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Mild Cognitive Impairment (MCI) causes slight but noticeable disruption in cognitive
systems, primarily executive and memory functions. However, it is not clear if the
development of sequence learning is affected by an impaired cognitive system and, if so,
how. The goal of our study was to investigate the development of probabilistic sequence
learning, from the initial acquisition to consolidation, in MCI and healthy elderly control
groups. We used the Alternating Serial Reaction Time task (ASRT) to measure probabilistic
sequence learning. Individuals with MCI showed weaker learning performance than the
healthy elderly group. However, using the reaction times only from the second half of each
learning block—after the reactivation phase—we found intact learning in MCI. Based on
the assumption that the first part of each learning block is related to reactivation/recall
processes, we suggest that these processes are affected in MCI. The 24-h offline period
showed no effect on sequence-specific learning in either group but did on general skill
learning: the healthy elderly group showed offline improvement in general reaction times
while individuals with MCI did not. Our findings deepen our understanding regarding the
underlying mechanisms and time course of sequence acquisition and consolidation.

Keywords: mild cognitive impairment, offline learning, statistical learning, implicit learning, skill learning,

consolidation, automaticity

INTRODUCTION
Mild cognitive impairment (MCI) is a transition stage between
normal age-related cognitive decline and the more serious symp-
toms of dementia caused by, for example, Alzheimer’s disease.
According to the American College of Physicians, MCI affects
about 20% of the population over 70 years of age. Many who
develop MCI eventually develop Alzheimer’s disease, although
some will remain stable or might even return to normal (Roberts
et al., 2008). Of those with MCI, 12–15% will develop the signs of
dementia within a year and about 50% will progress to dementia
within 5 years (Gauthier et al., 2006). The characteristic symp-
toms of MCI are impaired memory functions during learning or
recall, impaired attention and information processing evidenced
by the speed with which these functions are executed, flawed
executive functions, and perceptual motor-skill and language-
expression disturbances (e.g., word finding). MCI is diagnosed
if at least two of these symptoms are present for at least 2 weeks
(Tariska et al., 1990; Petersen et al., 1999; Grundman et al., 2004;
Portet et al., 2006). MCI produces greater than age appropri-
ate memory impairment but in all other aspects the individual
functions well. Most often, learning skills and the ability to recall
new information are affected to the highest extent. Brain imag-
ing research shows dysfunction in the medial temporal lobe
(MTL), including the hippocampal formation in MCI (Jack et al.,

1997; Dickerson and Sperling, 2008; Nickl-Jockschat et al., 2012;
Szamosi et al., 2013) but other areas might also be affected
(Rombouts et al., 2009). Memory tests have established that cer-
tain forms of explicit memory and learning, such as delayed recall
and list learning, decline in MCI (Petersen et al., 1999; Grundman
et al., 2004; Leube et al., 2008). However, the question of how
implicit learning is affected by MCI has received less attention
(Nagy et al., 2007; Negash et al., 2007b). Properties of implicit
learning and its consolidation could be useful in the dissocia-
tion of MCI from healthy age-related changes and also could
contribute to a better understanding of the formation and con-
solidation of sequence acquisition, specifically the role of the MTL
and hippocampus in these processes.

Explicit or declarative memory is accessible to conscious rec-
ollection, including facts and episodes (for example remembering
events explicitly). It is defined by voluntary mechanisms which
rely more on attentional resources. Non-declarative memory
relies more on automatic, non-conscious/implicit processes
including habituation, conditioning, motor and perceptual skills
(for example playing piano). According to Squire and his col-
leagues, explicit or declarative memory can be linked to the brain’s
medial-temporal area, while the implicit or non-declarative pro-
cesses fall outside these areas (Squire and Zola, 1996; Squire,
1998). Nevertheless, others showed that areas in the MTL
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including hippocampus also play a role in implicit learning (Chun
and Phelps, 1999; Albouy et al., 2008; for critics, see Manns and
Squire, 2001; Poldrack and Rodriguez, 2003).

