
HUMAN NEUROSCIENCE
REVIEW ARTICLE

published: 05 August 2013
doi: 10.3389/fnhum.2013.00442

On the application of quantitative EEG for characterizing
autistic brain: a systematic review
Lucia Billeci 1*, Federico Sicca2, Koushik Maharatna3, Fabio Apicella2, Antonio Narzisi 2,4, Giulia Campatelli 2,
Sara Calderoni 2, Giovanni Pioggia1 and Filippo Muratori 2,4

1 Institute of Clinical Physiology, National Council of Research (CNR), Pisa, Italy
2 IRCCS Stella Maris Foundation, Pisa, Italy
3 Electronics and Computer Science, Faculty of Physical and Applied Sciences, University of Southampton, Southampton, United Kingdom
4 Department of Developmental Medicine, University of Pisa, Pisa, Italy

Edited by:
Andrew Whitehouse, Telethon
Institute for Child Health Research,
Australia; The University of Western
Australia, Australia

Reviewed by:
Shozo Tobimatsu, Kyushu University,
Japan
David Steven Cantor, Psychological
Sciences Institute, USA

*Correspondence:
Lucia Billeci , Institute of Clinical
Physiology, National Council of
Research (CNR), Via Moruzzi 1, Pisa
56124, Italy
e-mail: lucia.billeci@ifc.cnr.it

Autism-Spectrum Disorders (ASD) are thought to be associated with abnormalities in
neural connectivity at both the global and local levels. Quantitative electroencephalography
(QEEG) is a non-invasive technique that allows a highly precise measurement of brain func-
tion and connectivity. This review encompasses the key findings of QEEG application in
subjects with ASD, in order to assess the relevance of this approach in characterizing brain
function and clustering phenotypes. QEEG studies evaluating both the spontaneous brain
activity and brain signals under controlled experimental stimuli were examined. Despite
conflicting results, literature analysis suggests that QEEG features are sensitive to mod-
ification in neuronal regulation dysfunction which characterize autistic brain. QEEG may
therefore help in detecting regions of altered brain function and connectivity abnormalities,
in linking behavior with brain activity, and subgrouping affected individuals within the wide
heterogeneity of ASD. The use of advanced techniques for the increase of the specificity
and of spatial localization could allow finding distinctive patterns of QEEG abnormalities in
ASD subjects, paving the way for the development of tailored intervention strategies.
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INTRODUCTION
Autism-Spectrum Disorders (ASD) are neurodevelopmental con-
ditions characterized by deficits in social communication and
interactions and by the presence of repetitive patterns of behavior,
interests, and activities (American Psychiatric Association, 2013).
These features appear in early childhood, tend to persist life-long,
and often lead to poor outcome in adulthood. Recent epidemio-
logical studies estimate the prevalence of ASD to be 1 in 88 children
in the USA (Centers for Disease Control and Prevention, 2012).
Despite an extensive research, there is still much debate about the
morphological, functional, and neuropsychological characteristics
of the “autistic” brain (Schipul et al., 2011; Calderoni et al., 2012;
Muratori et al., 2012; Narzisi et al., 2012), and thus the neural
basis of altered behaviors in ASD remains largely unclear. Several
neuroimaging and neurophysiological techniques have been used
in order to understand the correlation between brain function-
ality and autistic behavior. Among them, Quantitative Electroen-
cephalography (QEEG) is currently receiving great interest and
it is increasingly used in studies on neurodevelopmental disor-
ders, especially the ASD. It has been found relevant for evaluating
heterogeneity of behavioral disorders, treatment responses, and
outcomes amongst other issues (Sheikhani et al., 2009). The ease
and simplicity of the EEG procedure and its millisecond resolu-
tion of brain activity coupled with standardized analysis protocols
provides an opportunity for elaborate analysis of brain functions
and dysfunctions. Emerging EEG analysis techniques that involve

interesting applications of signal analysis protocols have given us
new and exciting measures of brain function.

