To collect type III complexes,
the lysate was subjected to ultracentrifugation at 22000 r/min
for 1 h at 4◦C. The pellet was then suspended in 20 ml buffer
with 0.1 M KCl-KOH (pH 11.0), 0.5 M sucrose, and 0.1% Triton
X-100, and centrifuged at 22000 r/min for 1 h at 4◦C. We
discarded the supernatant and added 15 ml buffer with 10 mM
Tris-HCl (pH 8.0), 5 mM EDTA, 0.1% Triton X-100, and then
fractionated with 30%(w/v) CsCl density gradient centrifugation
at 22000 r/min for 2 h 4◦C. The pelleted type III secretion
complexes were suspended in a small amount of buffer and
examined immediately using a JEOL JEM-1400 Transmission
Electron Microscope (TEM).

Expression and Purification of Harpins
For the expression and purification of soluble harpins, the
hrpZ1DC3000 and rspZ1 genes lacking stop codons were cloned
into pET-22b expression vector, respectively. Derivative pET-
22b plasmids produce C-terminal fusions with the His6 affinity
tag. pET-22b plasmids were transformed into E. coli BL21(DE3).
The expression process was described in a previous report
with a slight modification (Kvitko et al., 2007). Single colonies
of the expression strains were inoculated into 10 ml LB
containing ampicillin and incubated for 12 h with shaking
at 37◦C. The starter cultures were used to inoculate 100 ml
LB-carbenicillin cultures in flasks, which were incubated with
shaking at 30◦C to an optical density at 600 nm of ca.

0.4. IPTG was added to a final concentration of 1 mM,
and the cultures were allowed to incubate for an additional
6 h. Cell pellets were harvested and lysed according to the
Qiagen protocol. The suspension was sonicated on ice with a
Fisher Scientific 550 sonic Dismembrator. Cleared lysates were
harvested at 12,000 rpm for 30 min at 4◦C and purified with Ni-
nitrilotriacetic acid (NTA) agarose (QIAGEN). Purified harpins
were stored at 4◦C until use. Proteins were visualized by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE),
followed by staining with Coomassie brilliant blue. Protein
concentrations were determined by the Bradford assay. Harpin
preparations were diluted for plant reaction assays. Empty-
vector preparations were obtained in parallel with each harpin
preparation.

Western Blot and CyaA Translocation
Reporter Assays
HopQ1 protein in cell and supernatant fractions were analyzed
essentially as described by Kvitko et al. (2007). Samples were
separated by electrophoresis on SDS-PAGE and analyzed by
immunoblotting using primary anti-HA mouse monoclonal
immunoglobulin G (IgG) antibodies and secondary anti-mouse
IgG alkaline phosphatase conjugate antibodies, as described by
Kvitko et al. (2007). An adenylate cyclase (CyaA) injection assay
was used to test HopQ1 translocation (Kvitko et al., 2007).
This assay can determine if a type III effector-CyaA fusion
is injected into eukaryotic cells, because the CyaA enzyme
is dependent on calmodulin, a protein present in sufficient
amounts only inside eukaryotic cells. When a CyaA fusion
is injected into plant cells, there is a substantial increase
in cAMP, a product of the CyaA-catalyzed reaction. The
fresh bacterial cells in 10 mM MgCl2 were infiltrated on
N. benthamiana leaves at 108 cfu/ml. The leaf disks were collected
at 12 h with a 1.0-cm-diameter cork borer. The cyclic AMP
(cAMP) levels were determined by using a Correlate-EIA cAMP
immunoassay kit according to the manufacturer’s instructions
(Enzo, USA).

Phenotypic Characterization of the rscC
Mutant
The rscC mutant was compared to the parental strain 2P24 for
production of the antibiotic 2,4-DAPG, HCN, exoprotease, and
siderophores, as described previously (Wei et al., 2004a; Wei
and Zhang, 2006). Antibiosis detections of strain 2P24 and the
rscC mutant were performed on a PDA plate with Rhizoctonia
solani and Ralstonia solanacearum as target pathogens. Plant
protection experiments against tomato bacterial wilt were carried
out in a greenhouse according to the method of Wei et al.
(2004a).

