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Schizophrenia is a debilitating mental disorder, affecting more than 30 million people
worldwide. As a multifactorial disease, the underlying causes of schizophrenia require
analysis by multiplex methods such as proteomics to allow identification of whole protein
networks. Previous post-mortem proteomic studies on brain tissues from schizophrenia
patients have demonstrated changes in activation of glycolytic and energy metabolism
pathways. However, it is not known whether these changes occur in neurons or in glial
cells. To address this question, we treated neuronal, astrocyte, and oligodendrocyte
cell lines with the NMDA receptor antagonist MK-801 and measured the levels of
six glycolytic enzymes by Western blot analysis. MK-801 acts on the glutamatergic
system and has been proposed as a pharmacological means of modeling schizophrenia.
Treatment with MK-801 resulted in significant changes in the levels of glycolytic enzymes
in all cell types. Most of the differences were found in oligodendrocytes, which had
altered levels of hexokinase 1 (HK1), enolase 2 (ENO2), phosphoglycerate kinase (PGK),
and phosphoglycerate mutase 1 after acute MK-801 treatment (8 h), and HK1, ENO2,
PGK, and triosephosphate isomerase (TPI) following long term treatment (72 h). Addition
of the antipsychotic clozapine to the cultures resulted in counter-regulatory effects to the
MK-801 treatment by normalizing the levels of ENO2 and PGK in both the acute and
long term cultures. In astrocytes, MK-801 affected only aldolase C (ALDOC) under both
acute conditions and HK1 and ALDOC following long term treatment, and TPI was the
only enzyme affected under long term conditions in the neuronal cells. In conclusion,
MK-801 affects glycolysis in oligodendrocytes to a larger extent than neuronal cells
and this may be modulated by antipsychotic treatment. Although cell culture studies
do not necessarily reflect the in vivo pathophysiology and drug effects within the
brain, these results suggest that neurons, astrocytes, and oligodendrocytes are affected
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differently in schizophrenia. Employing in vitro models using neurotransmitter agonists
and antagonists may provide new insights about the pathophysiology of schizophrenia
which could lead to a novel system for drug discovery.

Keywords: schizophrenia, MK-801, clozapine, neurons, astrocytes, oligodendrocytes, Western blot, glycolysis

Introduction

Schizophrenia is a severe, debilitating mental disorder that
directly affects more than 30 million people worldwide (van Os
and Kapur, 2009). It is manifested in various forms with symp-
toms ranging from delusions, hallucinations, and disorganized
thoughts to anhedonia, lack of motivation, social withdrawal, and
cognitive impairments. The current diagnosis is interview-based
and involves communication of subjective symptoms, emotions,
and histories between the patient and physician, and categoriza-
tion of patients is performed using the Diagnostic and Statistical
Manual of Mental Disorders 5 (DSM-5) or the International
Statistical Classification of Diseases and Related Health Problems
10th revision (WHO, 2010; American Psychiatric Association,
2013). However, these manuals only provide descriptions and
qualify the symptoms of psychiatric disorders without providing
any neurobiological correlates of the disease (Möller et al., 2015).
Therefore, knowledge of the molecular pathways affected in these
conditions is still lacking. Furthermore, frequent misdiagnosis
occurs since multiple psychiatric disorders can exhibit similar
symptoms. For example, symptoms of delusions and depres-
sion can occur in schizophrenia, major depressive disorder, and
bipolar disorder (WHO, 2010; American Psychiatric Association,
2013). Since it is now recognized as a multifactorial disease with
an insidious onset, increasing our understanding of the underly-
ing causes of schizophrenia requires analysis by multiplex meth-
ods such as proteomics to allow identification of whole protein
networks (Turck et al., 2008). Over the past decade, a number of
proteomic studies of post mortem brain tissues from schizophre-
nia patients have been carried out using techniques such as
two-dimensional gel electrophoresis and shotgunmass spectrom-
etry. These have resulted in identification of changes in proteins
mostly involved in energy metabolism (English et al., 2009, 2011;
Martins-de-Souza et al., 2011a), and this is likely to be linked
to other observed effects on proteins associated with oxidative
stress (English et al., 2009, 2011; Martins-de-Souza et al., 2011a),
neuronal structure and transport (Carlino et al., 2011; Chan et al.,
2011; English et al., 2011), and cell trafficking and signal transduc-
tion (Pennington et al., 2008; English et al., 2011; Föcking et al.,
2011;Martins-de-Souza et al., 2011a). Taken together, the changes
in these proteins suggest that there is net effect on loss of myeli-
nation and synaptic function, leading to dysfunction of specific
brain areas, and perturbed networking across distal brain regions
(Stephan et al., 2009; Martins-de-Souza, 2010).