According to the American Academy of Neurology, QEEG is
defined as “. . . The mathematical processing of digitally recorded
EEG in order to highlight specific waveform components, trans-
form the EEG into a format or domain that elucidates relevant
information, or associate numerical results . . .” (Nuwer, 1997).
Therefore, QEEG applies computerized mathematical algorithms
to transform raw EEG data into a number of frequency bands
of interest. Five wide frequency bands are usually studied, typi-
cally defined as delta (1.5–3.5 Hz), theta (3.5–7.5 Hz), alpha (7.5–
12.5 Hz), beta (12.5–30 Hz), and gamma (30–70 Hz) (Steriade
et al., 1990). In addition, although not included in the standard
classification of EEG bands, a further alpha-like rhythm, called
mu rhythm, has been extensively studied in the research on ASD
(Oberman et al., 2005, 2008; Barnier et al., 2007), since mu sup-
pression during the observation of biological actions is thought to
reflect mirror neuron system (MNS) functioning and, in its turn,
MNS dysfunction has been proposed to explain the core social
deficits observed in ASD (Williams et al., 2001). EEG recordings
may be performed at rest, in both closed and opened eye con-
ditions, or while subjects perform specific tasks. Normative or
control data are usually needed, in order to give meaning to the
functional information obtained.

In this article we carried out a systematic survey of existing
research to present an integrated view on how QEEG may help
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in characterizing autistic brain and present the future direction in
the same domain. The paper is organized as follows: after briefly
describing the fundamentals of QEEG in Section “QEEG Meth-
ods,” we reviewed the recent works on application of QEEG in
characterizing the autistic brain in Section “QEEG in Autism.”
Three particular directions have been surveyed in detail – QEEG
during rest, during specific tasks, and how QEEG may be applied
for classifying autistic subgroups. The paper is concluded and
future research directions are discussed in Section “Discussion
and Conclusion.”

QEEG METHODS
For QEEG analysis raw EEG data are collected non-invasively via a
set of electrodes typically following an international 10/10 or 10/20
electrode placement configuration on the scalp. The collected data
is then transformed into frequency domain using computerized
algorithms (i.e., Fourier Transform, Welch Method) and scalp
map of different frequency bands is obtained (Dumermuth and
Molinari, 1987).

Absolute and relative spectral power (SP) consists in trans-
forming the EEG traces from time domain into frequency domain
providing information about the harmonic content of the sig-
nal. The spatial analysis provides information about the distri-
bution of electrical activity in the brain and the interconnec-
tivity among cortical regions measured through coherence and
symmetry analyses.

EEG power spectrums are regulated by anatomically complex
homeostatic systems in the various frequency bands. Brainstem,
thalamic, and cortical processes involving large neuronal popula-
tions mediate this regulation, using all the major neurotransmit-
ters. The spectrum is quite stable in healthy individuals because it is
regulated by homeostatic regulation of neurotransmitters and can
be abnormal in some psychiatric disorders due to the dysfunction
of this regulation (Hughes and John, 1999).

Coherence measures the degree of coupling between signals
generated by specific neuronal assemblies, which are located in
proximity of the recorded electrodes. Coherently oscillating neu-
ronal assemblies exhibit electrical activity with common spectral
properties. When a coherent oscillation occurs these neural groups
can effectively communicate, because their communication win-
dows for input and for output are open at the same times (Fries,
2005). The coherence pattern is flexible, changing according dur-
ing specific cognitive or motor task and allowing the maintenance
of our cognitive flexibility (Fries, 2005).

Brain asymmetry is due to hemispheric specialization, so that
the global neural activity is not the same in the two hemispheres.
However it has been shown that hemispheric differences in com-
petence are not fixed and structure-dependent but are subject by
dynamic processes. According to this view asymmetry can vary
inter- and intra-individually according to arousal or other factors
(Hugdahl, 1996).

Taken together, frequency and spatial information, and their
modification over consecutive EEG epochs, provides a quantitative
view of the dynamic evolution of connectivity between different
brain areas, getting therefore cues on the functional organization
of underlying neuronal networks in static and dynamic settings.

Before applying a quantitative analysis, a pre-processing step
needs to be performed. First of all the signal is segmented in

epochs of the same length and visually inspected, in order to reject
those epochs with evident artifacts. Any remaining artifact is then
removed by using high-pass, low-pass, and notch filters.

In most cases, frequencies below 0.5 Hz, due to movement
artifacts, and higher than 60 Hz, afflicted by muscle artifacts, are
filtered out, although this latter operation impairs the possibility to
analyze gamma band. Notch filter allows removing artifacts caused
by electrical power lines (50 or 60 Hz according to the country).