Assay for Reactive Oxygen Species
(ROS)
For ROS measurements, N. benthamiana leaf tissue was
inoculated with bacterial strains at 108 cfu/ml. At 15 h post-
inoculation, leaf disks (0.5 cm diameter) were excised and placed
into wells of 96-well plates pre-supplied with 100 ml of sterile
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FIGURE 1 | Genetic organization of the rsp/rsc gene cluster of P. fluorescens 2P24 (C) and comparison with the hrp/hrc gene clusters of
P. fluorescens SBW25 (A) and P. syringae pv. tomato DC3000 (B). Predicted open reading frames and their orientation are shown by large arrows. Conserved
rsc/hrc genes are shown as red arrows, conserved rsp/hrp genes as green arrows, and harpin proteins as black arrows. Additional ORFs are shown as blue arrows.
Homologous genes are connected with gray shading. Full gene names within rsc/rsp and hrc/hrp clusters were shortened and are indicated by a single letter
preceded by “c” or “p”. (D) The cloning procedures and subclones contain rsp/rsc gene fragments. For details, see Tables 1 and 2.

water, and then 100 ml of 0.5 mM L-012 (Wako, Japan) in
10 mM morpholinepropanesulfonic acid–KOH buffer (pH 7.4)
was added. The intensity of ROS generation was determined
according to Oh et al. (2010).

Challenge-Inoculation HR and Assays for
Bacterial Colony Development
The fresh P. fluorescens bacterial cells in 10 mM MgCl2 were
infiltrated on N. benthamiana leaves at 108 cfu/ml. P. syringae
DC3000 was challenge-inoculated 6 h later at 107 cfu/ml to
overlap partially with the P. fluorescens pretreated area. After
48 h, leaves were photographed. To observe the suppression
of inhibition of the growth of the challenge-inoculated virulent
pathogen, the P. fluorescens strains were inoculated at 108 cfu/ml
into N. benthamiana, then 6 h later, P. syringae DC3000�hopQ1
was challenge-inoculated at 105 cfu/ml on the edge of the
pre-infiltrated area to produce an overlapped area and a
non-overlapped area. Bacterial populations of P. syringae
DC3000�hopQ1 in the overlapped area were assessed at 0 and
4 days post-inoculation. Each experiment was repeated three
times.

RESULTS

Cloning and Sequence Analysis of the
P. fluorescens 2P24 T3SS Gene Cluster
Three cosmid clones, pN11-7, pN13-41, and pN31-20 were
isolated from a genomic library of P. fluorescens 2P24 using
primers P1280 (5′-AACCAGCCGGCKGTSATGA-3′) and P1680

(5′-AGGATGAAGACSCGYTCGCG-3′) designed from hrcC
homologs. Subsequent mapping and sequencing of the subclones
of these cosmids delimited a 30 kb cluster of TTSS-related genes
(Figure 1). A total of 25 predicted open reading frames (ORFs)
were identified and assigned the gene names rsp (rhizosphere-
expressed secretion gene) and rsc (rsp conserved) according to
the non-pathogenic Pseudomonas T3SS convention published
previously (Preston et al., 2001; Mavrodi et al., 2011).

The arrangement and orientation of the P. fluorescens
2P24 T3SS gene cluster bore a strong similarity to that
of P. syringae, which has been studied extensively (Huang
et al., 1988). It was reported that the hrp genes encoding
the TTSS machinery in P. syringae are the conserved center
region (CCR) of a tripartite pathogenicity island that includes
exchangeable (EEL) and conserved (CEL) effector loci (Alfano
et al., 2000). We did not find any corresponding EEL and
CEL loci from the limited sequences of both sides of the
2P24 T3SS cluster. Specifically, we observed that the ORFs
that flanked a 9.0 kb upstream region of the hrpS gene
are similar to proteins unlikely to be linked to type III
secretion (Figure 1A). The presence of T3SS-like genes has
been reported recently in a few non-pathogenic fluorescent
pseudomonads (Preston et al., 2001; Rezzonico et al., 2004;
Mavrodi et al., 2011), in which T3SS-like genes of P. fluorescens
Q8r1-96 share the greatest similarity with strain 2P24 (Table 2).
Overall, it appears that T3SS of strain 2P24 has six principal
features:

(i) A protein showing 31% identity to HrpZ1 harpin, which
resides between HrpA1 and HrpB in the hrpJ operon
of P. syringae DC3000, was identified from the same
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TABLE 2 | Comparison of rsp/rsc and hrp/hrc cluster proteins in P. fluorescens and P. syringae.