Despite these advances in understanding different pathways
affected in schizophrenia, it is still not known whether such
changes are more prominent in neurons or in specific glial cells.
In particular, oligodendrocyte pathology has been reported in
several brain regions, whereas no astrocytosis has been detected,
leading to the concept that schizophrenia is not a classical
neurodegenerative disease (Schmitt et al., 2009). One of the most

affected neurotransmitters is the glutamatergic system. A hypo-
function of the glutamatergic N-methyl-D-aspartate (NMDA)
receptor has been proposed to play an important role in
the pathophysiology of schizophrenia and recently this recep-
tor became a target of new treatment strategies (Hashimoto
et al., 2013; Zink et al., 2014). Dizocilpine (MK-801) is a non-
competitive antagonist at the NMDA receptor and has been used
as pharmacological model of schizophrenia (Zink et al., 2014).
Here, we have addressed this question of cell-specific alterations
by acute and long term treatment of neuronal, oligodendro-
cyte, and astrocyte cell lines with MK-801 and measuring the
effects on energy metabolism (Meltzer et al., 2011). This was
achieved by Western blot analysis of six enzymes involved in
the glycolysis pathway, which we found consistently different in
schizophrenia brain tissue (Martins-de-Souza et al., 2011a). It was
also of interest to evaluate the potential use of these cell lines
and associated biomarker signatures as a novel system for drug
discovery in schizophrenia research by investigating the effects of
add-on treatment with the antipsychotic drug clozapine on the
levels of glycolytic enzymes, since clozapine is known to coun-
teract symptoms produced by MK-801 (Feinstein and Kritzer,
2013).

Materials and Methods

Materials
Biochemical reagents were from Sigma–Aldrich (St Louis, MO,
USA), unless specified otherwise. The immortalized mouse
hippocampal neuronal cell line, HT22 (Li et al., 1997), was
a generous gift from Dr. David Schubert (The Salk Institute;
La Jolla, CA, USA). The cells were cultured in Dulbecco’s
Modified Eagle Medium (DMEM) containing 10% fetal bovine
serum (FBS) and differentiated in modified serum-free DMEM,
containing 1X N2 supplement, 50 ng/mL nerve growth factor-
β, 100 μM phorbol 12,13-dibutyrate, and 100 μM dibutyryl
cAMP for 24–48 h before treatment. All treatments were
performed in differentiation medium containing 5 ng/mL nerve
growth factor-β. Astrocytes (cell line 1321N1; Haedicke et al.,
2009) were cultured in DMEM, containing Nutrient Mixture
F-12, penicillin (100 units/mL), streptomycin (100 μg/ml)
and L-glutamine (2 mM), and 5% FBS. The MO3.13 cell
line (Cellutions Incorporated; Burlington, ON, Canada) is an
immortalized human cell line with phenotypic characteris-
tics of oligodendrocyte precursor cells (McLaurin et al., 1995;
Buntinx et al., 2003). MO3.13 cells were cultured in DMEM
containing 10% FBS, penicillin (100 U/mL) and streptomycin
(100 μg/mL). To induce an oligodendrocyte phenotype, the
cells were treated with 100 nM Phorbol 12-myristate 13-acetate
(PMA) for 4 days. All cell lines were cultured at 37◦C in
5% CO2.

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Guest et al. Glycolysis dysfunction in oligodendrocytes: insights for schizophrenia

Cell Culture Treatments with MK-801 and
Clozapine
The HT22, 1321N1, and MO3.13 cells were treated with MK-
801 and/or clozapine under acute (8 h) and long term (72 h)
conditions. For the acute treatment, all cells were treated for 8 h
with either vehicle (water), 50 μM MK-801, or 50 μM clozap-
ine. For the combined acute treatment, cells were treated first
for 4 h with 50 μM MK-801 and then 50 μM clozapine was
added and the incubation continued for another 4 h. The cells
were collected and stored at −80◦C. In the long-term treat-
ment, cells were treated with either vehicle, 10 μM MK-801, or
10 μM clozapine at 0, 24, and 48 h. For the combined chronic
treatment, the cells were incubated as above with 10 μM MK-
801 and then 10 μM clozapine was added at 8, 32, and 52 h.
Concentrations were chosen based on those of previous studies
(Kondziella et al., 2006; Paulson et al., 2007; Martins-de-Souza
et al., 2011b). The cells were collected after a total of 72 h
and stored at −80◦C. All incubations in all experiments were
performed three times.

