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During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an
endosymbiotic process, which determined the presence of three genetic compartments
into the incipient plant cell. After that, these three genetic materials from host and
symbiont suffered several rearrangements, bringing on a complex interaction between
nuclear and organellar gene products. Nowadays, plastids harbor a small genome with
∼130 genes in a 100–220 kb sequence in higher plants. Plastid genes are mostly highly
conserved between plant species, being useful for phylogenetic analysis in higher taxa.
However, intergenic spacers have a relatively higher mutation rate and are important
markers to phylogeographical and plant population genetics analyses. The predominant
uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies.
Moreover, the gene content and genome rearrangements are efficient tools to capture
and understand evolutionary events between different plant species. Currently, genetic
engineering of the plastid genome (plastome) offers a number of attractive advantages
as high-level of foreign protein expression, marker gene excision, gene expression in
operon and transgene containment because of maternal inheritance of plastid genome
in most crops. Therefore, plastid genome can be used for adding new characteristics
related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to
biotic and abiotic stresses. Here, we describe the importance and applications of
plastid genome as tools for genetic and evolutionary studies, and plastid transformation
focusing on increasing the performance of horticultural species in the field.

Keywords: plastome, horticultural crops, conservation, photosynthesis, plastid genetic engineering

Introduction

The existence of plastids represents one of the principal features that distinguish plant from
other eukaryotic cells. Except for some gametic cells, plastids are assumed to be present as one
of several different types in all living cells of higher plants, which show its essentiality for cell
viability (Zhang et al., 2003; Kuroiwa, 2010; Nagata, 2010). These different plastid types have
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specific characteristics and functions, i.e., proplastids (present
in meristematic regions of the plant); chloroplasts (chlorophyll-
containg plastids specialized in photosynthesis); chromoplasts
(colored plastids able to store high amounts of carotenoids
present in petals of flowers and fruits); amyloplasts (mainly
present in storage tissues such as tubers and seed endosperm);
elaioplasts (lipid-storing plastids); leucoplasts (pigment-
less plastids present mainly in root cells); and etioplasts
(achlorophyllous plastids present in cotyledons of dark-
grown angiosperm seedlings; Lopez-Juez and Pyke, 2005;
Egea et al., 2010; Pyke, 2011; Bock, 2014; Osteryoung and
Pyke, 2014). Moreover, plastids are involved in other essential
cellular processes such as lipid, hormone, amino acid, and
phytochrome biosynthesis as well as nitrate and sulfate
assimilation (Tetlow et al., 2004; Waters et al., 2004; Aldridge
et al., 2005; Rogalski and Carrer, 2011; Galili and Amir, 2013;
Galili et al., 2014).

At the beginning of the last century, a non-Mendelian
inheritance of leaf variegation in Mirabilis jalapa and
Pelargonium zonale was proposed, suggesting the plastids
would contain their own genome (Baur, 1909, 1910; Correns,

1909; Hagemann, 2000, 2002; Greiner et al., 2011). This
hypothesis was confirmed with the discovery of plastid DNA
(Chun et al., 1963; Sager and Ishida, 1963; Tewari and Wildman,
1966). Today we know that the plastid genome (plastome) size
of photosynthetically active seed plants varies between 120 and
220 kb in a circularly mapping genome (Figure 1), encoding 120–
130 genes. The plastome is commonly mapped as a single circular
molecule, however, it shows a high dynamic structure (i.e., linear
molecules, branched complexes, and circular molecules) and
ploydy level in each chloroplast (Bendich, 2004). Thus, inside
a single cell, the plastome may occur at high copy number,
with up to thousands of genome copies. Mesophyll cells of
higher plants can contain 700–2000 copies of plastome, which
depend on the developmental stage of the leaves and the plant
species (Golczyk et al., 2014). These multiple copies are packed
together in large nucleoprotein bodies, the plastid nucleoids
(Golczyk et al., 2014; Krupinska et al., 2014; Powikrowska et al.,
2014). Generally, the plastid DNA in photosynthetic active
plant tissues (i.e., chloroplasts) forms up to 10–20% of total
cellular DNA content (Bendich, 1987; Bock, 2001; Golczyk et al.,
2014).

FIGURE 1 | Illustration of a plant cell shows the genetic material into the
three cellular compartments. Different sequences of plastid DNA are used for
several applications as population genetics and phylogeographycal studies
(intergenic spacers, RFLP and SSR molecular markers), plant biotechnology
(intergenic spacers used as targeted position for integration of transgenes),
functional genetics of plastid genes (the mutated allele is inserted into the

functional gene revealing the gene function) and mechanisms involved in the
plastid gene expression machinery (mutation in genes involved in plastid
genome transcription and translation elucidating the processes), and for
phylogenetic and evolutionary analyses (use of whole plastid genome or coding
region to determine the evolutionary history of plant groups, e.g., family, genus,
and at species level). ptDNA – plastid DNA.
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Although the evolutionary forces that gave rise to the
characteristic diversity of sizes, rearrangements, structure, and
compactness of contemporary plastomes are poorly understood,
nowadays the plastome has been used as basis for analyses of
phylogeny and evolution (Leebens-Mack et al., 2005; Jansen
et al., 2007; Parks et al., 2009; Moore et al., 2010; Crosby and
Smith, 2012; Vieira et al., 2014a), population genetics (Angioi
et al., 2009b; Nock et al., 2011; Yang et al., 2013; Wheeler
et al., 2014), plastid gene transfer to nucleus (Huang et al.,
2003, 2005; Stegemann et al., 2003; Bock, 2006; Stegemann and
Bock, 2006), exchange of plastome between different species
(Stegemann et al., 2012; Fuentes et al., 2014), plant speciation
(Greiner et al., 2011), functional genomics (Svab et al., 1990; Svab
and Maliga, 1993), and plastid gene expression machinery (Ruf
et al., 1997; Hager et al., 1999; Drescher et al., 2000; Shikanai
et al., 2001; Maliga, 2004; Kode et al., 2005; Rogalski et al.,
2006, 2008; Alkatib et al., 2012). In addition to basic research,
plastome studies may be focused in plastome transformation for
biotechnological applications, i.e., adding new agronomic traits,
manipulation of metabolic pathways, enhanced pest resistance,
increase of biomass and production of enzyme for biofuel
industry, and molecular farming in species related to agriculture
and horticulture (Maliga and Bock, 2011; Verma et al., 2013;
Wang et al., 2013; Bock, 2014; Shenoy et al., 2014; Shil et al., 2014;
Zhang et al., 2015). All of these plastid/plastome applications are
summarized in the Figure 1.