ORFs Length of predicted
peptides(a.a.) in strain 2P24

Length of predicted peptides(a.a.) in the following
strains/percentage identity to that of strain 2P24

Predicted function

SBW25 Q8r1-96 DC3000

pL 183 183/51 197/98 184/44 RNA polymerase sigma factor;
cytoplasmic

pJ 380 196/36 375/96 368/36 Type III secreted protein for
translocation of effectors

cV 695 –1 699/63 695/96 Inner membrane associated protein

pQ 268 – 297/86 330/32 Similar to FliG, a cytoplasmic protein
regulating flagellar biogenesis

cN 452 – 452/97 449/69 Inner membrane associated protein,
soluble components, ATPases

pO 139 148/24 139/90 148/30 Protein of the export apparatus,
cytoplasmic, chaperone-like activity

pP 189 152/38 189/83 189/28 Required for elicitation of HR and
translocation and secretion of AvrPto1

cQ 368 337/41 367/87 238+137/37+622 Inner membrane associated protein

cR 217 217/68 217/98 200/72 Inner membrane associated protein

cS 84 87/71 84/100 88/70 Inner membrane associated protein

cT 265 262/59 265/97 264/54 Inner membrane associated protein

cU 366 365/58 366/96 359/54 Inner membrane associated protein

cE 149 – 149/93 131/49 Type III chaperone ShcE

pV 125 117/42 123/94 119/39 Negative regular of hrp expression;
cytoplasmic

pT 69 67/37 69/99 67/50 Accessory protein, outer-membrane
associated protein

cC 716 713/50 716/96 699/49 Outer-membrane associated protein

pG 145 130/31 145/90 143/30 Suppressor of the negative regulator
HrpV mediated

pF 74 71/22 74/99 74/38 Required for elicitation of HR and
translocation and secretion of AvrPto1

pE 197 191/31 197/87 193/30 Required for elicitation of HR

pD 196 193/33 196/87 176/40 Required for elicitation of HR and
translocation and secretion of AvrPto1

cJ 295 271/62 293/94 268/58 Putative connectors of the secretion
apparatus across the periplasm

pB 124 121/29 124/92 124/43 Required for elicitation of HR and
translocation and secretion of AvrPto1

pZ1 309 – 309/92 370/31 Harpin, type III secreted protein

pA1 69 63/22 69/96 113/35 Structural component of pilus, type III
secreted protein

pS 312 – 307/98 302/59 Transcriptional regulator, cytoplasmic

1The dashes show that there are no homologs present in P. fluorescens SBW25.
2The hrcQ gene is segmented into two genes, hrcQa and hrcQb, in P. syringae.
SBW25, P. fluorescens SBW25; Q8r1-96, P. fluorescens Q8r1-96; DC3000, P. syringae pv. tomato DC3000.

position in P. fluorescens 2P24. A HrpZ1 homolog was
found also in Q8r1-96, which is another non-pathogenic
P. fluorescens (Mavrodi et al., 2011); it was not found in
P. fluorescens SBW25 (Preston et al., 2001) or P. fluorescens
F113 (Redondo-Nieto et al., 2013), which are well-known
PGPR.

(ii) In strain 2P24, a homolog of the SchE protein is present
between HrpV and HrcU, but neither insertion sequences
nor duplicated regions were detected around the flanking
sequences of the schE gene.

(iii) The P. fluorescens 2P24 cluster carries an intact hrpV operon
(hrpJ, hrcV, hrpQ, hrcN), which is significantly absent from
P. fluorescens SBW25, but is very important for secretion
of T3SS substrates in phytopathogenic Pseudomonas (Huang
et al., 1988; Alfano and Collmer, 1997).

(iv) The P. fluorescens 2P24 cluster harbors only a single response
regulator homolog, rspS, which is one of the two regulators
(hrpS and hrpR) that are 64% identical to that in P. syringae
DC3000 (Grimm et al., 1995; Deng et al., 1998); this is
the same homolog that is found in P. fluorescens Q8r1-96
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FIGURE 2 | Electron micrograph of purified type III secretion complexes from P. fluorescens 2P24. (A,B,C) Purified type III secretion complexes at different
magnifications. The sample was obtained from the lower fraction of a 30% CsCl gradient centrifugation and observed by TEM. Scale bars as indicated in the images.
(D) Proposed size of the type III secretion complex of P. fluorescens 2P24. The size of each portion was measured based on the 20 best preserved type III secretion
complexes.

(Mavrodi et al., 2011), but different than the homolog found
in P. fluorescens SBW25 (Preston et al., 2001).

(v) In strain 2P24, hrcQ is an integrated gene, but it is segmented
into two genes, hrcQa and hrcQb, in P. fluorescens SBW25
(Preston et al., 2001) and P. syringae (Huang et al., 1988).

(vi) Strain 2P24 has all nine hrc homologs, which show 58.6%
identity to that of phytopathogenic bacteria, but hrp
homologs show 37.7% identity. This result indicated that the
T3SS component genes are more conserved than the genes
that are associated with HR and pathogenicity.