Western Blot Analysis
Western blot analysis was carried out essentially as described
previously (Krishnamurthy et al., 2013). Frozen cell pellets were
homogenized in 100 μL of 7 M urea, 2 M thiourea, 4% CHAPS,
2% ASB-14, and 70 mM dithiothreitol (DTT) using a kit for
sample grinding (GE Healthcare; Munich, Germany). Protein
lysates were centrifuged at 14,000 × g for 10 min. The resulting
supernatants were collected and protein concentrations deter-
mined using the Bradford assay (BioRad; Munich, Germany).
The protein extracts (20 μg) from each cell sample were elec-
trophoresed on 12% sodium dodecyl sulphate (SDS) minigels
(BioRad; Hercules, CA, USA). The proteins were then trans-
ferred electrophoretically to Immobilon-FL polyvinyldiphenyl
fluoride (PVDF) membranes (Millipore; Bedford, MA, USA) at
100 V for 1 h using a cooling system. PVDFmembranes contain-
ing the transferred proteins were treated with 5% Carnation
instant non-fat dry milk powder in Tris buffered saline (pH
7.4) containing 0.1% Tween −20 (TBS-T) for 4 h, rinsed
in TBS-T three times for a total of 20 min and incubated
with hexokinase 1 (HK1), aldolase C (ALDOC), and enolase
2 (ENO2) antibodies at a 1:2000 dilution and with phospho-
glycerate kinase (PGK), phosphoglycerate mutase 1 (PGAM1),
and triosephosphate isomerase (TPI) antibodies at a dilution
of 1:000 in TBS-T overnight at 4◦C (all antibodies were from
Abcam; Cambridge, UK). Following the overnight incubation,
the membranes were washed twice with TBS-T for 15 min
per wash. Next, the membranes were incubated with anti-c-
MYC-peroxidase antibody (GE Healthcare; Uppsala, Sweden) for
40 min at room temperature, washed with water and TBS-T,
and incubated with Enhanced Chemiluminescence (ECL) solu-
tion (GE Healthcare) for 1 min. The membranes were scanned
using a Gel DocTM XR+ System (Silk Scientific Incorporated;
Orem, UT, USA) and the optical densities of the immunoreactive
bands were measured using Quantity One software (Bio-Rad).
Protein loading was determined by staining PVDF membranes
with Coomassie Blue R-250 to ensure equal loading in each gel
lane.

Statistical Analysis
In preliminary analyses, Kolmogorov–Smirnov tests were used
for all dependent variables to analyze whether there were signif-
icant deviations from the normality assumption, which was not
the case. Significant differences across groups were determined
by analysis of variance (ANOVA) using GraphPad Prism (La
Jolla, CA, USA). Differences between groups were determined by
post hoc analyses using unpaired two-tailed t-tests with Welch’s
correction. Bonferroni adjustment of the type I error probabil-
ity was not applied since an adjustment of the error probability
would decrease the test power. Due to the explorative study
design the findings presented here are not conclusive for a causal
relationship.

Results

Effects of Treatment of Cultured Cells with
MK-801 and Clozapine
HT22 Neuronal Cells
Acute treatment of HT22 cells led to significantly increased
levels of HK1 and PGAM1, as determined by ANOVA (Table 1;
see Supplementary Figure S1 for Western blot images of the
immunoreactive protein bands for each enzyme under acute and
long term conditions in the three cell types). None of the other
enzymes showed significant changes. Long term treatment led
to a significant increase in the levels of only one enzyme, TPI
(Table 2). Post hoc analysis using unpaired two-tailed t-tests
with Welch’s correction showed that acute clozapine treatment
of the HT22 cells resulted in a marked 2.35-fold increase in
HK1 (P = 0.001) and a smaller 1.17-fold increase in PGAM1
levels (P = 0.050). In addition, acute MK-801 treatment led to
a significant 1.24-fold increase in PGAM1 levels (P = 0.026).
Finally, separate long term treatments with clozapine and MK-
801 resulted in respective small but significant increases of 1.04-
fold (P = 0.032) and 1.11-fold (P = 0.003) in the levels of TPI
(Figure 1).