Here, we review recent progress in plastid genomics
in horticultural species. We focus on plastid evolution,
gene content, size, inheritance, genomic structure, and
rearrangements. We present information about the plastid
genome of horticultural species and the current use of this
information for different areas. We also briefly highlight the
application the plastid genome information on genetic diversity
and divergence within natural plant populations, evolution and
the importance of plastid genomic for biotechnological use.

Plastid Origin and Evolution

The evolutionary history of plastids is based on the
endosymbiotic theory which posits that plastids and
mitochondria originated from an engulfment of free-living
eubacteria over a billion years ago, an α-proteobacteria and a
cyanobacterium ancestor, respectively, giving rise the present-day
plant cell (Timmis et al., 2004; Reyes-Prieto et al., 2007; Bock and
Timmis, 2008; Gould et al., 2008; Archibald, 2009; Kleine et al.,
2009; Keeling, 2013; Zimorski et al., 2014). The main evidence
of the origin of organelles via the endosymbiotic theory is the
molecular, genetic, physiological, and biochemical similarities to
prokaryotic cells of ancestors (Zimorski et al., 2014). From these
symbionts, the eukaryotic cell acquired the novel biochemistry
as oxidative phosphorylation and photosynthesis (Timmis et al.,
2004; Bock and Timmis, 2008; Green, 2011). The acquisition of
organelles was one of the most important evolutionary processes,
given that the association between host and symbionts resulted in
a cell with three compartments containing genetic information:
the nucleus, mitochondria, and plastids. The combination of

three genomes, or host and symbiont genetic compartments,
was followed by a dramatic reorganization of the genomes
with loss of dispensable genes from organelles, elimination of
common genetic information, transfer of genes from organelles
to the nucleus, import of products of these transferred genes
into the organelles and a complex interaction between nuclear
and organellar gene products with the acquisition of new gene
functions (Martin et al., 1998; Dyall et al., 2004; Timmis et al.,
2004; Bock, 2006; Bock and Timmis, 2008; Zimorski et al., 2014).
As a consequence, the size of organelle genomes was drastically
reduced during the evolution of the plant cell (Bock, 2007, 2014;
Jansen and Ruhlman, 2012).

Nowadays, plastids retain a small prokaryotic chromosome
containing no more than 200 protein coding genes (Glöckner
et al., 2000; Zimorski et al., 2014) from more than 3200 present
in their cyanobacterial ancestor (Kaneko et al., 1996). Even
containing a reduced genome and small number of protein-
coding genes, plastids harbor thousands of proteins (Meisinger
et al., 2008; Kleine et al., 2009), which means that the plastid
proteome do not reflect its genome. Most of the genes present
into the symbiont genome reside now in the nucleus, where they
became functional and their products (i.e., proteins) continue
to have their original function in the plastids. Some genes
have similarly migrated to the nucleus, however, acquiring a
new function which is not related to the prokaryotic ancestor
(Martin et al., 2002; Rousseau-Gueutin et al., 2012). Proteomic
and genomic analyses suggest that approximately 93–99% of the
proteins present in plastids are encoded in the nucleus (Richly
et al., 2003; Richly and Leister, 2004; Meisinger et al., 2008; Kleine
et al., 2009).

Some experiments in vivo were carried out to recapitulate the
movement of plastid DNA to the nucleus by using of tobacco
transplastomic plants (Huang et al., 2003, 2005; Stegemann et al.,
2003; Bock and Timmis, 2008). These experiments suggest that,
during the evolution, organellar DNA have been constantly
transferred to the nucleus and regularly incorporated into
chromosomes. Few experiments have been done to show how
a plastid gene becomes functional in the nucleus (Stegemann
and Bock, 2006) and the stability of gene expression after
nuclear insertion (Sheppard and Timmis, 2009). These different
experimental approaches using transplastomic plants showed
that the gene transfer from plastid genome to the nucleus
is an ongoing process and occurs at a surprisingly high
frequency (Huang et al., 2003, 2005; Stegemann et al., 2003;
Bock, 2006; Stegemann and Bock, 2006; Bock and Timmis,
2008).

Following the reduction of plastome size, gene content and
expression capacity during the evolution, some angiosperm
species acquired new lifestyle as parasite plants as examples
Epifagus virginiana and different species of the Cuscuta genus
(Wolfe et al., 1992; Lohan and Wolfe, 1998; McNeal et al., 2007).
This adaptation to the new life has resulted in an attenuation
of the plastome and plastid gene expression machinery and,
consequently, a high dependency on the host plant. These
alterations in the plastome include loss of photosynthesis-related
genes, deletion of a meaningful part of the genetic information
and impaired photosynthesis capacity in some species (Funk
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et al., 2007; Gould et al., 2008; Tsai and Manos, 2010). Except
in parasite plants where photosynthesis is dispensable, the
plastome sequence and gene content of different species of higher
plants are highly conserved, and some experimental evidences
in vivo have suggested that plastid gene expression is essential
for cell survival and development (Rogalski et al., 2006, 2008;
Alkatib et al., 2012; Tiller and Bock, 2014). However, a different
situation was observed in the high-throughput sequencing and
transcriptomic analyses of Polytomella spp., a free-living non-
photosynthetic green algae closely related to the model organism
Chlamydomonas reinhardtii (Smith and Lee, 2014). For this
species, data analyses revealed no plastid genome-derived reads
and, although Polytomella spp. has plastids, they do not contain a
genome and seems to be only a cellular compartment needed for
cellular metabolism (Smith and Lee, 2014).

Regulation of Gene Expression in
Plastids

Plastid gene expression involves not only the activation of a set of
plastid genes required for plastid biogenesis and photosynthesis,
but also the modulation of gene expression during chloroplast
development and in response to different environmental factors
(Pfannschmidt, 2003; Pfannschmidt et al., 2003). The plastid gene
expression must rely on the nucleus for most of their structural
proteins and regulatory factors, and a complex signaling
pathways are involved, demonstrating the interdependence and
need for coordination of gene expression between these cellular
genetic compartments (Bräutigam et al., 2007; Greiner et al.,
2011). All steps of plastid gene expression are dependent on
nuclear gene expression given that nuclear gene products (i.e.,
proteins) are required for transcription, processing, translation,
post-translation modification, and turnover of plastid proteins
(Marín-Navarro et al., 2007; Wobbe et al., 2008; Berry et al., 2013;
Chi et al., 2013; Small et al., 2013; Petrillo et al., 2014; Ramundo
and Rochaix, 2014).