Isolation of T3SS Supramolecular
Machinery from P. fluorescens 2P24
To identify the P. fluorescens type III secretion machinery,
we attempted to extract the pilus-like structures from strain
2P24 by a modified method. To prevent the interference of
flagella and to facilitate isolation of the T3SS machinery, we
first made a non-flagellated mutant by knocking out the fliC
gene and, therefore, eliminated their swimming ability on the
agar plates (Supplementary Figure S1). The fliC mutant of
strain 2P24 grew to log phase and were shocked osmotically

and purified further by 30% (W/V) CsCl density gradient
centrifugation. The components of the type III machinery
were pelleted by ultracentrifugation, and their structure and
morphological features were examined by TEM. The secretion
machinery exhibited a pilus-like structure with cylindrical
symmetry (Figure 2). Individual components of the machinery
that were enlarged on electron micrographs indicated that the
basal part was comprised of two rings. To estimate the size of
each portion, 20 purified type III complexes were measured by
TEM. The pilus appendages were curved and they fragmented
easily during sampling as reported by Roine et al. (1997) for
P. syringae. Therefore, the length of the pilus could not be
measured accurately. But it would longer than 1 μm and its
diameter was approximately 13.1 nm. The length of the basal
portion was 26.3 nm. The upper rings were estimated to be
22.1 nm in diameter and 12.8 nm in thickness. The lower rings
were similar in diameter to the upper rings, but they were half
as thick as the upper rings. To our knowledge, this is the first
report that documents the proposed supramolecular structure
of the type III T3SS secretion machinery for P. fluorescens
(Figure 2D).
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P. fluorescens 2P24 Elicits HR in Tobacco
Leaves with the Help of Cosmid
pCPP2274, but not pLN18
P. fluorescens 2P24 does not elicit a HR or any pathogenic
symptom when infiltrated into a range of plant leaves such
as tobacco, tomato, soybean, rice, and Arabidopsis thaliana
at inoculum levels up to 108 cfu/ml. No significant increase
in bacterial population levels was observed in 7 days after
infiltration of P. fluorescens 2P24 into plant leaves (Wei
et al., 2004a). To determine the potential function of the
T3SS components in P. fluorescens 2P24, a T3SS cosmid
named pHIR11 and its derivatives were used to combine
with strain 2P24. P. fluorescens 2P24 that carried the hrp/hrc
cluster of P. syringae pv. syringae 61 on the cosmid pHIR11
elicited an HR in tobacco at 108 cfu/ml, as was observed
for P. fluorescens Pf0-1, which is a non-T3SS Pseudomonas
strain that was used as a control strain (Compeau et al.,
1988), (Figure 3). The strain of P. fluorescens 2P24 that
carried pLN18, a derivative of pHIR11 with an insertion
mutation in the avirulent hopA1 gene (Huang et al., 1991),
was unable to elicit a HR, as observed for P. fluorescens
Pf0-1. This indicated that there is no HopA1 homolog in
P. fluorescens 2P24 similar to that in strain Pf0-1. However,
pCPP2274, a derivative of pHIR11 with a mutation in the
hrpZ1 gene, enabled strain 2P24, but not Pf0-1, to elicit a
strong HR in tobacco leaves. Therefore, we postulate that the
HrpZ1 homolog, RspZ1 of strain 2P24, would complement
a harpin deficiency in pCPP2274. We then made a rspZ1
mutant of strain 2P24, 2P24�Z1, and introduced pCPP2274
into this mutant. As expected, 2P24�Z1 with pCPP2274 failed
to trigger HR in tobacco, and a plasmid-born rspZ1 in Pf0-
1(pCPP2274) recoveredHR (Figure 3). This indicated that RspZ1
of P. fluorescens 2P24 has the same function as HrpZ1 in plant
pathogens.

Partially Purified RspZ1 from Strain 2P24
Can Elicit Cell Death in Tobacco Leaves
It is known that the primary property of harpins is their
ability to elicit cell death when infiltrated into tobacco leaf
intercellular spaces. To test for cell death elicitation, possibility
by RspZ1, which is a new harpin candidate in this work, we
produced RspZ1 of strain 2P24 from E. coli cells carrying an
appropriate derivative of pET-22b (Supplementary Figure S2).
Here, HrpZ1 from P. syringae DC3000 was employed as
a positive control. Like HrpZ1, RspZ1 was soluble after
overexpression in E. coli. Each protein at 100 μg/ml was
infiltrated into leaves of tobacco with or without lanthanum
chloride, an inhibitor of harpin-induced cell death (He et al.,
1993; Kvitko et al., 2007). Surprisingly, RspZ1 elicited a
lanthanum chloride-inhibitable cell death in tobacco, which was
the same as HrpZ1 (Figure 4). An undiluted empty-vector
preparation infiltrated into the same leaf as a control could
not elicit any visible response. Elicitation of cell death by the
application of an exogenous protein indicated that RspZ1from
P. fluorescens 2P24 possesses a defining property of harpin
proteins.