1321N1 Astrocyte Cells
Analysis of variance showed that the acute treatment had signif-
icant effects on the levels of different enzymes in 1321N1 cells
compared with those altered in HT22 cells. In the 1321N1 astro-
cyte line, ALDOC and PGK were significantly altered (Table 1).
None of the other enzymes showed significant changes. Post
hoc testing (unpaired two-tailed t-test with Welch’s correction)
showed that ALDOC was increased 1.62-fold by acute MK-801
treatment (P = 0.001; Figure 2). In addition, ENO2 and TPI were
increased 1.09-fold (P = 0.018) and 1.57-fold (P = 0.048), respec-
tively, following the combined MK-801/clozapine treatment in
comparison to the treatment with MK-801 alone, and PGK levels
were increased 1.08-fold by the clozapine treatment (P = 0.001).

Long term treatment of 1321N1 cells resulted in significantly
altered levels of five (HK1, ALDOC, PGK, PGAM1, and TPI)
out of the six glycolytic enzymes (Table 2), as determined by
ANOVA. The only enzyme which did not show a change was
EN02, which had a non-significant P-value of 0.3191. Post hoc
analysis showed that HK1 was significantly decreased 1.30-fold

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 May 2015 | Volume 9 | Article 180

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Guest et al. Glycolysis dysfunction in oligodendrocytes: insights for schizophrenia

TABLE 1 | Acute treatment of neuronal, astrocyte, and oligodendrocyte cells.

Enzyme CLOZ CTRL MK-801 MK-801/ CLOZ P-value

HT22 cells (neurons)

HK1 78.09 ± 0.07 33.29 ± 1.95 42.66 ± 5.57 77.45 ± 15.37 0.0237

ALDOC 45.82 ± 1.26 45.87 ± 3.08 46.85 ± 3.42 47.27 ± 0.11 0.4965

ENO2 45.87 ± 0.86 46.48 ± 1.14 47.06 ± 0.96 47.68 ± 0.83 0.1540

PGK 44.82 ± 13.41 51.00 ± 10.60 59.15 ± 2.13 61.08 ± 3.20 0.2875

PGAM1 50.10 ± 0.52 42.81 ± 2.88 53.16 ± 0.73 50.75 ± 4.69 0.0444

TPI 43.53 ± 4.05 40.13 ± 8.03 43.15 ± 0.75 46.81 ± 2.31 0.3611

1321N1 cells (astrocytes)

HK1 49.63 ± 2.42 51.25 ± 2.30 49.38 ± 1.67 52.44 ± 1.71 0.3061

ALDOC 52.62 ± 6.90 41.50 ± 2.74 67.30 ± 1.96 62.77 ± 2.41 0.0156

ENO2 210.1 ± 1.79 208.3 ± 15.58 200.7 ± 4.16 218.9 ± 0.93 0.1234

PGK 53.74 ± 0.29 49.67 ± 0.40 46.83 ± 1.36 46.50 ± 0.02 0.0237

PGAM1 75.92 ± 3.64 76.03 ± 0.89 72.86 ± 3.15 76.04 ± 0.42 0.4415

TPI 214.3 ± 18.13 214.2 ± 45.22 178.0 ± 15.60 278.9 ± 36.73 0.0586

MO3.13 cells (oligodendrocytes)

HK1 55.94 ± 0.09 43.63 ± 1.31 59.90 ± 2.85 51.51 ± 0.25 0.0156

ALDOC 51.84 ± 3.87 49.40 ± 2.87 54.32 ± 3.35 60.29 ± 2.60 0.0572

ENO2 337.4 ± 72.78 373.4 ± 13.08 594.4 ± 64.33 235.3 ± 37.45 0.0307

PGK 157.4 ± 6.37 155.5 ± 13.11 265.6 ± 7.82 164.4 ± 10.66 0.0770

PGAM1 58.94 ± 0.45 62.17 ± 2.40 55.01 ± 0.02 51.79 ± 1.33 0.0156

TPI 76.15 ± 4.95 78.65 ± 6.15 84.60 ± 0.40 80.60 ± 1.40 0.1441

All cells were treated for 4 h with 50 μM MK-801. After this, 50 mM clozapine (CLOZ) was added and the incubation continued for another 4 h. Cells treated with CLOZ
alone were incubated for 8 h. The cells were analyzed by Western blot and densitometric scanning of the immunoreactive bands for the glycolytic enzymes hexokinase
1 (HK1), aldolase C (ALDOC), enolase 2 (ENO2) phosphoglycerate kinase (PGK), phosphoglyceratemutase 1 (PGAM1), and triosphosphateisomerase (TPI). Significantly
different treatment groups were detected by ANOVA and post hoc analysis was carried out using unpaired two-tailed t-tests with Welch’s correction to identify differences
between specific groups. P-values in bold were significant.