This complex interaction between nuclear genome and
organellar genome (i.e., plastome) plays a crucial role in the
plant cell controlling the entire metabolism. Moreover, organellar
and nuclear genomes constitute a tightly integrated functional
unit that co-evolves. This integration between cellular genomes
(e.g., plastid genome and nuclear genome) is involved in
speciation processes where the lack of functional interaction
between genomes results in reproductive barriers between
populations (Greiner et al., 2011). Fail in the interaction
between plastid genome and nuclear genome can induce genome
incompatibilities affecting phenotypically the progenies and
resulting in hybrid bleaching, hybrid variegation, or disturbance
of the sexual phase (Bogdanova, 2007; Greiner et al., 2008, 2015;
Bogdanova et al., 2009; Greiner and Bock, 2013), which affect
directly the survival of the plants on natural environment. The
sequencing of plastid genome, because of its small size and
relatively low number of genes, is a valuable and essential tool
to investigate the cause of these incompatibilities (Greiner et al.,
2008, 2011; Besnard et al., 2011; Bogdanova et al., 2012; Greiner
and Bock, 2013).

Plant Population Genetic Studies in
Horticultural Species based on Plastid
Genomes

Plastid genomes, unlike most nuclear chromosomes, are typically
uniparentally inherited. For sexually reproducing species with
male and female gametes, maternal plastid inheritance is the
norm (Zhang and Sodmergen, 2010), although it was indicated
that about 20% of angiosperms exhibits the potential for paternal
plastid transmission (Corriveau and Coleman, 1988; Zhang et al.,
2003; Zhang and Sodmergen, 2010; Schneider et al., 2015).
Studies have identified diverse species with paternal (mainly
conifers) or biparental modes of plastid inheritance (Crosby and
Smith, 2012). This uniparental mode of inheritance allows the
generation of inferences about the relative contributions of seed
and pollen flow to the genetic structure of natural populations
by comparing nuclear and plastid markers (Provan et al., 2001;
Roullier et al., 2011; Delplancke et al., 2012; Khadivi-Khub et al.,
2013).

Effective genetic population size is a parameter influenced
by the mode of inheritance. The haploid nature of chloroplast
genome is related to its reduced genetic variation. Since
the effective population size of a haploid genome is 1/4
in dioecious plants and 1/2 in monoecious plants of the
nuclear genome, coalescence times and time to fixation of
chloroplast DNA haplotypes within a population are shorter
than in diploid genomes (Small et al., 2004). Moreover, different
plastid genes evolve at different rates, allowing measuring
evolutionary distance at many taxonomy levels (Palmer, 1985;
Shaw et al., 2007). This low evolving rate along with the
absence of recombination, uniparentally inherited nature in
most plant species perceived in plastid genome may greatly
facilitate the use of plastid DNA markers in plant population
genetic studies (Palmer, 1985; Powell et al., 1995; Provan et al.,
2001).

In the 80’s, the use of phylogenetic studies based on plastid
genomes began to show promising results (Palmer, 1985). The
rbcL gene waswidely sequenced frommany plant taxa, generating
a suitable database for plant phylogenetic studies at family level
and higher taxa (Palmer et al., 1988; Hasebe et al., 1992; Brunsfeld
et al., 1994; Setoguchi et al., 1998). However, in some cases rbcL
gene and other coding regions proved to be highly conserved
searching the answer of questions between closely related genera
(Gielly and Taberlet, 1994). Since the non-coding regions are
likely to evolve faster than coding regions (Gielly and Taberlet,
1994), the analysis of non-coding regions of plastid DNA (i.e.,
introns and intergenic spacers) was a strategy applied to clarify
the relationships at lower taxonomic levels, see Figure 1. This
strategy has solved some of the questions in the context of
phylogenetic studies, and later many unexplored non-coding
regions of the plastid genome proved promising to bring even
more additional information to this line of study (Shaw et al.,
2005, 2007). For instance, the pairwise sequence divergence
across genes, introns, and spacers in Helianthus (Asteraceae) and
Lactuca (Asteraceae) has resulted in the discovery of fast-evolving
DNA sequences for use in species-level phylogenetics (Timme
et al., 2007).
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The plastid markers, restriction fragment length
polymorphisms (RFLPs), began to be used for evolution
(Palmer et al., 1983), phylogenetic (Jansen and Palmer, 1987;
Sandbrink et al., 1989), and plastid diversity analyses (Ogihara
and Tsunewaki, 1988; Dally and Second, 1990). This method
has the disadvantage of requiring reasonable amounts plant
material, digestible, and nuclear DNA-free plastid DNA,
associated with laborious experimental procedures of the
Southern hybridization-based RFLP method (Sandbrink et al.,
1989; Provan et al., 2001).

In the following decade, Powell et al. (1995) reported the
presence of simple nucleotide repeats in plastids, exhibiting
length variation and polymorphism in higher levels than those
of plastid RFLPs (Figure 1). This marker became a widely used
plastid marker, known as chloroplast simple sequence repeats
(cpSSRs), consisting of repetitive DNA sequences in tandemly
repeated motifs of six base pairs (bp) or less, which have aroused
considerable interest due to their ability to generate highly
informative DNA markers (Provan et al., 2001). Even though in
chloroplasts genomes the occurrence of di-, tri-, tetra-, penta-,
and hexanucleotide repeats is less common (George et al., 2015).
These regions may be used for both intraspecific and interspecific
variability analyses, with practical value for monitoring gene
flow, population differentiation and cytoplasmic diversity (Powell
et al., 1995).

The development and application of these plastid molecular
markers was demonstrated by Angioi et al. (2009a), who
developed a useful set of cpSSR markers to study the genetic
diversity of Phaseolus spp. and other legumes. These markers
could discriminate among the genera, and among and within
the species of the Phaseolus genus. Shortly after, these set
of markers were applied to characterized a Phaseolus vulgaris
collection from Italy, clarifying the origin of the Sardinian (Italy)
bean germplasm by comparing local accessions with commercial
and Americas varieties (Angioi et al., 2009b). These data
generated important information to elucidate the colonization
process of P. vulgaris in Europe and to define an appropriate
management of the local genetic resources, particularly for
breeding purposes.