The focus in our study is primarily on implicit sequence learn-
ing which underlies the acquisition of not only motor but also
cognitive and social skills (Lieberman, 2000; Nemeth et al., 2011;
Romano Bergstrom et al., 2012). Most models of sequence learn-
ing (Hikosaka et al., 1999, 2002; Doyon et al., 2009a) emphasize
the role of the frontal-striatal-cerebellar system, while the role
of the MTL and related structures (e.g., hippocampus) remains
inconclusive (Schendan et al., 2003; Albouy et al., 2008; Simon
et al., 2012). Negash et al. (2007b) have conducted the first
and only research to address this topic so far, in which they
investigated the effect of MCI on implicit learning. They used
two implicit learning paradigms: the Serial Reaction Time (SRT;
Nissen and Bullemer, 1987) to measure sequence learning, and
the Contextual Cueing Task (Chun and Jiang, 1998) to mea-
sure visuospatial configuration learning. Despite the similarity in
implicitness of these tasks, they call on two different neural sys-
tems; previous studies showed greater involvement of MTL in the
Contextual Cueing (Chun and Jiang, 1998; Manns and Squire,
2001) compared to the SRT task, which is primarily mediated
by the previously mentioned frontal-striatal-cerebellar system
(Curran, 1998; Honda et al., 1998; Gomez-Beldarrain et al., 1999;
Willingham et al., 2002). Negash et al.’s results revealed that
individuals with MCI, although generally slower, showed similar
sequence learning to the controls; however, learning was impaired
in the Contextual Cueing task. These findings implicate that the
MTL system, including the hippocampal formation is involved in
MCI, while the frontal-striatal-cerebellar system is involved to a
lesser extent (Negash et al., 2007b).

While Negash et al. (2007b) used a deterministic 8-element
sequence, we take the task one step further. Here we use a modi-
fied version of the SRT task, the Alternating Serial Reaction Time
(ASRT) task (Howard and Howard, 1997), which enables us to
separate general skill learning and sequence specific learning.
General skill learning refers to the increase in speed as the result
of practice and it is relatively independent from sequence struc-
ture, while sequence-specific learning refers to the acquisition
of sequence-specific knowledge, which results in relatively faster
responses for events that can be predicted from the sequence
structure vs. those that cannot. Most research, including the
Negash et al.’s (2007b) study cited above, has not distinguished
these because the tasks used make it difficult to do so. In classi-
cal SRT tasks used also by Negash et al. (2007b), the structure of
a sequence is deterministic, with the stimuli following a simple
repeating pattern as in the series 213412431423, where numbers
refer to distinct events. In contrast, in the ASRT task (Howard and
Howard, 1997; Remillard, 2008), repeating events alternate with
random elements. This means that the location of every second
stimulus on the screen is determined randomly. If, for instance,
the sequence is 1234, where the numbers represent locations on
the screen, in ASRT the sequence of stimuli will be 1r2r3r4r, with
r representing a random element. The sequence is thus ‘better
hidden’ than in the deterministic SRT task and it is also possible
to track sequence-specific learning continuously by comparing
responses to the random and sequence elements. This structure is

called probabilistic second-order dependency (Remillard, 2008)
because to predict element ‘n’ we need only to know element
n-2, regardless of element n-1. In this way, the representations
of the probabilistic sequences are more abstract and the acqui-
sition of the sequences is also a statistical learning process. One
of the outstanding questions in the literature of implicit learn-
ing is if there are functional differences in how implicit learning
develops in motor vs. cognitive tasks (Foerde et al., 2008; Ashby
et al., 2010). The fact that probabilistic sequences with their sta-
tistical properties are more ambiguous due to certain transitions
being dictated by a context defined by remote events (Remillard,
2008) suggests that learning these sequences might result in more
abstract representations than in deterministic sequence learning
tasks (for another view see Keele et al., 2003). Moreover, several
studies showed that probabilistic sequence learning is related not
only to motor, but also to perceptual processes (Song et al., 2008;
Nemeth et al., 2009; Hallgató et al., 2013). Based on these con-
siderations, probabilistic sequence-specific learning is presumed
to be related relatively more to cognitive skills, while general skill
learning is presumed to be related relatively more to motor skills
in this specific design. It is a particularly interesting issue how
MCI affects the performance on these two aspects of learning.