After preprocessing, spectral analysis can be applied to the
signal. The Power Spectral Density (PSD) can be calculated by
transforming the time domain signal to the frequency domain,
using different techniques such as the Fast Fourier Transform
(FFT) or the Welch method (Welch, 1967). From PSD the absolute
power of the signal can be computed. However, since the absolute
power measures may vary significantly in humans, it is more use-
ful to calculate the power ratios among bands, which show less
variability among subjects and are less affected by artifacts. Power
ratios are expressed as a percentage, and are obtained by dividing
the absolute power of a specific band by the total absolute power
of the spectrum. Power ratio can be calculated also between only
two bands (e.g., α/θ) or between band sets (e.g., α+ β/θ+ δ).

Classical spectral analysis techniques, like the FFT, are very use-
ful when analyzing stationary signals. Nevertheless, when dealing
with non-stationary signals, as is the case of EEG, they show the
big disadvantage of not preserving information on the temporal
evolution/localization of the frequency components. This occurs
because changes in frequency content, at a given time instant, cause
changes to all the Fourier coefficients and therefore it is not pos-
sible to localize at which times these frequencies occur. In QEEG
analysis, temporal information is important to detect and monitor
changes in brain activity at different time-scales following a spe-
cific event. For this reason in some studies other techniques as the
Short-Time Fourier Transform (STFT) have been used (Sheikhani
et al., 2007). STFT can be interpreted as the Fourier transform
of the signal observed through a sliding time window of finite
duration. The STFT allows constructing the signal spectrogram,
which is an image representation of the magnitude of Fourier
coefficients within that time window and therefore describes the
frequency contents of the signal in the neighborhood (bounded
by the time window) of the selected time instant (Walter, 1963).

Spectral analysis is often associated with spatial analysis that
allows characterizing relationships between activities of different
brain areas. The spatial information may be mainly derived from
QEEG data through symmetry and coherence analysis. The sym-
metry between the two hemispheres can be computed using the
Brain Symmetry Index (BSI) (John et al., 1977; Van Putten et al.,
2004). The BSI captures a particular asymmetry in SP between
hemispheres, and is normalized between 0 (perfect symmetry) and
1 (maximal asymmetry). Asymmetry is defined by the difference
on the EEG absolute power between homologous contralateral
electrodes and it is calculated as:

BSI = (LH− RH) / (LH+ RH)

where LH is the absolute power at one electrode in the left
hemisphere and RH at its homologous electrode in the right
hemisphere. On the other hand, the coherence function is a mea-
sure of the degree of association or coupling of frequency spectra

Frontiers in Human Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 442 | 2

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Billeci et al. Review QEEG in ASD

between two EEG signals simultaneously recorded from different
scalp locations per frequency band. Mathematically coherence is
defined as the squared cross-correlation between two waveforms
within a specific frequency band that has been normalized for
amplitude (Otnes and Enochson, 1972). It is assumed to be an
index of functional coupling between different brain areas. In
neuroscience the coherence measure is generally distinct from syn-
chrony, which refers to signals oscillating at the same frequency
with identical phases (Singer, 1999).

Finally, another interesting QEEG index, recently introduced
by Pop-Jordanova and Pop-Jordanov (2005), is the “brain rate.”
This is calculated as the EEG spectrum weighted frequency with
the following formula:

fb
∑

iPi =
∑

i fiVi/V with V =
∑

iVi

where the index corresponds to the frequency band (i= 1 for delta,
i= 2, for theta, etc.), fi is the mean frequency of the corresponding
band and Vi is the mean amplitude of the electric potential associ-
ated to each band. The brain rate can thus be defined as an integral
state attribute correlated to brain electric, mental, and metabolic
activity (Pop-Jordanova and Pop-Jordanov, 2005).

The techniques described above are all linear methods and are
the most commonly applied in the analysis of QEEG data. Given
the non-linear nature of EEG, however, non-linear methods could
be more suitable for the analysis of this signal. Although less con-
ventional, a set of non-linear techniques have been sometimes
used in QEEG analysis, allowing to obtain new information not
detectable through linear methods, such as non-linear interactions
and the complexity and stability of underlying brain sites. Some of
these techniques, like higher-order statistical analysis, complexity
analysis, and the phase synchronization analysis, have been applied
to the study of QEEG signals in ASD.

Finally, the analysis of microstates represents another promis-
ing technique although not yet used in ASD research.

Among the higher-order statistical analysis techniques, the bis-
pectral analysis is an advanced technique that quantifies quadratic
non-linearities amongst the components of the EEG signal. In
particular it measures the phase relationships between different
frequency components and on that basis quantifies the degree of
dependence amongst these components. Bispectrum is computed
by the Fourier transform of the third order cumulant (a statisti-
cal measure of correlation). As the bi-spectrum depends not only
on phase coupling but also on the power, it can be normalized
in order to make it sensitive only to changes in phase coupling.
This normalized bispectrum is then termed as bicoherence (for a
detailed description of the mathematical bases of the bispectral
analysis, see Sigl and Chamoun, 1994).