Similarly, Khadivi-Khub et al. (2013) characterized the genetic
and phylogenetic relationships of eight wild Prunus L. subgen.
Cerasus species naturally growing in Iran and three commercial
species based on nuclear and cpSSR. These markers were
able to discriminate all species analyzed, with high level of
polymorphism detected, indicating high inter-and intraspecific
genetic variation. A close correlation was observed between
intraspecific variation and geographical distribution, providing
bases for conservation suggestion for these native populations
of wild Cerasus germplasm and for future breeding activity. By
using the same strategy of combining nuclear and cpSSRmarkers,
but for different purposes, Delplancke et al. (2012) investigated
spontaneous gene flow among wild and domesticated Prunus.
Two key almond tree species were selected, the cultivated Prunus
dulcis and the wild relative Prunus orientalis. They identified
high genetic diversity levels in both species along with substantial
and symmetric gene flow between the domesticated and the
wild species. This crop-to-wild gene flow study highlights the

importance of use of ad hoc transgene containment strategies
for this species before the introduction of genetically modified
cultivars.

The cpSSRs can also be applied to elucidate evolutionary
questions in high economic interesting species and with
intriguing domestication processes, such as the evolutionary
history of wheat species. The characterization of a large set of
accessions of Triticum spp., provided very strong evidence that
neither Triticum urartu nor Aegilops tauschii was the maternal
and thus cytoplasmic donor for polyploid wheats cultivated today
(Leigh et al., 2013).

In sweet potato landraces, nuclear and cpSSR markers
combined also allowed the origin and dispersal investigation,
providing bases to suggest at least two independent
domestications processes for these species, in Central/Caribbean
America and in the north-western part of South America. The
comparison of nuclear and chloroplast data also suggests that
exchanges of clones and sexual reproduction were both important
processes in landrace diversification in this clonally propagated
crop. These analyses provided useful tools for rationalizing the
conservation and use of sweet potato germplasm collections
(Roullier et al., 2011).

Another relevant area of cpDNA markers application is
phylogeographical analysis, e.g., in following colonization after
the ice age. The fact that chloroplasts present mainly uniparental
inheritance means that they show a clearer geographical structure
than nuclear markers, notably in wind-pollinated species (Petit
et al., 2005). In this way, glacial refugia have been identified for
several tree species, such as Quercus petraea, Quercus pubescens,
Fagus sylvatica (Petit et al., 2002), and Populus nigra (Cottrell
et al., 2005).

Plastid Genome in Horticultural Species

In general, land plant chloroplast genomes are mostly conserved
and contain basically two groups of genes. The first group
comprises components for the photosynthetic machinery –
photosystem I (PSI), photosystem II (PSII), the cytochrome b6/f
complex and the ATP synthase. The second group includes the
genes required for the genetic system of plastids – subunits of
an RNA polymerase, rRNAs, tRNAs, and ribosomal proteins.
The tobacco plastid genome, for example, consists of 155,943 bp
and contains a pair of inverted repeat regions (IRA and IRB)
separated by a small (SSC) and a large (LSC) single copy
region (Figure 1). It contains 115 genes, 79 protein-encoding
genes and 35 encoding stable RNA species (Shinozaki et al.,
1986; Wakasugi et al., 1998; Yukawa et al., 2005). This plastid
genome organization is highly conserved in angiosperms, with
very few exceptions (Guo et al., 2007; Hansen et al., 2007;
Tangphatsornruang et al., 2010; Do et al., 2014; Gurdon and
Maliga, 2014). In gymnosperms, the loss of the large IR has
been reported in several species, mainly in conifers (Table 1;
Hirao et al., 2008; Wu and Chaw, 2013; Yi et al., 2013; Vieira
et al., 2014a). Some authors believed that a pair of large IR
could stabilize the plastid genome against major structural
rearrangements (Palmer and Thompson, 1982; Strauss et al.,
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TABLE 1 | List of genes category, group, and names commonly identified in plant plastid genomes.

Category of genes Group of gene Name of gene

Self-replication Ribosomal RNA genes rrn16 rrn23 rrn5 rrn4.5

Transfer RNA genes trnA -UGC trnC -GCA trnD -GUC trnE -UUC trnF -GAA trnfM -CAU

trnG -UCC trnG -GCC trnH -GUG trnI -CAU trnI -GAU trnK -UUU

trnL -CAA trnL -UAA trnL -UAG trnM -CAU trnN -GUU trnP -GGG

trnP -UGG trnQ -UUG trnR -ACG trnR -UCU trnR -CCG trnS -GCU

trnS -UGA trnS -GGA trnT -UGU trnT -GGU trnV -GAC trnV -UAC

trnW -CCA trnY -GUA

Small subunit of ribosome rps2 rps3 rps4 rps7 rps8 rps11

rps12 rps14 rps15 rps16 rps18 rps19

Large subunit of ribosome rpl2
rpl32

rpl14
rpl33

rpl16
rpl36

rpl20 rpl22 rpl23

DNA-dependent RNA polymerase rpoA rpoB rpoC1 rpoC2

Translational initiation factor infA

Genes for
photosynthesis

Subunits of photosystem I (PSI) psaA
ycf3

psaB
ycf4

psaC psaI psaJ psaM

Subunits of photosystem II (PSII) psbA psbB psbC psbD psbE psbF

psbH psbI psbJ psbK psbL psbM

psbN psbT psbZ

Subunits of cytochrome petA petB petD petG petL petN

Subunits of ATP synthase atpA atpB atpE atpF atpH atpI

Large subunit of Rubisco rbcl

Chlorophyll biosynthesis chlB chlL chlN

Subunits of NADH dehydrogenase ndhA ndhB ndhC ndhD ndhE ndhF

ndhG ndhH ndhI ndhJ ndhK

Other genes Maturase
Envelope membrane protein
Subunit of acetyl-CoA
C-type cytochrome synthesis gene
Protease
Component of TIC complex

matK
cemA
accD
ccsA
clpP
ycf1

Genes of unknown
function

Conserved open reading frames ycf2 ycf12

Pseudogenes ycf68 ycf15

We used four phylogenetically distant species to unify in a single table the gene content of plastid genomes. Small changes may occur according to species. The species
used as reference were Prunus persica (eudicotyledon), Elaeis guineensis (monocotyledon), Picea abies (conifer Clade I), and Taxus mairei (Conifer Clade II).