In the development and stabilization of memory representa-
tion for sequences, the processes of consolidation and reconsol-
idation, are particularly important (Walker et al., 2003; Rickard
et al., 2008; Tucker et al., 2011). During the acquisition of
sequences we are learning and recalling and reactivating the
sequence elements continuously. Recalling or reactivating a pre-
viously consolidated memory makes it once again fragile and
susceptible to interference, therefore requiring periods of recon-
solidation (Walker et al., 2003). These circle processes make
possible the continued refinement and reshaping of previously
learned motor or cognitive skills in the context of ongoing expe-
rience. In experimental designs (fingertapping or SRT tasks) and
partly in real-life situations, we are learning sequences arranged
in blocks which are separated by shorter or longer time periods.
In the beginning of the blocks we reactivate the already consol-
idated memory traces. Rickard et al. (2008) and Brawn et al.
(2010) showed that the separate analysis of the different parts
of the learning blocks is crucial in understanding the consolida-
tion of sequence learning. For example, if we analyze only the first
part of each of the learning blocks, we can find greater sequence
learning effects by controlling the reactive inhibition [i.e., the
inhibiting effect of fatigue on learning (Rickard et al., 2008)].
These effects can be particularly relevant in a cognitive impaired
population such as MCI. It is important to highlight, however,
that Rickard et al. (2008) and Brawn et al. (2010) used explicit and
not implicit sequence learning. Thus, the question can be raised
whether the pattern of results is the same for implicit learning. We
hypothesize dissociation between explicit and implicit sequence
learning because several factors, such as fatigue and attentional
resources, affect the two types of learning differently (Nissen and
Bullemer, 1987; Squire and Zola, 1996; Janacsek and Nemeth,
2013).

It is also a relevant issue that sequence learning does not occur
only during practice—online periods—but also between practice
periods—during offline periods. The process that occurs during
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the offline periods is referred to as consolidation and is typi-
cally revealed either by increased resistance to interference and/or
by improvement in performance, following an offline period
(Krakauer and Shadmehr, 2006). The nucleus caudate and ven-
tricle putamen, which are part of the fronto-striato-cerebellar
network, play important roles in sequence consolidation (Doyon
et al., 2002, 2009b; Doyon and Benali, 2005; Lehericy et al., 2005;
Albouy et al., 2008; Debarnot et al., 2009). More recent studies
also emphasize the role of the hippocampus in the consolida-
tion of sequence knowledge: for example, Albouy and colleagues
(2008) found hippocampus activity using a 24-h delay inter-
val between the learning and testing session. MCI is an ideal
avenue to solve the puzzle of sequence consolidation because of
the above mentioned neurocognitive background of this cogni-
tive impairment. Although there are several studies focusing on
the consolidation of explicit processes in MCI (e.g., Westerberg
et al., 2012), to our knowledge no study has investigated the effect
of a 24-h offline period on implicit sequence learning in this
population so far.

In this study, we investigated sequence-specific and general
skill learning in individuals with MCI. In this way we could indi-
rectly investigate the role of the hippocampus and related MTL
structures in this learning mechanism. A probabilistic sequence
learning task was set up in a prolonged way in order to map the
development and consolidation of memories for sequences. We
had two main questions here: (1) to which extent can the individ-
uals with MCI learn raw probabilities implicitly, (2) how within-
block effects contribute to sequence learning performance. For
the second question we hypothesized that the beginning of the
learning blocks reflects the processes in which we are picking
up high and low frequency triplets and reactivating/recalling the
sequence information learned in the previous blocks. As reactiva-
tion/recall processes are shown to be related to the hippocampus
and related structures (e.g., Gelbard-Sagiv et al., 2008; Xue et al.,
2010), we expected weaker learning performance in MCI based
on the first half of the blocks compared to the second half of the
blocks.

MATERIALS AND METHODS
PARTICIPANTS
Seventeen MCI patients and 17 healthy elderly controls partici-
pated in the experiment. Diagnoses of MCI were established via a
consensus meeting of at least two clinical neurologists and a neu-
ropsychologist using various examinations and tests (e.g., basic
laboratory tests, brain MRI, clinical evaluation, Mini Mental State
Examination—MMSE). Controls were individuals who: (1) were
independently functioning community dwellers, (2) did not have
active neurological or psychiatric conditions, (3) had no cognitive
complaints, (4) demonstrated a normal neurological behavior,
(5) were not taking any psychoactive medications (Negash et al.,
2007b).

The MCI and the control group were matched on
age (MMCI = 61.82, SDMCI = 7.70; Mcontrol = 57.82,
SDcontrol = 8.47), years of education (MMCI = 13.35,
SDMCI = 2.21; Mcontrol = 14.18, SDcontrol = 2.38) and gen-
der (14 and 15 females, respectively). The groups differed in
performance on the MMSE [t(32) = −6.31, p < 0.001]: the mean

score was 26.91 (SD = 1.69, range 25–28) for the MCI group and
29.69 (SD = 0.48, range 29–30) for the controls. All participants
provided signed informed consent agreements and received no
financial compensation for their participation. The examinations
were conducted at the neuropsychiatric office of the Aladár Petz
County Research Hospital.