Another interesting property of EEG signal is complexity,
which reflects random fluctuations over multiple time scales in
the dynamics of neural networks, thus providing insights about
neural connectivity. The most interesting methods employed for
computing complexity of EEG signals are entropy and fractality.

Entropy is a physical measure related to the amount of disorder
in a system, and it describes the irregularity or unpredictability
characteristics of a signal.

Since regularity is not necessarily correlated with complexity,
the quantification of complexity of EEG signals can be computed
using the multiscale entropy (MSE), which measures the entropy
across multiple time scales (Costa et al., 2002). This method is
based on the principle that biological systems are modulated
by multiple mechanisms, which interact over multiple temporal
scales generating complex data. Another quantity that identifies
the degree of complexity of a system is the fractal dimension. This
is a non-integer number describing the self-similarity of a system:
the whole can be fitted by parts of it by shifting and stretching
(Mandelbrot, 1977).

The phase synchrony analysis may be useful when needed to
analyze the phase relationships between EEG signals at different
electrodes, independently of their amplitude (Lachaux et al.,1999).
The basic idea of this technique is to generate an analytic signal
from which a phase, and a phase difference between two signals,
can be defined. On the basis of this phase difference a phase syn-
chronization index can be computed, which will be zero if the
signals under investigation are not synchronized and will be one
for a constant phase difference.

Finally, the technique of functional microstates allows study-
ing brief transactions occurring in the brain in the time range
of milliseconds. Microstates are defined as time periods, of 80–
120 ms, during which the potential distribution over the scalp
shows stable topographical configuration after which a rapid
transition to another stable configuration (another microstate)
occurs (Lehmann et al., 1987). Microstates could be considered
as the basic blocks of human information processing (Lehmann,
1990), reflecting the interactions between environmental infor-
mation and the subject’s previous knowledge and internal state.
Microstates can only repeat several times within a period so that
a cluster approach can be adopted to identify different classes
of electrical states composing the EEG signal. Several statisti-
cal measures can then be extracted and related to the differ-
ent experimental conditions and microstate class, such as mean
microstate duration, mean number of microstates per second,
or the percentage time covered by each state (Koenig et al.,
2002) (for a detailed mathematical description of the non-
linear analysis techniques described above, see Tong and Thakor,
2009).

Quantitative electroencephalography data are usually obtained
using commercial or free software that are able to extract the most
common features of EEG signals. The use of advanced techniques
such as Independent Component Analysis (ICA), and neuroimag-
ing techniques such as Low Resolution Electromagnetic Tomogra-
phy (LORETA) (Pascual-Marqui et al., 1994) are used to map the
actual sources of the cortical rhythms. These advanced techniques
may, therefore, represent a promising approach to understand the
dynamics and functions of the brain in a number of neurological
diseases, including ASD.

QEEG IN AUTISM
Quantitative electroencephalography has been adopted in several
studies for the assessment of ASD with the aim of finding out quan-
titative indices characterizing brain functions. An understanding
of how this evolving technique can aid future research in ASD is
very important.
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Several studies highlight QEEG capacity to classify subjects
with ASD from controls, or different subgroups of ASD. Moreover,
QEEG has been also applied as a tool for therapeutic intervention
through a neurofeedback approach, although its use in ASD is
still poorly reported in literature. A description of neurofeedback
methods and of its application in ASD, however, is beyond the
aim of this article, and readers may refer to dedicated original
researches and reviews (Pineda et al., 2008; Kouijzer et al., 2009,
2010; Coben et al., 2010).

In the following subsections, we will review the main applica-
tions of QEEG in three different scenarios: (1) closed or open-eyes
rest condition; (2) subjects performing specific tasks; (3) subtyp-
ing of ASD through QEEG information. All the studies reviewed
here are summarized in Table 1. This research provides evidence
for the utility of QEEG in extracting objective measures that can
characterize brain activity in different conditions.