1988; Hirao et al., 2008). However, recently Sabir et al. (2014)
found evidences that the loss of the IR in legumes is not
the major driving force behind the genomic upheaval, and
hypothesized that other factors, such as the extent and location
of repetitive DNA, may be more important in destabilizing these
genomes.

In order to unify in a single table a list of genes category,
group, and names commonly identified in plant plastid genomes,
we arbitrarily choose four representative horticultural species
from very distant taxa, two angiosperms: Prunus persica
(eudicotyledon) and Elaeis guineensis (monocotyledon), and two
gymnosperms: Picea abies (conifer Clade I) and Taxus mairei
(Conifer Clade II; Table 1). Although plastid genome shows
a high conservative gene content, small changes may occur
according to the species, such as complete gene losses, or presence
of pseudogenes.

The beginning of the complete plastid genome sequencing
was in the 1980s, with the almost simultaneously sequence

release of Nicotiana tabacum (Shinozaki et al., 1986) and
Marchantia polymorpha (Ohyama et al., 1986). The plastid
genome sequencing, especially in tobacco, together with the
development of plastid transformation for this species have
allowed the investigation of the function of several plastid genes
(Svab et al., 1990; Svab and Maliga, 1993). Consequently, during
the next years until the present, plastid genes and gene expression
machinery have been extensively studied (Ruf et al., 1997; Hager
et al., 1999; Drescher et al., 2000; Shikanai et al., 2001; Maliga,
2004; Kode et al., 2005; Rogalski et al., 2006, 2008; Alkatib et al.,
2012).

In the last decades, several research groups around the world
have centered its efforts on the sequencing of plastid genomes
of various taxonomic groups. Today, more than 600 land plant
species has its plastid genome sequence available in Genbank
web page (www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?
taxid=2759&opt=plastid). In this review, we highlight species
of high interest to horticulture, as tomato (NC_007898;
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Daniell et al., 2006), potato (NC_008096; Chung et al., 2006),
lettuce (NC_007578; Timme et al., 2007), spinach (NC_002202;
Schmitz-Linneweber et al., 2001), onion (NC_024813), carrot
(NC_008325; Ruhlman et al., 2006); ornamental species,
as orchids, i.e., Phalaenopsis aphrodite (NC_007499; Chang
et al., 2006), Cymbidium aloifolium (NC_021429; Yang et al.,
2013), and Cattleya crispata (NC_026568; da Rocha Perini
et al., 2015), Lilium (NC_026787), Magnolia kwangsiensis
(NC_015892; Kuang et al., 2011); fruit crops, as strawberry
(NC_015206; Shulaev et al., 2011), peach (NC_014697; Jansen
et al., 2011), orange (NC_008334; Bausher et al., 2006),
banana (HF677508; Martin et al., 2013); medicinal species, as
Camellia grandibracteata (NC_024659; Huang et al., 2014), Salvia
(NC_020431; Qian et al., 2013), Artemisia frigida (NC_020607;
Liu et al., 2013); and forestry species, as Eucalyptus aromaphloia
(NC_022396; Bayly et al., 2013), Pinus contorta (NC_011153;
Cronn et al., 2008), Picea abies (NC_021456; Nystedt et al.,
2013).

The beginning of plastid genome sequencing involved cloning
of chloroplast DNA into plasmid vectors, followed by selection
of chloroplast DNA-containing clones, and then sequencing the
clones in traditional Sanger-based sequencers using both plasmid
and chloroplast-specific primers (Jansen et al., 2005). With the
emergence of pyrosequencing, more specifically with the Genome
Sequencer 20 (GS 20) system (Roche, Basel, Switzerland), to clone
template DNA into bacterial vectors became no more necessary,
and genome sequence could be obtained in a single 5-h run with
a few days of template preparation (Moore et al., 2006).

Shortly after, Cronn et al. (2008) PCR-amplified eight
Pinus plastid genomes and adapted multiplex sequencing-
by-synthesis (MSBS) to simultaneously sequence multiple
plastid genomes using the Illumina Genome Analyzer
(Illumina Inc., San Diego, CA, USA). The use of the PCR-
based methods to amplify overlapping fragments from
conserved gene loci in plastid genomes is time consuming
and can be more difficult to implement considering that gene
organization differs among plants (Atherton et al., 2010).
Atherton et al. (2010) demonstrated a suitable alternative
approach, isolating chloroplasts and then using the capacity
of high-throughput sequencer Illumina Genome Analyzer
II to obtain purified and complete plastid sequences. This
technique allowed the obtainment of reads sequence easy
to assemble for building the complete plastid genome
map.

With the advances of next-generation sequencing, it is
becoming increasingly faster and cost-effective to sequence and
assemble plastid genomes. The isolation of chloroplast DNA
is a facilitator in the sequencing data assembly (Vieira et al.,
2014b), but the capacity of current sequencing technologies
allows effective analysis of the chloroplast genome sequence
by sequencing total DNA (Henry et al., 2014). Using this
approach, the chloroplast insertions in the nuclear genome can
be distinguished by their much lower copy number, and the
short-read sequences from plastid genome are easy discriminated
from nuclear reads by alignment with a reference plastome
(Henry et al., 2014). Thus, depending on the available framework,
nowadays plastid genome sequence may be realized from

amplification of chloroplast DNA using long range PCR in
species that chloroplast isolation is more challenged and hard to
be reached.

Thereby, the complete genome sequencing in Fabaceae family
allowed the comparison in two horticultural species of high
economic potential, Glycine max and P. vulgaris with the
considered outstanding model for genome research Medicago
truncatula. All the three legumes present very similar gene
content and order, and lack the rpl22 gene (Saski et al.,
2005; Guo et al., 2007). However, the rps16 is an intron-
containing and functional gene in G. max, a pseudogene
in P. vulgaris and absent in M. truncatula (Saski et al.,
2005; Guo et al., 2007). M. truncatula also differ by missing
one copy of the IR (Saski et al., 2005). Studies point out
that the presence of small repeats of psbA and rbcL in
legumes that have lost one copy of the IR indicate that this
loss has only occurred once during the evolutionary history
of legumes (Cai et al., 2008; Gurdon and Maliga, 2014).
P. vulgaris differs from the others by containing an additional
pseudogene, rpl33. Interestingly, P. vulgaris chloroplast genome
show higher evolutionary rates on genomic and gene levels
than G. max, which is believed to be a consequence of
pressure from both mutation and natural selection (Guo et al.,
2007).