PROCEDURE
The ASRT task was administered in two sessions separated by a
24-h interval. Participants were informed that the main aim of the
study was to find out just how extended practice affected perfor-
mance on a simple reaction time task. Therefore, we emphasized
performing the task as fast and as accurate as they could. They
were not given any information about the regularity that was
embedded in the task.

In the first session the ASRT consisted of 20 blocks. As one
block took about 1.5–2 min, the first session took approximately
30–40 min. Between blocks, participants received feedback on the
screen about their overall reaction time and accuracy, then had a
rest of between 10 and 20 s before starting a new block. Session 2
lasted approximately 22–30 minutes, as the ASRT consisted of 15
blocks.

The computer program selected a different ASRT sequence for
each participant based on a permutation rule, such that each of
the six unique permutations of the four possible stimuli occurred.
Consequently, six different sequences were used across partici-
pants while the sequence within participants was identical during
Session 1 and Session 2 (Howard and Howard, 1997; Nemeth
et al., 2010).

THE ALTERNATING SERIAL REACTION TIME (ASRT) TASK
Sequence learning was measured by the “Catch the dog” version
(Nemeth et al., 2010) of the ASRT task (Howard and Howard,
1997). In this ASRT task, a stimulus (a dog’s head) appears in
one of four empty circles on the screen and participants have to
press the corresponding button when it occurs. The computer is
equipped with a special keyboard with four heightened keys (Y, C,
B, and M on a Hungarian keyboard; equivalent to Z, C, B, M on
a US keyboard), each corresponding to the circles in a horizontal
arrangement.

Unbeknownst to participants, the appearance of stimuli fol-
lows a predetermined order. As stimuli are presented in blocks
of 85 stimuli, the first five button pressings are random for
practice purposes, then an 8-element alternating sequence (e.g.,
2r3r1r4r, where numbers represents the four circles on the screen
and r represents random elements) repeats ten times. Because of
this structure, some triplets or runs of three consecutive events
occur more frequently than others. For example, in the above
illustration, 1_4, 2_3, 3_1, and 4_2 (where “_” indicates the mid-
dle element of the triplet) would occur often because the third
element (bold numbers) could be derived from the sequence
or could also be a random element. In contrast, 1_3 or 4_1
would occur less frequently because in this case the third ele-
ment could only be random. Following previous studies, we refer
to the former as high-frequency triplets and the latter as low-
frequency triplets. Note that the final event of high-frequency
triplets is therefore more predictable from the initial event when
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compared to the low-frequency triplets [also known as non-
adjacent second-order dependency (Remillard, 2008)]. Therefore,
for each stimulus we determined whether it was the last element
of a high- or low-frequency triplet.

There are 64 possible triplets (43, 4 stimuli combined for three
consecutive events) in the task. Out of these triplets, 16 are high
frequency triplets, each of them occurring on approximately 4%
of the trials, about five times more often than the low-frequency
triplets. Thus, approximately 64% of all trials are high-frequency
triplets and the remaining 36% of trials are low-frequency ones.

Previous studies have shown that as people practice the ASRT
task, they come to respond more quickly to the high- than low-
frequency triplets, revealing sequence-specific learning (Howard
and Howard, 1997; Howard et al., 2004; Song et al., 2007).
In addition, general skill learning is revealed in the ASRT task
in the overall speed with which people respond, regardless of
the triplet types. Thus, we are able to obtain measures of both
sequence-specific and general skill learning in the ASRT task.

STATISTICAL ANALYSES
To facilitate data processing, the blocks of ASRT were organized
into epochs of five blocks. The first epoch contains blocks 1–5, the
second blocks 6–10, etc. (Bennett et al., 2007; Barnes et al., 2008).
As participants’ accuracy remained very high (98.1% for the MCI
and 99.2% for the control group) throughout the test (similarly to
previous studies, e.g., Howard and Howard, 1997; Nemeth et al.,
2010), we focused on reaction time (RT) for the analyses reported.
For RTs, we calculated medians for correct responses only, sepa-
rately for high and low frequency triplets and for each participant
and each epoch.

To compare the overall learning between the groups, RTs were
analyzed by a mixed design ANOVA on the 7 epochs of Session
1 and 2 with TRIPLET (2: high vs. low) and EPOCH (1–7)
as within-subjects factors and GROUP (MCI vs. control) as a
between-subjects factor. For exploration of offline changes in the
24-h delay period, a similar ANOVA was conducted including
only the last epoch of Session 1 and the first epoch of Session
2. All significant results are reported together with the η2

p effect
size and Greenhouse–Geisser ε correction factors where applica-
ble. Planned comparisons and post-hoc analyses were conducted
by Fisher’s LSD pairwise comparisons.