FIGURE 3 | Elicitation of the HR by P. fluorescens constitutively
expressing pHIR11 and its derivatives. Leaf panels of tobacco
(N. tabacum cv. xanthi) were infiltrated with bacterial suspensions at a
concentration of 108 cfu/ml using a blunt-ended syringe. Cell death was
evaluated and representative leaves were photographed 48 h after
inoculation. The experiment was repeated three times with similar results.

FIGURE 4 | Partially purified harpins RspZ1 (from P. fluorescens 2P24)
and HrpZ1 (from P. syringae pv. tomato DC3000) elicit HR-like tissue
collapse in tobacco leaves. 6× His-tagged recombinant protein
preparations were diluted in MES buffer and infiltrated into panels of tobacco
leaves with or without 2 mM lanthanum chloride, an inhibitor of HR. The
presence or absence of confluent cell death was evaluated 24 h
post-infiltration. A mock, undiluted, empty-vector (EV) preparation was always
tested in parallel. The experiment was repeated twice with similar results.

The T3SS of P. fluorescens 2P24 Retains
Ability to Secrete Effectors, but Loses
the Effector Translocation Trait
T3SSs are complex macromolecular machines that span both the
bacterial cell envelope and host cell barriers. The basic property
of T3SS is to secrete and deliver proteins, commonly termed
effectors, from the bacterial cytoplasm into the host cytoplasm
(Alfano and Collmer, 1997; Xin and He, 2013). To determine
whether the T3SS of strain 2P24 has the natural traits of T3SS,
we used hemagglutinin (HA) immunoblot analysis and an CyaA
injection assay to test HopQ1 secretion and translocation in
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FIGURE 5 | P. fluorescens 2P24 has a T3SS-dependent secretion+/translocation− capacity. (A) HopQ1-HA secretion assay. Strains transformed with
pCPP5372-hopQ1 were grown from an OD600 of 0.3 to an OD600 of 0.5. Cell pellet (C) and supernatant (S) fractions were separated by centrifugation. Fractions
were analyzed by SDS-PAGE, followed by immunoblotting with anti-HA antibodies. (B) HopQ1-CyaA translocation into N. benthamiana. Strains transformed with
pCPP5371-hopQ1 were infiltrated into panels of N. benthamiana leaves at 108 cfu/ml. 1.0 cm leaf disks were collected at 12 h post-inoculation. Effector
translocation assays, based on cAMP production by the HopQ1-CyaA reporter, were performed in triplicate on disks from independent leaves. Means shown with
the same letters are not different statistically at the 5% confidence level on the basis of Duncan’s multiple range test. (C) Strain 2P24 expressing HopQ1 in
N. benthamiana does not elicit tissue collapse in accordance with the failure of translocation in 2P24. The bacteria carrying pCPP5372-hopQ1 were infiltrated as
described above. Cell death was evaluated and representative leaves were photographed 48 h after inoculation. The experiment was repeated three times with
similar results.

2P24. We introduced constructs carrying HopQ1, an avirulence
determinant of P. syringae DC3000 in N. benthamiana (Wei
et al., 2007), into 2P24, 2P24�C, Pf0-1, and its derivatives. The
strains were grown overnight in KB broth, and cell-bound and
supernatant fractions were subjected to Western blot. HopQ1-
HA was detected in supernatant fractions from wild type 2P24,
but not from the 2P24 rscC mutant (Figure 5A). Meanwhile,
HopQ1-HA was detected also in supernatant fractions from Pf0-
1with pLN18 and pCPP6212 (Oh et al., 2010), which is a pLN18
derivative missing hrpK1and a key translocator encoding gene;
HopQ1-HA was not detected from Pf0-1 with pCPP3297, a

pLN18 hrcC mutant defective in type III secretion (Figure 5A).
These results indicated that effector proteins are secreted in
culture through P. fluorescens T3SS.