In Rosids, a large monophyletic clade of Angiosperms,
comprising 17 orders, many of them containing species with
high economic interest, several plastid genomes were sequenced
(Hu et al., 2011; Jansen et al., 2011; Rodríguez-Moreno et al.,
2011; Njuguna et al., 2013). These plastid genome sequences
enabled the identification of a common gene lost in Passifloraceae
and Fagaceae, the rpl22 (Jansen et al., 2011). In Passiflora sp.,
Castaneae sp., and Quercus sp. the rpl22 was present in the
chloroplast genome as a pseudogene, and in Castanea sp. and
Quercus sp. it was identified a complete copy of this gene in
the nuclear genome, characterizing a functional gene transfer
from plastid to nucleus (Jansen et al., 2011). As described above,
some species from Fabaceae family also lacks rpl22. These results
together allowed Jansen et al. (2011) to suggest that these rpl22
gene transfers occurred approximately 56–58, 34–37, and 26–27
Ma for the Fabaceae, Fagaceae, and Passifloraceae, respectively
(Jansen et al., 2011).

Comparisons of chloroplast genome organization between
Solanum lycopersicum and Solanum bulbocastanum showed that,
at gene order, these genomes are identical, and this conservation
extends to more distantly related genera (tobacco and Atropa)
of Solanaceae (Daniell et al., 2006). These authors also analyzed
repeated sequences in Solanaceae chloroplast genomes, revealing
42 groups of repeats shared among various members of the
family. In addition, 37 of these 42 repeats are found in all four
genomes examined, occurring in the same location, either in
genes, introns or within intergenic spacers, suggesting a high
level of conservation of repeat structure. In the same way, Chung
et al. (2006) reported that the complete sequence of Solanum
tuberosum chloroplast genome revealed extensive similarity to six
Solanaceae species in terms of the gene content and structure,
suggesting a common chloroplast evolutionary lineage within
Solanaceae.
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Plastid Biotechnology of Horticultural
Crops

The plastid genome genetic engineering of crop plants is an
attractive platform for biotechnologists to increase characteristics
of interest for agriculture and horticulture (Clarke and Daniell,
2011; Maliga and Bock, 2011; Rogalski and Carrer, 2011;
Hanson et al., 2013; Bock, 2014). This technology offers several
exceptional features and advantages when compared with nuclear
transformation, among which can be included high transgene
expression levels with accumulation of foreign proteins up to
>70% of the total soluble cellular protein (Oey et al., 2009;
Ruhlman et al., 2010), capacity for multigene stacking in operons
in a single genetic transformation event (Quesada-Vargas et al.,
2005; Lu et al., 2013; Bock, 2014), precise transgene integration
via homologous recombination (Cerutti et al., 1992), absence of
epigenetic effects or gene silencing (Bock, 2001, 2013; Maliga,
2004) and exclusion of transgenes transmission by pollen due to
maternal inheritance of plastids in most angiosperms (Daniell,
2007; Ruf et al., 2007; Svab and Maliga, 2007). The plastid
transformation vector design and the transgene insertion via two
homologous recombination events into the plastid genome are
illustrated in the Figure 1.

Other desirable, but not exclusive, feature is the possibility
of efficient elimination of the selection marker gene via Cre-
lox site-specific recombination (Lutz et al., 2006), φC31 phage
site-specific integrase (Kittiwongwattana et al., 2007), serine
recombinase Bxb1(Shao et al., 2014) and/or use of direct repeats
for gene excision via homologous recombination (Dufourmantel
et al., 2007). This is an exceptional advantage because it allows
the production of transgenic plants without the insertion of
antibiotic resistance genes, eliminate any possibility of antibiotic
resistance gene flow to neighboring crop fields or to crop wild
relatives growing near the transgenic crops. Moreover, it permits
the recycling of selectable marker genes, which can be reused in
a new genetic transformation event in the same transgenic plant
(Carrer et al., 1993; Svab and Maliga, 1993; Corneille et al., 2001;
Barone et al., 2009; Li et al., 2011).

After the successful plastid transformation of the first higher
plant species, N. tabacum (Svab et al., 1990; Svab and Maliga,
1993), several aspects of plastid transformation were studied and
optimized to increase the potential of transplastomic technology
for biotechnological aspects such as crop improvement (Jin
et al., 2011, 2012; Lu et al., 2013), herbicide, insect, and diseases
resistance (Lutz et al., 2001; Ye et al., 2001; Dufourmantel
et al., 2005; Bock, 2007; Kiani et al., 2013; Zhang et al., 2015),
abiotic and biotic stresses (Kumar et al., 2004; Jin et al., 2011;
Bansal et al., 2012; Chen et al., 2014), metabolic engineering
(Hasunuma et al., 2008; Apel and Bock, 2009; Lu et al., 2013),
phytoremediation (Yun et al., 2009; Ruiz and Daniell, 2009; Ruiz
et al., 2011), bioreactors (Maliga and Bock, 2011; Bock, 2013,
2014), vaccines and biopharmaceuticals (Daniell et al., 2009;
Clarke et al., 2013; Kwon et al., 2013), enzymes (Petersen and
Bock, 2011; Jin et al., 2012; Verma et al., 2013), biomass and
raw material for industry (Verma and Daniell, 2007; Agrawal
et al., 2011; Jin et al., 2011; Verma et al., 2013). This research
have also focused on plastid gene expression in different plastid

types in the same plant (Kahlau and Bock, 2008; Valkov et al.,
2009), regulatory elements to be used in different plastid types
(i.e., chloroplasts, chromoplasts and amyloplasts; Zhang et al.,
2012; Caroca et al., 2013) and foreign protein stability in plastids
(Apel et al., 2010; Elghabi et al., 2011; De Marchis et al.,
2012).