RESULTS
DO THE MCI AND THE CONTROL GROUP DIFFER IN OVERALL
SEQUENCE LEARNING?
The ANOVA revealed significant sequence-specific learning [indi-
cated by the significant main effect of TRIPLET: F(1, 32) = 18.50,
η2

p = 0.37, p < 0.001] such that RTs were faster on high than on
low frequency triplets (Figure 1A). The groups differed in the
extent of this sequence-specific learning [shown by the signifi-
cant TRIPLET × GROUP interaction: F(1, 32) = 8.31, η2

p = 0.21,
p = 0.007]: the MCI group was 2.80 ms faster on high than on low
frequency triplets (p = 0.32) while this difference was 14.20 ms
for the controls (p = 0.001). Thus, only the controls acquired the
sequence-specific knowledge overall.

The ANOVA also revealed general skill learning [shown by the
significant main effect of EPOCH: F(6, 192) = 42.70, η2

p = 0.57,

p < 0.001], such that RTs decreased across epochs, irrespective of
the triplet type. This decrease was slightly different for the groups
[EPOCH × GROUP interaction: F(6, 192) = 2.33, η2

p = 0.07, p =
0.078]: RTs decreased steeper in the MCI group (153 ms from the
first epoch to the last epoch) than in the controls (95 ms). This
difference was mainly caused by the MCI group’s relatively slower
RTs in the first epoch compared to that of the controls (790 vs.
692 ms, p = 0.07). This difference diminished for the last epoch
(647 vs. 607 ms, p = 0.41). Other interactions were not significant
(ps > 0.17).

Although the MCI and the control group performed with
similar RTs [main effect of GROUP: F(1, 32) = 1.99, p = 0.17],
we re-ran our analyses using z-transformed RTs to confirm our
findings. The ANOVA revealed sequence-specific learning [sig-
nificant main effect of TRIPLET: F(1, 32) = 43.77, p < 0.001]
with significantly smaller learning for the MCI than for the con-
trol group [TRIPLET × GROUP interaction: F(1, 32) = 4.01, p =
0.05]. After the z-transformation, the EPOCH × GROUP inter-
action was not significant [F(6, 192) = 1.26, p = 0.31], suggesting
a similar level of general skill learning in the two groups.

IS THERE ANY WITHIN-BLOCK EFFECT ON LEARNING? ARE THESE
EFFECTS DIFFERENT IN THE MCI AND THE CONTROL GROUP?
A fine-grained analysis of the data can give us a deeper insight
into the mechanisms of the development of sequence representa-
tion; therefore, it can also help to better understand the above
reported sequence-learning deficit in MCI compared to con-
trols. Analyzing the learning data by splitting each block into
two halves is an excellent approach for exploring these questions.
Therefore, we conducted a mixed design ANOVA on the data
shown in Figures 1B,C with TRIPLET (2: high vs. low frequency),
EPOCH (7: 1–7) and PART (2: first vs. second half of blocks)
as within-subject factors and GROUP (2: MCI vs. control) as a
between-subject factor.

The ANOVA revealed significant sequence-specific learning
overall [main effect of TRIPLET: F(1, 32) = 18.27, η2

p = 0.36, p <

0.001] with smaller learning for the MCI group compared to con-
trols [4 vs. 14 ms; TRIPLET × GROUP interaction: F(1, 32) =
5.62, η2

p = 0.15, p = 0.02; Figure 1D]. Interestingly, taking the
PART of the blocks into account, we found a significant TRIPLET
× PART interaction [F(1, 32) = 4.43, η2

p = 0.12, p = 0.04]: the
sequence-specific learning was greater in the second part of
the blocks compared to the first part (6 vs. 12 ms). Although
the TRIPLET × PART × GROUP interaction did not reach
significance [F(1, 32) = 2.62, η2

p = 0.08, p = 0.12], planned com-
parisons revealed that the controls showed a similar extent of
sequence-specific learning in the first and the second part of the
blocks (13 and 14.5 ms, p = 0.73). In contrast, the MCI group
showed higher sequence-specific learning in the second part of
blocks than in the first part (1.7 vs. 9.6 ms, p = 0.01). All of these
learning measures were significant (ps < 0.004), except for the
first part of the blocks in the MCI group (p = 0.68). Thus, the
group difference in sequence learning that we found in the pre-
vious analysis was driven mainly by the first part of the blocks
(Figure 2), where the extent of sequence-specific learning was dif-
ferent between groups (p = 0.01), while they were similar in the
second part of the blocks (p = 0.22).
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FIGURE 1 | (A) Sequence learning across 7 epochs (35 blocks) for the MCI
and control group. Circles represent RTs for high-frequency triplets and
squares represent RTs for low-frequency triplets. (B) Learning curves for
the first part of each block and (C) the second part of each block. (D)