We then infiltrated the strains harboring HopQ1-CyaA into
N. benthamiana leaves and determined cAMP levels, a product
of the CyaA-catalyzed reaction, and cell deaths 12 and 48 h
later, respectively. Plant tissue inoculated with P. fluorescens
Pf0-1(pLN18)-expressing HopQ1-CyaA showed high levels of
cAMP and strong HR, but we detected a sharply lower level
of cAMP from the leaves with P. fluorescens Pf0-1(pCPP6212)-
expressing HopQ1-CyaA, and no cAMP was detected from the
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leaves with P. fluorescens Pf0-1(pCPP3297)-expressing HopQ1-
CyaA (Figure 5B). Accordingly, HopQ1-CyaA expressed in
P. fluorescens Pf0-1(pLN18), but not in P. fluorescens Pf0-
1(pCPP3297), triggered very strong cell death (Figure 5C).
P. fluorescens Pf0-1(pCPP6212)-expressing HopQ1-CyaA elicited
a weak cell death, because of the missing key translocator HopK1
(Figure 5C). However, we did not detect cAMP and cell death
from plant tissue where HopQ1-CyaA was expressed in wild type
2P24 and 2P24�C (Figures 5B,C). Taken together, the results
demonstrated that HopQ1 was injected into plant leaf cells by
P. syringae, but not by P. fluorescens T3SS.

The T3SS Mutation has no Changes on
Biocontrol Capacity of Strain 2P24
The rscCmutant strain was tested in vitro for possible phenotypic
changes in traits that contribute to biocontrol by P. fluorescens
2P24. The mutant was compared to the parental strain 2P24
for the ability to produce secondary metabolites, such as
the antibiotic 2,4-DAPG, HCN, exoprotease, and siderophores.
Unfortunately, no phenotypic changes were found from the rscC
mutant in any of the aforementioned tests (data not shown). The
mutant strain was tested also for the ability to antagonize the
plant pathogens Rhizoctonia solani and Ralstonia solanacearum.
The results indicated that inactivation of the T3SS did not reduce
the antagonistic ability of strain 2P24 against plant pathogens
(Supplementary Table S1). The further biocontrol assays on
tomato bacterial wilt disease also showed that the T3SS mutation
did not result in a reduction in the biocontrol activity of strain
2P24 (Supplementary Table S2).

Strain 2P24 can Trigger Strong
Functional MTI that is not Associated
with T3SS
Pseudomonas fluorescens 2P24 is a soil-born PGPR that is present
normally in the rhizosphere. We did not know if it could
trigger local MTI when inoculated in plant leaves or whether
the T3SS had some effect on potential MTI. We then used
established assays to determine the extent that 2P24 and 2P24�C
trigger ROS production, suppress P. syringae DC3000 HR and
DC3000�hopQ1 disease as reported previously (Wei et al.,
2013). Strain 2P24 triggered high levels of ROS production that
might be induced by the flagellin because the fliC mutant of
2P24 failed to trigger ROS (Figure 6A), which is consistent
with a previous report (Wei et al., 2013). Strain 2P24 also
exhibited strong suppression of HR triggered by P. syringae
DC3000 and pathogen growth of P. syringae DC3000�hopQ1 in
N. benthamiana (Figures 6B,C). However, the deficiency of the
T3SS did not impact functional MTI elicited by 2P24 in any of
these tests (Figure 6).

DISCUSSION

Most of the P. fluorescens bacteria are natural inhabitants of
plant roots and soil. An increasing number of P. fluorescens
strains are being studied due to their ability to produce secondary