Although tobacco (N. tabacum) is the species transformed
with the highest efficiency, commercial use of this technology
for cultivar improvement is totally dependent on spread of
the technology to plant species of agriculture and horticultural
interest. Probably, the wide spread of plastid technology to
several horticultural crops is dependent on the development of
a highly efficient tissue culture system (via organogenesis or
somatic embryogenesis), which is observed in tobacco as model
species for plastid transformation (Díaz and Koop, 2014; Maliga
and Tungsuchat-Huang, 2014; Staub, 2014). Currently, several
horticultural species have been efficiently transformed, including
tomato (Ruf et al., 2001; Nugent et al., 2005; Ruf and Bock, 2014),
lettuce (Lelivelt et al., 2005; Kanamoto et al., 2006; Ruhlman,
2014), potato (Sidorov et al., 1999; Nguyen et al., 2005; Scotti
et al., 2011; Valkov et al., 2014), carrot (Kumar et al., 2004),
eggplant (Singh et al., 2010; Bansal and Singh, 2014), cabbage
(Liu et al., 2007, 2008; Tseng et al., 2014), cauliflower (Nugent
et al., 2006) and sugar beet (De Marchis et al., 2009; De Marchis
and Bellucci, 2014). Among the horticultural species mentioned
above, lettuce, tomato and potato are the most studied species
regarding the gene expression and biotechnological applications;
lettuce is a model species for edible leaf chloroplasts (Boyhan
and Daniell, 2011; Maldaner et al., 2013; Yabuta et al., 2013),
tomato and potato are model species for edible organs as fruits
and tubers containing chromoplasts (Wurbs et al., 2007; Apel and
Bock, 2009; Lu et al., 2013) and amyloplasts (Valkov et al., 2011;
Segretin et al., 2012), respectively.

Lettuce, as a model of edible tissue containing chloroplasts,
plastid type with the elevated ploidy and highest gene expression
(Kahlau and Bock, 2008; Valkov et al., 2009; Zhang et al., 2012;
Caroca et al., 2013; Bock, 2014), is currently the target species
for expression of antigens, pharmaceutical proteins and vaccines
(Boyhan and Daniell, 2011; Maldaner et al., 2013), and also
metabolic engineering (Yabuta et al., 2013). The first example
of the use of lettuce plastid genome to produce proteins of
pharmaceutical interest was made by Boyhan and Daniell (2011),
who observed in old lettuce leaves the accumulation of proinsulin
up to 53% of total leaf protein. The same study showed that
the accumulation was stable even in senescent and dried lettuce
leaves, facilitating their processing and storage in the field.
This genetic engineering strategy can reduce significantly the
costs and facilitate oral delivery of plant-derived pharmaceutical
compounds using edible plant leaves (Boyhan and Daniell,
2011). Recently, another study showed the efficient and stable
production of the tetra-epitope peptide antigen from E protein
of dengue virus in lettuce transplastomic plants (Maldaner
et al., 2013). The tetra-epitope peptide expressed in lettuce
plastid genomes shows to be efficient to use as antigen in
diagnostic assays demonstrating an overall sensitivity of 71.7%
and specificity of 100% (Maldaner et al., 2013). Besides to
the pharmaceutical area, lettuce chloroplasts were also used

Frontiers in Plant Science | www.frontiersin.org 8 July 2015 | Volume 6 | Article 586

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Rogalski et al. Plastid genomics in horticultural species

to manipulate the metabolic pathway of the tocochromanol
(vitamin E) by expression of the enzymes tocopherol cyclase,
γ-tocopherol methyltransferase, or both in an operon (Yabuta
et al., 2013). The expression of the different genes, alone or
combined, resulted in an increase of total tocochromanol content
in transplastomic plants, which indicate that chloroplast genetic
engineering can be successful used to improve vitamin E quality
and quantity in a plant green edible tissue (Yabuta et al.,
2013).

The application of plastid transformation technology in
tomato was target to metabolic engineering of plastid pigments.
The first successful example showed the feasibility to engineer
a nutritionally important metabolic human nutrient in non-
green plastids. Apel and Bock (2009) overexpressed the enzyme
lycopene β-cyclase from the daffodil (Narcissus pseudonarcissus)
and observed an increase up to 50% in provitamin A content
in tomato fruits (an important antioxidant and essential vitamin
for human nutrition), which changed the color from red to
orange due to the conversion of lycopene into β-carotene.
Another example in tomato chloroplasts and chromoplasts was
the increase of tocochromanol, which provides tocopherols
and tocotrienols (vitamin E), in a complex and successful
transcription and translation strategy of a multigene operon
containing three genes related to tocochromanol biosynthesis
(Lu et al., 2013). The tomato transplastomic plants showed an
increase of up to 10-fold in total tocochromanol accumulation
(Lu et al., 2013).

Potato contains edible tubers, which have amyloplasts, plastids
related to starch accumulation as the plant energetic reserve.
Potato is by far the most important non-cereal source of
starch and carbohydrates for human nutrition and is the most
consumed species in many countries around the world. The
first transplastomic events in potato were obtained by Sidorov
et al. (1999) and Nguyen et al. (2005) by expression of the
resistant marker gene, aadA, and the green fluorescent protein
(Gfp), however, it was a limited method due to the low
transformation frequencies and low transgene expression in
tubers of potato transplastomic plants. Later, by optimizing of the
selection/regeneration procedure, using of new transformation
vectors and new regulatory sequences for transgene expression
in leaves and tubers, Valkov et al. (2011) confirmed general
differences in expression patterns in the two organs containing
different plastids leaves (chloroplasts) and tubers (amyloplasts).
Although expression in tubers was generally low, it reached up
to 0.02% of total soluble protein in comparison with 4% of
total protein soluble in potato chloroplasts. In the same year the
efficiency of plastid transformation was improved by using of new
target regions for insertion of transgenes in the potato plastid
genome (Scotti et al., 2011), but this report did not mention about
the accumulation of foreign proteins.

Cabbage, as lettuce, represents a plant species with edible
leaves containing chloroplasts. The plastid transformation of
cabbage was reached by Liu et al. (2007), who expressed the
resistant marker gene, aadA, and the reporter gene, uidA. The
study demonstrated a transformation efficiency ranging from
2.7 to 3.3% and a successful accumulation of β-glucuronidase
protein in transformed cabbage between 3.2 and 5.2% of total

soluble protein. After the development of an efficient plastid
transformation in this species, Liu et al. (2008) changed the
constructs to express the cry1Ab gene targeting to the resistance
to Plutella xylostella in two cabbage varieties. The cry1Ab gene
codifies Bacillus thuringiensis Cry1Ab delta-endotoxin (Jabeen
et al., 2010). The expression of Cry1Ab protein was detected
in the range of 4.8–11.1% of total soluble protein in mature
leaves of transplastomic plants of the two varieties. This study
demonstrated that transplastomic plants displayed significantly
higher resistance to Plutella xylostella and induces 100% insect
mortality after 7 days (Liu et al., 2008).