TABLE 2 | Chronic treatment of neuronal, astrocyte, and oligodendrocyte cells.

Enzyme CLOZ CTRL MK-801 MK-801/ CLOZ P-value

HT22 cells (neurons)

HK1 43.53 ± 4.05 43.71 ± 4.44 43.48 ± 0.95 47.12 ± 3.62 0.5666

ALDOC 53.28 ± 7.39 55.97 ± 4.85 56.70 ± 10.55 51.71 ± 8.59 0.7888

ENO2 36.69 ± 5.44 42.62 ± 3.98 30.74 ± 13.40 27.84 ± 15.11 0.4243

PGK 59.20 ± 1.78 57.08 ± 0.25 58.91 ± 1.32 59.58 ± 3.26 0.2815

PGAM1 51.03 ± 2.43 54.04 ± 3.08 49.26 ± 2.79 45.36 ± 4.18 0.1129

TPI 45.49 ± 0.73 43.66 ± 0.41 48.42 ± 0.16 48.95 ± 4.03 0.0434

1321N1 cells (astrocytes)

HK1 52.91 ± 0.10 52.17 ± 1.08 39.98 ± 0.79 45.33 ± 3.67 0.0237

ALDOC 60.98 ± 3.71 59.00 ± 0.71 70.73 ± 3.57 72.09 ± 1.92 0.0378

ENO2 180.2 ± 15.30 184.7 ± 16.48 161.5 ± 31.66 151.1 ± 32.02 0.3191

PGK 43.71 ± 0.75 48.56 ± 0.79 48.65 ± 3.50 37.70 ± 2.27 0.0249

PGAM1 71.52 ± 0.84 73.14 ± 0.03 72.80 ± 3.50 61.77 ± 3.95 0.0444

TPI 186.2 ± 31.83 221.8 ± 45.36 165.6 ± 8.69 322.7 ± 44.19 0.0378

MO3.13 oligodendrocytes

HK1 54.67 ± 1.39 50.03 ± 0.08 48.24 ± 0.64 61.73 ± 1.26 0.0156

ALDOC 50.92 ± 1.42 52.78 ± 7.10 54.33 ± 0.88 62.63 ± 0.66 0.0444

ENO2 409.5 ± 78.89 221.9 ± 10.61 617.6 ± 53.2 229.7 ± 13.22 0.0237

PGK 259.0 ± 14.26 158.5 ± 12.36 513.0 ± 13.32 132.0 ± 31.06 0.0216

PGAM1 45.32 ± 2.80 45.85 ± 2.07 44.45 ± 4.31 43.00 ± 2.59 0.7152

TPI 78.85 ± 1.25 71.10 ± 0.30 87.95 ± 2.35 92.90 ± 10.20 0.0237

Cells were treated with 10 µM MK-801 at 0, 24, and 48 h and then with 10 µM CLOZ at 8, 32, and 52 h. The cells were collected after a total of 72 h and analyzed
by Western blot and densitometric scanning of the immunoreactive bands for the HK1, ALDOC, ENO2, PGK, PGAM1, and TPI. Significantly different treatment groups
were detected by ANOVA and post hoc analysis was carried out using unpaired two-tailed t-tests with Welch’s correction to identify differences between specific groups.
P-values in bold were significant.
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FIGURE 1 | Levels of glycolytic enzymes in a neuronal cell line (HT22) determined by Western Blot analysis. The upper panel shows acute effects of
MK-801 and Clozapine, and the lower panel shows long-term effects.