QEEG DURING REST
Quantitative electroencephalography during rest conditions rep-
resents one of the most used applications of this technique in
the field of autism research. Neural oscillations reflect the syn-
chronous firing of large populations of neurons mediated by
excitatory/inhibitory interactions and can be registered on the
scalp. QEEG at rest may therefore inform, in vivo, on the balance
between excitatory and inhibitory activities, which in turn could
affect the cognitive and social functioning in ASD (Rubenstein
and Merzenich, 2003; Bourgeron, 2009). The observation of spon-
taneous brain activity also allows characterizing different patterns
in functional connectivity that might specify functionally relevant
brain networks.

Finally, by studying power fluctuations of different bands it is
possible to notice deviations from normal patterns that reflect the
organization of the underlying system.

One of the first studies on QEEG in autism (Cantor et al.,
1986) tried to examine if QEEG analysis could be used to dif-
ferentiate low-functioning children with ASD from subjects with
mental retardation without ASD, age-matched subjects with typi-
cal development and toddlers with typical development. Data were
acquired during open-eyes rest condition and spectral as well as
spatial analysis on the acquired data were performed.

Differences in PSD, coherence, and symmetry were found. In
particular, children with ASD showed a significantly greater per-
centage delta and less alpha activity, higher degree of coherence
between and within hemispheres, especially in delta and alpha
band, and less amplitude asymmetry in every band. Interestingly,
while ASD subjects significantly differentiate from age-matched
controls and mentally retarded subjects, the pattern of activation
was similar to the one obtained in typical toddlers, suggesting a
maturational lag in cerebral functioning of subjects with ASD.

Chan et al. (2007) also studied PSD in children with ASD and in
neurotypical controls by recording EEG in an open-eyes condition.
In this study both low and high-functioning ASD children were
included in the sample set. In consistence with the previous study,
the ASD group showed significantly higher absolute delta and
lower relative alpha. The authors attempted to localize the abnor-
malities in EEG signal, and found similar results at each channel
suggesting that QEEG characteristics were not regionally specific,

but were observed across all the cortex of children with ASD. This
conclusion is also consistent with neuroimaging data indicating
widespread brain abnormalities in ASD that include increased
total intracranial volume (Courchesne et al., 2007), abnormal
gray matter (Waiter et al., 2004; McAlonan et al., 2005), altered
white matter (Barnea-Goraly et al., 2004; Billeci et al., 2012), and
disrupted anatomical functioning (Belmonte and Yurgelun-Todd,
2003; Hubl et al., 2003).

Abnormalities in symmetry in ASD children were also found in
the study of Stroganova et al. (2007). They acquired EEGs in open-
eyes condition, in a large group of high-functioning children with
ASD and in age-matched controls. PSD was calculated for delta,
theta, and alpha frequency bands and BSI was computed. Atypical
EEG asymmetry in children with ASD was found. In particular:
(1) a broad-band leftward EEG asymmetry at the temporal and
some adjacent regions that was absent in controls and (2) a sym-
metrically distributed mu rhythm in ASD across central sites of
the left and right hemisphere, whereas in controls it was lateral-
ized to the left. The first result could reflect structural asymmetries
in the brain, although research on this issue is still inconclusive.
For example, a decrease of deep white matter predominantly in
the right hemisphere of ASD individuals has been highlighted in
two recent studies (Boddaert et al., 2004; Waiter et al., 2005). How-
ever, further research is needed to adequately correlate structural
and neurophysiologic data in ASD. Concerning the second result,
the asymmetric distribution of mu is known to be linked to motor
function and could mean that there is a greater down regulation of
sensorimotor areas of the left hemisphere, involved in the control
of the dominant right hand. On the contrary, the symmetrical dis-
tribution may be linked to a decreased control of motor function
of the right hand.

Coben et al. (2008) demonstrated how the closed-eyes condi-
tion might cause changes in PSD and in coherence. In this study
EEG was acquired on high-functioning children with ASD and
controls and absolute and relative PSD for each band were com-
puted. Moreover, intra-hemispheric and inter-hemispheric coher-
ences were calculated. Opposite results in delta and beta band spec-
tra with respect to the open-eyes condition were detected: in fact, a
reduction in absolute and relative delta and an increase in absolute
beta and relative theta distinguished ASD subjects from controls.

Also the coherence analysis revealed opposite results with
respect to the open-eyes condition. In this study ASD subjects
showed reduced intra-hemispheric as well as inter-hemispheric
coherence in particular in the delta and theta band. Moreover
they displayed lower inter-hemispheric coherences in the delta and
theta bands in frontal regions, lower coherences in the delta, theta,
and alpha bands in temporal regions and lower coherences in delta,
theta, and beta bands in the central/parietal/occipital regions. The
large amount of significant differences in coherence values in sev-
eral brain regions, suggests altered connectivity in ASD (Belmonte
et al., 2004).