Sequence-specific learning (measured by the RTs for the low- minus
high-frequency triplets) for the MCI and control group is plotted for the
overall, first block-part and second block-part learning measures. Overall,
the MCI group did not show significant sequence-specific learning, which
was caused mainly by the learning performance in the first part of the
blocks. The learning performance in the second part of the blocks was

similar in the groups. (E) General reaction times are plotted for the first
and second parts of the blocks for the MCI and control group, separately.
The MCI group was slower in the second parts of the blocks compared to
the first parts of the blocks, but only in Session 1. The control group
showed a similar pattern, but in Session 2. (F) Offline general skill changes
(measured as the RT difference between Epoch 4 and Epoch 5,
irrespectively of the triplet types) over the 24-h delay are plotted for the
MCI and the control group with significant offline improvement for the
controls only. Error bars represent standard error of mean. ns,
non-significant, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

The ANOVA computed on z-transformed data confirmed
our findings, as the TRIPLET × PART × GROUP interac-
tion was significant [F(1, 32) = 5.93, p = 0.02]. The MCI group
showed significant sequence-specific learning only in the second
halves of the blocks (p < 0.001) but not in the first halves (p =
0.29). In contrast, the controls exhibited significant sequence-
specific learning both in the first and second parts of the blocks
(ps < 0.001).

In the case of general skills, the ANOVA showed a sig-
nificant improvement across epochs [main effect of EPOCH:
F(6, 192) = 42.42, η2

p = 0.57, p < 0.001], with a trend toward

group differences [EPOCH × GROUP interaction: F(6, 192) =
2.46, η2

p = 0.07, p = 0.06]. This latter effect is similar to the
results of the previous analysis finding that RTs decreased steeper
in the MCI group (149 ms from the first epoch to the last epoch)
than in the controls (87 ms). This difference, however, dimin-
ished when analyzing z-transformed data: [EPOCH × GROUP
interaction: F(6, 192) = 1.23, p = 0.32].

There was also a trend for different degrees of general
skill improvement in the first and second part of the blocks
[EPOCH × PART interaction: F(6, 192) = 1.91, η2

p = 0.06, p =
0.08]: the speed-up from the first to the last epoch was
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FIGURE 2 | Sequence-specific learning (measured by the RTs for the low- minus high-frequency triplets) in the first and second parts of the blocks,

collapsed into epochs, is plotted for the MCI and control group. Error bars indicate standard error of mean.

123 ms when analyzing only the first parts of the blocks,
while it was slightly smaller in the case of the second parts
of the blocks (106 ms). This was caused mainly by being
faster in the second half of the blocks at the beginning of
the task (737 vs. 746 ms in the first epoch), with a reverse
pattern for the end of the task (631 vs. 624 ms in the last
epoch). This effect remained and even became stronger after
z-transforming the RTs [EPOCH × PART interaction: F(6, 192) =
6.80, p < 0.001].

Groups further detailed this picture [significant EPOCH
× PART × GROUP interaction: F(6, 192) = 2.22, η2

p = 0.07,
p = 0.04; Figure 1E] as the MCI group was 12 ms faster in the
first parts of the blocks compared to the second parts in Session
1 (p = 0.004) but showed similar RTs in Session 2 (1 ms differ-
ence between the RTs of the first and second parts of the blocks,
p = 0.73). In contrast, the control group performed the task with
similar RTs in Session 1 (2.6 ms difference, p = 0.51) but was
8.6 ms faster at the beginning of the blocks compared to the
second parts in Session 2 (p = 0.01). This difference, however,
disappeared when using z-transformed data [EPOCH × PART ×
GROUP interaction: F(6, 192) = 0.02, p = 0.33]. No other main
effects of interactions were significant (ps > 0.21).

IS THERE ANY CHANGE IN LEARNING IN THE 24-h DELAY?
For the exploration of the offline changes in the 24-h delay period,
ANOVA was conducted with TRIPLET (2: high vs. low frequency)
and EPOCH (2: the last epoch of Session 1 and the first epoch

of Session 2) as within-subject factors and GROUP (2: MCI vs.
control) as a between-subject factor.