(P = 0.001) and ALDOC increased 1.20-fold (P = 0.031) by
the long term MK-801 treatment (Figure 2). Also, PGK levels
were decreased 1.11-fold (P = 0.004) by clozapine and 1.29-
fold (P = 0.012) by the combined MK-801/clozapine treatments
compared with the separate MK-801 treatment. Also, PGAM1
levels were significantly decreased 1.18-fold (P = 0.036) and TPI
levels increased markedly 1.95-fold (P = 0.026) by the combined
MK-801/clozapine treatment, compared to the MK-801 mono-
treatment. Thus, MK-801 had consistent effects on increasing
ALDOC levels and the MK-801/clozapine combination led to
consistently increased TPI levels relative to the MK-801 treat-
ment alone in both the acute and long term treatment protocols.
However, the long term MK-801 treatment led to decreased
levels of HK1 and the combined chonic MK-801/clozapine treat-
ment led to decreased PGK and PGAM1, although none of these
molecules were affected by the same treatments under acute
conditions.

MO3.13 Oligodendrocyte Cells
Analysis of variance NOVA analysis showed that the M03.13 cells
were affected the greatest by the both the acute and long term
treatments, with the highest number of changes in the levels of
the glycolytic enzymes tested.

The acute treatment resulted in significantly altered levels
of HK1, ENO2, and PGAM1. Furthermore ALDOC and PGK

showed borderline changes with P-values of 0.057 and 0.077,
respectively (Table 1). Only TPI showed no significant effects
(P= 0.1441). Post hoc t-test analysis, as carried out above, showed
that HK1 levels were increased 1.28-fold (P = 0.004) by cloza-
pine and 1.38-fold by the MK-801 (P = 0.012) treatments, and
decreased 1.16-fold by the combined MK-801/clozapine treat-
ment (P = 0.037) in comparison to the MK-801 mono-treatment
(Figure 3). The levels of both ENO2 and PGK were increased
markedly by the MK-801 treatment at 1.59-fold (P = 0.028)
and 1.71-fold and (P = 0.001), respectively, and these were
decreased to approximately control levels by the combined MK-
801/clozapine treatment (P = 0.004 and P = 0.001, respectively).
Finally, PGAM1 levels showed a 1.13-fold decrease (P= 0.038) by
MK-801 treatment and TPI was decreased 1.05-fold (P = 0.041)
by the combined MK-801/clozapine treatment compared with
the MK-801 mono-treatment.

Long term treatment of M03.13 cells resulted in altered
levels of five (HK1, ALDOC, ENO2, PGK, and TPI) out of
the six enzymes, as determined by ANOVA (Table 2). Four of
these (HK1, ALDOC, PGK, and TPI) were changed in common
with the 1321N1 astrocyte cells above. PGAM1 was the only
enzyme which did not show a significant response to any of the
treatments (P = 0.7152). Post hoc testing showed that HK1 was
increased (1.09-fold, P = 0.029) by clozapine as found in the
acute treatment. However, HK1 levels were affected oppositely
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FIGURE 2 | Levels of glycolytic enzymes in an astrocyte cell line (1321N1) analyzed by Western Blot. The upper panel represents acute effects of MK-801
and Clozapine, while the lower panel shows long term effects.

in the long term compared to the acute treatment group with
a small decrease of 1.04-fold (P = 0.041) induced by the MK-
801 treatment and a 1.13-fold (P = 0.004) increase following the
combined MK-801/clozapine treatment compared with MK-801
treatment alone (Figure 3). ALDOC was also increased (1.15-
fold, P= 0.001) by the combined treatment compared to theMK-
801 mono-treatment. ENO2 and PGK showed the same pattern
as found after the acute treatment with robust increases of 2.78-
fold (P = 0.006) and 3.24-fold (P= 0.001), respectively, following
long term treatment with MK-801 and treatment with the MK-
801/clozapine combination again led to a decrease approximating
the control levels (P = 0.007 and 0.003, respectively). However,
PGK levels also showed a 1.63-fold increase following the chronic
clozapine treatment (P = 0.003). Lastly, TPI levels were increased
1.11-fold (P = 0.009) by the long-term clozapine treatment and
1.24-fold (P = 0.007) by the MK-801 mono-treatment.