FIGURE 6 | P. fluorescens 2P24 and the rscC mutant have same strong
functional MTI in N. benthamiana as determined by multiple assays.
(A) ROS assay of strain 2P24 and the rscC mutant. The bacteria were
infiltrated at 108 cfu/ml into N. benthamiana leaves and 15 h later assayed for
ROS production using L-102 chemiluminescence. ROS assay results are
presented as the mean and SD based on three samples from three different
plants. Means shown with the same letters are not different statistically at the
5% confidence level on the basis of Duncan’s multiple range test.
(B) Challenge inoculum HR assays for functional MTI. Strain 2P24 and the
rscC mutant were initiated by infiltrating N. benthamiana leaves with
108 cfu/ml (upper circles). After 6 h, an overlapping inoculation of 107 cfu/ml
of the HR-inducing strain P. syringae pv. tomato DC3000 (lower circles) was
made. The presence or absence of confluent cell death in the overlapping
region was evaluated 48 h after strain DC3000 infiltration. (C) In the assay for
functional MTI based on relative growth of virulent bacteria, strain 2P24 and
the rscC mutant were infiltrated into N. benthamiana leaves at 108 cfu/ml and
challenged 6 h later with an overlapping inoculation of DC3000�hopQ1 at
105 cfu/ml. At the indicated days after the challenge inoculation (dpi), 0.5 cm
leaf disks were collected from areas of overlap between pre-treatment and
challenge inoculations and bacterial populations were determined by dilution
plating. Bacterial populations from three independent leaves were assayed in
triplicate. Means shown with the same letters are not different statistically at
the 5% confidence level on the basis of Duncan’s multiple range test.
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metabolites, such as antibiotics, volatile compounds, HCN,
siderophores, cell wall degrading enzymes, and phytohormones
(Majumder et al., 2014). As part of our research into the genetic
basis for biocontrol capacity of P. fluorescens strain 2P24, we
isolated and identified a gene cluster that encoded a typical
T3SS from the genomic library. The T3SS gene cluster of
P. fluorescens 2P24, rsp/rsc, showed greatest similarity to the
hrp/hrc pathogenicity island of P. syringae, both at the level
of genomic organization and amino acid sequence. The rsp/rsc
cluster contained all of the nine conserved hrc genes and the
hrpA1 gene, which composes the basal body and pilus of the
T3SS in plant pathogens (Tampakaki et al., 2004). The same
composition and organization of T3SS genes were found also
from P. fluorescens Q8r1-96 (Mavrodi et al., 2011). And yet,
P. fluorescens Q8r1-96 and 2P24 have the most intact T3SS
components compared to other P. fluorescens strains.

Although the T3SS in P. fluorescens has been studied for
many years, its supramolecular structure is still obscure. The
presence of hrpA1 and all hrc homologs lends support to the
proposition that T3SS machinery is produced in P. fluorescens
2P24. In this study, we modified the procedures and then isolated
and visualized successfully the T3SS complexes from strain 2P24
for the first time after many attempts. Because P. fluorescens
2P24 also produces flagella, which is another kind of surface
appendage that is very difficult to distinguish from the T3SS
pilus when detached from bacteria, we created and used a fliC
mutant that does not produce flagellin and forfeits swimming
ability, under the guidance of similar reports on P. syrinage and
Salmonella typhimurium (Kubori et al., 1998; Hu et al., 2001).
The secretion machinery of P. fluorescens 2P24 exhibited a pilus-
like structure similar to that of P. syringae that is composed of an
elongated pilus and a cylindrical basal body (Hu et al., 2001). The
successful isolation and identification of T3SS machinery from
P. fluorescens 2P24 confirms the integrity of rsp/rsc genes in the
genomic organization. Unlike the isolation condition for T3SS
complex from plant pathogen P. syringae (Roine et al., 1997), we
only were able to isolate the T3SS complex from KB richmedium,
but not from the hrp-inducing medium. This might suggest that
the T3SS in P. fluorescens 2P24 is not a strict pathogenic hrp-
induced system, which is consistent with the presence of PGPR
in the rhizosphere but not the leaf ecosystems.

Bacterial T3SS is of special interest because, by utilizing this
system, bacteria are able to inject bacterial effector proteins
directly into host cells. The typical process includes crossing the
bacterial membranes termed secretion and the step of crossing
the host membranes being called translocation (Alfano and
Collmer, 2004). The cosmid pLN18 that contains a functional
cluster of hrp/hrc T3SS genes from P. syringae, which is expressed
in P. fluorescens, is sufficient to deliver effector proteins into
plant cells (Huang et al., 1988). To test the functionality of
P. fluorescens 2P24 T3SS, we introduced HopQ1 from P. syringae
into P. fluorescens 2P24 and Pf0-1(pLN18) and tried to observe
a HopQ1-dependent HR in leaves of N. benthamiana. However,
we did not find expected HR from 2P24-expressing HopQ1, but
we did find HR from P. fluorescens Pf0-1(pLN18)-expressing
HopQ1. An immunoblot analysis showed that HopQ1-HA was
secreted successfully through the T3SS by strain 2P24 that was