The ANOVA revealed sequence-specific learning [indicated
by the significant main effect of TRIPLET: F(1, 32) = 19.68,
η2

p = 0.38, p < 0.001] which was retained across the sessions

[TRIPLET × EPOCH interaction: F(1, 32) = 0.51, η2
p = 0.02, p =

0.48]. The groups did not differ either in overall sequence-
specific knowledge [TRIPLET × GROUP interaction: F(1, 32) =
0.19, η2

p = 0.01, p = 0.67] or in the offline change of this knowl-
edge between the sessions [TRIPLET × EPOCH × GROUP:
F(1, 32) = 1.63, η2

p = 0.05, p = 0.21].
In contrast, there was an offline improvement in general skills

[main effect of EPOCH: F(1, 32) = 5.32, η2
p = 0.14, p = 0.028],

with faster RTs in the first epoch of Session 2 compared to the
last epoch of Session 1 (Figure 1F). This change was slightly dif-
ferent between groups [EPOCH × GROUP interaction: F(1, 32) =
3.69, η2

p = 0.10, p = 0.064]: the MCI group showed no between-
session speed-up (3 ms, p = 0.79) while the controls did (34.7 ms,
p = 0.005). The ANOVA on z-transformed RTs confirmed this
result, showing a weaker consolidation of general skills for the
MCI than for the control group [marginally significant EPOCH
× GROUP interaction: F(1, 32) = 3.85, p = 0.06]. Other interac-
tions involving the GROUP were not significant (ps > 0.71).

We also conducted a consolidation analysis taking the first
and second parts of the blocks into account and found simi-
lar results, with significant group differences in offline general
skill changes [EPOCH × GROUP interaction: F(1, 32) = 4.30,
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η2
p = 0.12, p = 0.046]. The offline change in general skills was

significant for the control group (35.8 ms faster at the beginning
of Session 2 compared to the end of Session 1, p = 0.004) but not
significant for the MCI group (1.65 ms difference, p = 0.89).

DISCUSSION
Our goal was to investigate the acquisition of sequence knowl-
edge in Mild Cognitive Impairment. We used a task that allows
differentiating between sequence-specific and general skill learn-
ing. At first, based on the standard ASRT analysis we found
that individuals with MCI showed weaker implicit probabilistic
sequence learning than the healthy aged group. However, once we
dug deeper and considered only the second half of each learn-
ing block, we found similar learning performances in the MCI
as in the healthy aged group. Thus, the overall sequence-specific
learning in MCI depends on which part of each learning block is
considered. In the case of general reaction time, the MCI group
was faster in the first part of the blocks compared to the sec-
ond part in Session 1. The healthy aged group showed a similar
pattern, except in Session 2. We were able to demonstrate that
general skill consolidation over a 24-h delay period was differ-
ent in MCI and in the healthy aged group. The latter group
showed offline improvement in general reaction time while the
MCI group did not show this speed-up effect. We believe our
study to be the first one that uses an implicit sequence learning
task with second-order dependency in individuals with MCI.

Our results partly contradict but partly support the findings of
Negash and his colleagues (2007b), who showed learning with a
deterministic SRT task in MCI but not in the Contextual Cueing
task (Chun and Jiang, 1998). The impaired sequence learning
that we found in MCI could be due to the more difficult and
more complex sequence structure in our task, compared to the
one used by Negash et al. (2007b). Another possibility is that
deterministic and probabilistic sequence learning tasks are qual-
itatively different: the latter with their statistical properties are
more ambiguous due to higher order associations in which a
current event is predicted not by the preceding event but by
the context of more remote events (Cohen et al., 1990; Keele
et al., 2003). Thus, our result of impaired sequence learning in
MCI is more similar to the results of the Contextual Cueing task
in Negash et al.’s study. The Contextual Cueing task relies on
visual search (e.g., find a horizontal T on the screen), which is
generated within a background of some repeated distractor con-
figuration (unknown to participants) providing a contextual cue
to the location of the target. As a result of practice, the partici-
pants detect the target-stimulus in repeated configurations faster
than in random configurations, even though they are not aware of
the repeated distractors. This task calls on different neural systems
than the SRT task (MTL-hippocampus vs. the frontal-striatal-
cerebellar system; Curran, 1998; Honda et al., 1998; Chun and
Jiang, 1999; Gomez-Beldarrain et al., 1999; Manns and Squire,
2001; Willingham et al., 2002). Despite these differences in the
involvement of different neural systems, our results suggest that
the MTL and the hippocampal formation are also somehow
involved in probabilistic sequence learning measured by the ASRT
task. The within-block analysis can help us specify the nature of
this involvement.