Discussion

This is the first study to show that the main effects on
energy metabolism pathways are likely to occur in astrocytes
and oligodendrocytes, rather than in neurons, using MK-801
treated cellular models of schizophrenia. Treatment with MK-
801 resulted in significant changes in the levels of glycolytic
enzymes in all cell types although MO3.13 oligodendrocytes

appeared to be the most strongly affected. These cells showed
altered levels of four of the enzymes (HK1, ENO2, PGK, and
PGAM1) after acute 8 h MK-801 treatment, and the long term
72 h treatment led to similar changes in four of the enzymes
(HK1, ENO2, PGK, and TPI). In contrast, the same analysis
of the 1321N astrocyte cells showed that MK-801 treatment
affected only one enzyme (ALDOC) under acute conditions and
two enzymes (HK1 and ALDOC) following long term treat-
ment, and HT22 neuronal cells showed changes in only one
enzyme (TPI) following the long term MK-801 treatment proto-
col. This suggests that astrocytes and neuronal cells are either
more resistant to the stresses induced by MK-801 treatment or
that oligodendrocytes are more susceptible to treatment with
this reagent. It is not clear how these effects are mediated but
the findings or recent studies suggest that this could occur
through MK-801-induced disruption of glutamate transporters
which are associated with mitochondria and energy metabolism
enzymes, as found in glial cells and neurons (Domercq et al.,
2007; Jackson et al., 2014; Roberts et al., 2014). Considering both
the acute and long term treatment protocols, clozapine treat-
ment also had greater effects on the MO3.13 oligodendrocyte
cells with changes seen in five out of the six enzymes, 1321N1
cells showed a similar response with changes in four of the
enzymes and HT22 cells again showed the lowest response with
changes found in only two of the enzymes. Therefore, treatment
with the antipsychotic clozapine may have a greater effect on
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FIGURE 3 | Levels of glycolytic enzymes in oligodendrocyte cell line (MO3.13) measured by Western Blot analysis. The upper panel represents acute
effects of MK-801 and clozapine treatment, while the lower panel shows long term treatment effects.

both oligodendrocytes and astrocytes as opposed to neurons.
Since all of these cell types possess NMDA receptors which
should be susceptible to MK-801 blockade as well as other recep-
tors which are known to mediate the effects of clozapine, the
observed differential responses suggest that other systems may
be involved. Therefore, further studies aimed at elucidating these
differences may lead to identification of novel biomarkers and
targets for use in future drug discovery efforts in schizophrenia
research.

A previous study using cultured OLN-93 oligodendrocyte
cells showed that clozapine treatment improved glucose uptake,
as well as the production and release of lactate (Steiner et al.,
2014). Under acute conditions in the present study, the MK-
801 treatment had only a small effect on the HT22 neuronal
cell line in terms of the number of glycolytic enzymes affected.
However acute clozapine treatment of these cells led to increased
levels of PGAM1. In addition, under chronic conditions, both
the MK-801 and clozapine treatments resulted in increased
levels of TPI in the neuronal cell line. This suggested that
effects on TPI are not likely to be involved in the response
to antipsychotic treatment in neurons. It is possible that the
observed effect of clozapine on TPI in the neuronal cells is
associated with the widely reported metabolic side effects of
antipsychotic treatment, such as weight gain and insulin resis-
tance (Deng, 2013). Perturbations of glycolysis are known

to be linked with impaired insulin signaling (Belfiore et al.,
1979).

Previous studies have found changes in the levels of enzymes
involved in glycolysis in brain tissues from rodent models of
schizophrenia and from post mortem schizophrenia patients.
A study of the chronic MK-801 rat model using13C-glucose label-
ing, found reduced glycolysis along with lower glutamate and
γ-aminobutyric acid (GABA) levels in multiple brain regions
(Eyjolfsson et al., 2011). This demonstrated how reduced supply
of glucose or perturbed glycolysis can have effects on the neuro-
transmitter systems which have been implicated in schizophrenia
(Lang et al., 2007). In addition, a proteomic study found that
glycolysis was one of themajor pathways affected in both gray and
white matter areas of post mortem brain tissues from schizophre-
nia patients (Martins-de-Souza et al., 2012a). This is consistent
with our finding of effects on the levels of glycolytic enzyme in all
three cell types, albeit with more numerous effects in glial cells.
One study showed a decrease in HK1 attachment to mitochon-
dria in post mortem parietal cortex brain tissue of individuals
with schizophrenia which is thought to result in uncoupling of
glycolysis with oxidative phosphorylation and, therefore, reduced
adenosine triphosphate (ATP) generation (Regenold et al., 2012).
HK1 mitochondrial attachment is also thought be important for
survival of neuronal cells through prevention of apoptosis and
oxidative damage (Saraiva et al., 2010). Again, we found that HK1
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levels were affected only in the oligodendrocyte and astrocyte
cells after treatment with MK-801. We also found that TPI levels
were decreased only in the astrocyte cell line. Martins-de-Souza
et al. (2012b) found that the levels of TPI were also decreased
in frontal cortex tissue from an acute treatment phencyclidine
(PCP) rat model, using selective reaction monitoring (SRM)
mass spectrometry in the analysis. The same study also showed
that a multivariate signal composed of HK1, ALDOC, ENO2,
PGK, PGAM1, TPI, and glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH) could distinguish the PCP-treated from vehicle-
treated control rats using partial least squares discriminant anal-
ysis (PLS-DA).