dependent on the rscC gene present. But the HopQ1-CyaA
translocation assay demonstrated that strain 2P24 failed to inject
HopQ1-CyaA into plant cells, although a high level of HopQ1-
CyaA proteins was detected from plant leaves expressed by
P. fluorescens Pf0-1(pLN18). Further determination suggested the
HopQ1-dependent HR expressed by P. fluorescens Pf0-1(pLN18)
was patently dependent on HrpK1, which is a major translocator
of bacterial T3SS, and which is absent from strain 2P24. Although
the most similar T3SS in P. fluorescens Q8r1-96 was reported to
translocate Rop effectors into tobacco leaves, the level of effector
proteins was 100-fold lower than that expressed by P. fluorescens
55(pLN1965) (Mavrodi et al., 2011). It is very difficult to
postulate that such translocation capacity by P. fluorescens Q8r1-
96 is sufficient to trigger strong effector-dependent phenotypes
like HR. Mavrodi et al. (2011) showed that the three Q8r1-
96 Rop effectors expressed in P. fluorescens 55(pHIR11) and
P. fluorescens 55(pLN1965) were capable of suppressing HopA1-
dependent HR and flg22-dependent ROS production. It should
be noted that these capabilities were based on high translocation
levels of pHIR11and (pLN1965) in P. fluorescens 55, but not in
the native T3SS of P. fluorescens Q8r1-96 (Mavrodi et al., 2011).
Although the genome of strain 2P24 has not been sequenced and
we do not know if 2P24 really has effector homologs, the fact that
wild type 2P24 and the rscCmutant triggered the same high level
of ROS production suggested that no significant T3SS-dependent
MTI suppressor was present in strain 2P24. We also found that
2P24-expressing HopQ1 did not reduce the ROS level of wild
type 2P24 (Supplementary Figure S3), which indicated also that
HopQ1 was not translocated into plant cells through the T3SS of
strain 2P24.

Besides effectors, other proteins like harpins secreted by
T3SS play a critical role in microbe-host interactions. Harpins
are universal components of plant pathogen T3SSs, which can
elicit innate immunity when applied exogenously to plant cells
(He et al., 1993; Kvitko et al., 2007). In P. syringae DC3000, four
harpin proteins, HrpZ1, HrpW1, HopAK1, and HopP1, triggered
cell death in tobacco with the purified proteins and they were
involved also in effector translocation (Kvitko et al., 2007). The
DNA sequence of the P. fluorescens 2P24 rsp/rsc cluster revealed
the presence of a harpin-like encoding gene rspZ1. The purified
RspZ1 protein elicited cell death in tobacco as do the usual harpin
proteins. And rspZ1 also complemented the mutation of hrpZ1
from pHIR11 to translocate HopA1 and trigger cell death in
tobacco. To date, in all of T3SS+ PGPR, only P. fluorescensQ8r1-
96 was reported as having a RspZ1 homolog in the rsp/rsc cluster,
whereas the functionality of it has not been determined (Mavrodi
et al., 2011). Although our work could not define HrpZ1 as the
sole harpin and translocator in strain 2P24, our results show for
the first time that the cell death-like innate immunity triggered
by RspZ1 aids our comprehensive understanding of the induced
immunity and resistance by PGPR.

MAMPs are common elicitors in PGPR for basic
resistance and induced systemic resistance (ISR) in plants
(De Vleesschauwer and Hofte, 2009). Flagellin was investigated
as the major MAMPs in pathogenic P. syrinage DC3000 or
non-pathogenic P. fluorescens Pf0-1 (Wei et al., 2013). The
flagellin-triggered MTI could be suppressed by injection of
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effectors (Wei et al., 2013). In P. fluorescens Q8r1-96, RopM,
RopB, and RopAA suppressed both MTI and ETI immune
responses, which was contrary to the capacity of Q8r1-96 to
induce ISR in Arabidopsis thaliana (Mavrodi et al., 2011).
However, strain 2P24 could elicit strong functional MTI and
its endogenous TTSS could not deliver effectors to suppress
MTI and ETI (Figure 6 and Supplementary Figure S3), which
is apparently consistent with the capacity of strain 2P24 to
induce resistance in tomato (Wei et al., 2004a). Summarily,
our data suggest that P. fluorescens 2P24 is a fantastic PGPR
agent, which not only produces important secondary metabolites,
but which also elicits strong functional MTI. Although we
were unable to identify a role for 2P24 T3SS in biocontrol,
it does not mean the T3SS in PGPR has no biological role.
As a rhizosphere colonization bacterium, 2P24 is not like
phyllosphere-derived pathogens in essence to inject proteins into
mesophyll cells and trigger local innate immunity. A plausible
explanation is that the T3SS acquirement in PGPR strains
might be a consequence of cooption and could play a role in
rhizosphere environment adaption and fitness (Jackson et al.,
2005). Our ability to isolate the secretion+/translocation− T3SS
machinery clarifies the basic functionality of PGPR T3SS, which
should focus our future attention on identifying potential T3SS-
secreted proteins that occur during root colonization or cell–cell
interactions.
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