The result that the overall sequence-specific learning depends
on whether we consider the first part or the second part of each
learning block supports the suggestion of Rickard et al. (2008),
who stressed the importance of the within-block position effect.
However, we did not find a fatigue effect within the block in either
group. Moreover, in the MCI group we showed significant over-
all sequence-specific learning when only taking the second part of
the learning blocks into account, suggesting a warm-up or prim-
ing effect (cf. Figure 2). The fact that the MCI group exhibited
significant sequence-specific learning in the second part of the
blocks but not in the first part, suggests that the processes are
qualitatively different between the first and the second part of the
learning blocks. In the beginning of the blocks we have to recall
and reactivate the sequence structure partly learned already in the
previous blocks. The second part of each block might be respon-
sible for the utilization and/or proceduralization of the sequence
knowledge. Based on these assumptions, we claim that the detec-
tion of probabilities in the reactivation/recall phase is somehow
impaired in MCI. In addition, as MTL structures, including the
hippocampus are primarily affected in MCI (Jack et al., 1997;
Dickerson and Sperling, 2008) and we found impaired sequence
learning in the first part of learning blocks, the reactivation/recall
of the sequence knowledge in the beginning of the blocks might
be more MTL-dependent than in the second part. However, more
studies are needed to confirm this suggestion.

These within-block effects also open a window to the sim-
ilarities and dissimilarities between learning performance on
the ASRT and the Contextual Cueing task. Although several
neuropsychological studies have showed dissociation on the
performance of these tasks, showing evidence of the different
neurocognitive background (Howard et al., 2006; Negash et al.,
2007a; Barnes et al., 2010; Simon et al., 2011), our results sug-
gest that these two tasks somehow involve similar processes but
only in the first part of the ASRT blocks. In this part of the
blocks the reactivation/recall of the previously learned regulari-
ties is prominent. Moreover, in order to recover the previously
acquired sequence memories, picking up the context information
of the items at the beginning of each block is essential. As previous
studies showed, these processes are linked to the hippocampus
and related MTL structures (Wood et al., 2000; Gelbard-Sagiv
et al., 2008; Xue et al., 2010). In sum, learning performance in
specific parts of the ASRT seems to rely on the involvement of the
hippocampus and related MTL structures.

Regarding general reaction times, we found that in Session 1
the MCI group was faster in the first part of the learning blocks
compared to the second part, while this pattern was present for
the control group in Session 2. Generally, slower RTs at the end
of learning blocks than at the beginning suggest a build-up of
fatigue within each block. This fatigue effect emerges later for
the controls than for the MCI group. These results partly support
the findings of Rickard and his colleagues (2008), who showed
this fatigue effect masking some aspects of learning performance
in a fingertapping task. Since the MCI group showed significant
sequence-specific learning in the second half of the blocks, in spite
of the fact that they were generally slower due to fatigue, we can
claim that the impaired sequence-specific learning in the MCI
group is not caused by this fatigue effect in our study.
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Previous studies argue that the caudo-ventral putamen
(Doyon and Benali, 2005; Debarnot et al., 2009) and the hip-
pocampus (Albouy et al., 2008) can both play a role in the
consolidation of sequence learning. Since MTL structures, includ-
ing the hippocampus, are mostly affected by MCI (Dickerson
and Sperling, 2008), our results that the MCI group did not
forget the sequence in the 24-h delay period might suggest
that these structures are not essential for the consolidation
of sequence-specific knowledge, though they might affect the
consolidation of general skill learning. This latter finding is
in line with previous studies using fingertapping tasks (e.g.,
Walker et al., 2003), suggesting that general skill learning in
our design might share similar neurocognitive background with
motor learning. However, future studies need to clarify these
similarities.

In sum, our findings that the detection of probabilities in
the reactivation/recall phases of the learning is impaired in
MCI draw attention to the importance of the hippocampus

and the related MTL structures in the development of sequence
memory representation. Our results add detail to the pic-
ture regarding background processes of sequence acquisi-
tion and consolidation and refine Negash et al.’s (2007b)
final conclusion that adapting to environment is preserved
in MCI. Based on our findings, we believe that the reacti-
vation phase of the detection of probabilities is impaired in
MCI. If further studies with different methods, including func-
tional brain mapping, confirm this view, it could lead to the
development of more focused and more effective prevention
and rehabilitation programs for minor and major cognitive
disorders.
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