The finding that the oligodendrocyte cells showed a higher
number of glycolytic enzyme changes is interesting considering
the important role of these cells in myelination of neurons (Nave
and Werner, 2014). Numerous lines of evidence have implicated
myelin and oligodendrocyte function as critical factors affecting
neuronal connectivity, which has also been implicated widely in
schizophrenia (Lee et al., 2012; Bernstein et al., 2015; Mighdoll
et al., 2015). Therefore, our finding that the MO3.13 cells showed
the greatest number of glycolytic enzyme changes in response
to the MK-801 treatment is consistent with the possibility that
oligodendrocyte pathology and disturbances in white matter
tracts may contribute to the pathophysiology of schizophrenia
(Schmitt et al., 2009; Yao et al., 2013). Our results suggest that
an NMDA receptor hypofunction is associated with oligoden-
drocyte dysfunction by inducing deficits in glycolysis. However,
it remains to be determined whether the effects on glycolysis
in these cells are a causative factor or simply a consequence
of these processes. Nevertheless, the effects on the glycolytic
enzymes in these cells may provide useful biomarkers in drug
discovery efforts. In this regard, it is interesting that ENO2 and
PGK levels were increased strongly by the MK-801 treatment in
the oligodendrocyte cell line and both enzymes were normal-
ized to approximately control levels following treatment with
clozapine. Therefore, further studies are warranted to test these
two enzymes as antipsychotic treatment response markers in the
MO3.13 oligodendrocytes and related cell lines.

Limitations
Although cell culture studies do not necessarily reflect the in
vivo pathophysiology and drug effects within the brain, these
results suggest that neurons, astrocytes, and oligodendrocytes are
affected differently in schizophrenia. Both the acute and long
term treatment protocols showed that MK-801 treatment affects
glycolysis more in oligodendrocytes than in the other cell types
and in some cases these effects could be reversed by antipsy-
chotic treatment. It is not clear whether some of the effects of the
antipsychotic treatment are associated with therapeutic efficacy
or with the metabolic side-effect profile of these drugs. Further
studies are required to address this question. It will also be impor-
tant to validate the findings by looking for direct changes on
mitochondrial structure in the three cell lines. Another set of vali-
dation studies will explore if similar changes in glycolysis can be
identified in other neuronal or glial cell lines. As a means of vali-
dation of these findings, it will also be important to explore if
similar changes in glycolysis can be identified in other neuronal

or glial cell lines. It will also be important to validate the find-
ings by looking for direct changes on mitochondrial structure in
the three cell lines. Finally, the time scale over which the cellu-
lar effects occurred in this study is most likely more rapid than
that of the disease pathology. We suggest that this is likely to
be the case in vivo considering that effects at the cellular level
precede the systemic effects that eventually lead to the disease and
manifestation of symptoms.

Conclusion

The translation of academic findings to the clinic is now a major
objective of biomarker validation studies, especially in support of
drug discovery (Owens, 2006; Marson, 2007). We suggest that
assays for glycolytic enzymes such as ENO2 and PGK could
be implemented on high throughput platforms such as SRM
mass spectrometry instruments, considering that this method is
robust and user friendly for use in clinical studies. SRM mass
spectrometry has already been used in clinical investigations,
including screening the levels of dihydroartemisinin (DHA) in
plasma of malaria patients (Wiesner et al., 2011), measuring
the levels of apolipoproteins in human plasma (Agger et al.,
2010) and in cancer biomarker screening studies (Ang and Nice,
2010; Welinder et al., 2014). Finally, the results of the current
study indicate that MK-801 treated oligodendrocyte cells may
be a useful model for some aspects of metabolic dysfunction
and for biomarker screening in schizophrenia studies, consid-
ering the known effects on glycolysis-related enzymes in brain
tissues from schizophrenia patients. In addition, we propose the
use of glycolytic enzymes such as ENO2 and PGK as companion
biomarkers for use with this model.
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