The only report of carrot plastid transformation was
focused on salt tolerance by overexpression of betaine aldehyde
dehydrogenase (Kumar et al., 2004). The betaine aldehyde
dehydrogenase enzyme activity in carrot transplastomic cells
was enhanced eightfold, which accumulated about 50-fold more
betaine than cells of control plants. Transplastomic carrot plants
grew in the presence of high concentrations of up to 400 mM
of NaCl, which is the highest level of salt tolerance reported
so far among genetically modified crop plants (Kumar et al.,
2004). In this study, it was also observed that the accumulation
levels of betaine aldehyde dehydrogenase show a variation
dependent on plastid type. The betaine aldehyde dehydrogenase
expression reached 74.8% in edible parts (roots), containing
chromoplasts, an inferior value compared to leaves (100%), a
mainly chloroplasts-containing tissue. This study showed the
potential of plastid genome engineering technology to increase
salt tolerance in a horticultural crop given that salinity affects
drastically and negatively crop productivity and quality (Kumar
et al., 2004).

The plastid transformation technology was recently developed
for other three horticultural crops as follows: eggplant (Singh
et al., 2010; Bansal and Singh, 2014), cauliflower (Nugent et al.,
2006) and sugar beet (De Marchis et al., 2009; De Marchis and
Bellucci, 2014). These studies did not focus on characteristics
of interest for horticulture or agriculture, notwithstanding
the plastid genome transformation was developed for them.
Although these species have an important economic role in
several countries and plastid transformation have the potential to
add new traits in order to increase the performance in the field,
plastome manipulation have many opportunities in different
areas of biotechnology and remains to be done in these species
and several others.

Plastid genome sequencing of the target species is an essential
tool for correct integration of the transgenes into the plastid
genome given that plastid genomes of higher plants are extremely
gene-dense and are complexly regulated by operons separated
by short intergenic spacer region, which have to be maintained
intact given that any disruption can affect the expression of
several genes (Shinozaki et al., 1986; Wakasugi et al., 2001; Krech
et al., 2012; Bock, 2013). The plastid genome sequencing is also
important to identify and characterize endogenous regulatory
regions such as promoters, 5′ e 3′ untranslated regions to
optimize transgene expression (Ruhlman et al., 2010; Maliga and
Bock, 2011; Bock, 2013, 2014). Furthermore, the characterization
of endogenous regulatory sequences from plastid genome
sequences and transgene expression in edible plant organs
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containing different plastid types (e.g., leaves, fruits, and tubers)
will facilitate the expression of new metabolic pathways and
transgenes for the production of healthy nutritional compounds,
biopharmaceutical compounds, agriculture useful traits and
biomass and raw material for biofuel and chemical industry
(Kahlau and Bock, 2008; Valkov et al., 2009; Caroca et al., 2013).

Concluding Remarks

Plastid genomes are highly conserved with very low rates
of substitutions when compared to nuclear genomes. Plastid
genes, non-coding regions, RFLP and SSR markers have been
frequently used to measure the evolutionary distance at many
plant taxonomy levels. This markers are also very helpful for
phylogeographical and plant population genetics analyses, as seed
and pollen flow studies to the characterize population structure,
population differentiation and cytoplasmic diversity (Figure 1).
However, the limited number of plastid genome sequences for
some species, families and genera restrings the quality and
efficacy of this kind of analyses. Nowadays, the increasing
number of whole plastid genomes are being used for phylogenetic
analyses and have proven to be effective tools to resolve
evolutionary relationships and genetic diversity or divergence
in plant populations, especially at lower taxonomic levels,
which limited sequence variation is available. Plastid genome
is also an important tool to analyze genetic distance and plant
speciation given that it is possible to relate plastid haplotypes with
morphological characteristics in natural population as observed
in the Oenothera genus.

The interesting features of plastid compartment and genome,
the exceptional advantages of plastid genome engineering and
crescent necessity of horticultural crops for human consumption
as food, raw material for industry and cost reduction for
production of biopharmaceutical compounds, makes the plastid
transformation a potential tool to manipulate different species
for industry and food purposes (Figure 1). The rapidly growing
number of plastid genomes available in the organelle genome
resource database can be used to generate high efficient plastid
transformation vectors, since sequences of genes, intergenic

regions and regulatory elements are crucial information for
design of efficient plastid transformation strategies.

Moreover, the improvement of tissue culture system for
horticultural crops would help to spread this technology to
several species which plastid transformation was not reached
at the moment. The regeneration capacity of the tissues is still
the bottleneck for a large number of species, given the fact that
tobacco has become the model species for plastid transformation
due to its high capacity for in vitro regeneration.

Due to the high potential and environment-friendly
characteristics of plastid engineering, the knowledge acquired
during the last two decades about this technology, and the
enormous field to be explored in horticultural crops, plastid
genomic and transformation constitute a high valuable tool to
add new traits and increase the marker value of commercial
crops. Moreover, plastid transformation is already safer than
nuclear transformation due to exceptionally maternal inheritance
of plastids in most angiosperms and lack of dissemination
of transgenes via pollen, avoiding contamination of natural
germoplasm resources. In addition, horticultural crops can be
maintained in closed greenhouse worldwide by using of soil-
containing pots or hydroponic systems which can enhance
security of transgenic plants, without transgene flux, for several
commercial applications.

Finally, plastid genome sequencing is an essential tool
for several applications related to plant science. The first
knowledge about plastid genome was the starting point to
elucidate many processes related to plastid gene function,
expression machinery, evolution and transfer of genes to
other genetic cellular compartments as mitochondria and
the nucleus (Figure 1). This gain of knowledge in last
three decades, from the first plastid genome sequenced to
present day, makes the plastid genome the best studied
genetic compartment of the plant cell. The improvement
of chloroplast isolation and the evolution of technology of
genome sequencing will make plastid genome sequencing
routine in many laboratories and will certainly contribute to
unveil several unknown questions about plant cell genetic of
families/species that no information about plastid genome is
available.
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