Murias et al. (2007) have studied the eye-closed condition
by using a high-density EEG system (124 electrodes) in adults
with ASD. Indeed, a high-density approach, by employing more
number of electrodes, allows increasing spatial resolution of the
EEG potentials and improving signal source localization. A spec-
tral analysis as well as a coherence analysis was performed. In
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Table 1 | Summary of QEEG studies in autism.

Study Design Participants Measures Results in ASD

QEEG DURING REST

Cantor et al.

(1986)

10/20 System, open

eyes

n=11 ASD (age: 4–12 years,

IQ=37.45±11.4)

PSD, coherence,

symmetry

Higher percent delta and less alpha; higher coherence

between and within, hemispheres; less asymmetry

n=88 TD (age: 5–15 years,

IQ=113.35±9.5)

n=18 Intellectually disabled

(age: 5–15 years,

IQ=71.1±12.6)

n=13 TD toddlers (age:

16 months to 5 years,

IQ=121.0±25.4)

Chan et al.

(2007)

10/20 System, open

eyes

n=66 ASD (age: 5–18 years,

TONI=83.36±21.61)

PSD Higher absolute delta and lower relative alpha; same

results for all channel

n=90 TD (age: 6–12 years,

TONI=111.42±16.16)

Stroganova

et al. (2007)

32 or 24 Electrode

system, open eyes

n=40 ASD (age: 3–8 years,

IQ=111±8.29)

PSD, asymmetry Higher prefrontal delta; leftward asymmetry at the

temporal regions; symmetric mu rhythm in ASD

across central sitesn=40 TD (age: 3–8 years)

Coben et al.

(2008)

10/20 System, closed

eyes

n=40 ASD (age: 6–11 years,

IQ=93±16.8)

n=40 TD (age: 6–11 years,

IQ=98±15.4)

PSD, coherence Less absolute (left frontal and posterior region) and

relative delta (left frontal and vertex regions) and

higher absolute beta (midline regions) and relative

theta (right posterior regions); less delta and theta

intrahemispheric coherence; less inter-hemispheric

coherences in delta and theta in frontal regions in

delta, theta, and alpha in temporal regions and in delta,

theta, and beta bands central/parietal/occipital regions

Murias et al.

(2007)

128 Channels, closed

eyes

n=18 ASD (age: 18–38 years,

IQ=107.33±13.96)

n=18 TD (age: 18–38 years,

IQ=106.11±13.56)

PSD, coherence Higher relative theta in primarily frontal and prefrontal

regions, less relative alpha in primarily

frontal/prefrontal and occipital/parietal regions and

higher relative beta in occipital/parietal regions; higher

coherence in theta and less coherence in alpha

Pop-

Jordanova

et al. (2010)

10/20 System, open

eyes and closed eyes

n=9 ASD (age: 3–6 years)

database of TD

PSD, brain rate Higher delta/theta; higher beta in open eyes than in

closed eyes; reduction of brain rate in all regions

Mathewson

et al. (2012)

128 Channels, open

eyes and closed eyes

n=15 ASD (age: 19–52 years,

IQ=100.9±18.6)

n=18 TD (age: 18–38 years,

IQ=107.1±11.9)

PSD, coherence,

correlation with AQ

Higher alpha in eye opens; less alpha suppression in

01; no difference in coherence; negative correlation

between alpha and preferential attention to detail in

posterior and frontal regions both in eye open and eye

closed; negative correlation between attention to

details and coherence in eye opened in the right

centro-parietal region and in eye closed in the

parieto-occipital regions; negative correlation between

alpha coherence in eye-open and social functioning in

the right fronto-central region; positive correlation

between theta coherence in the left centro-parietal

region in eye-closed and social functioning

Sheikhani

et al. (2007)

10/20 System, closed

eyes

n=10 ASD (age:

9.3±1.8 years)

n=7 TD (age: 9.2±0.7 years)

PSD (STFT and

STFT-BW) and

bispectrum

No differences in STFT or bispectrum; significant

differences in STFT-BW over Fp1, F3, F7, T3, T5,

and O1

(Continued)
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Table 1 | Continued

Study Design Participants Measures Results in ASD

QEEG DURING REST

Ahmadlou

et al. (2010)

10/20 System, closed

eyes

n=9 ASD (age: 6–13 years)

n=6 TD (age: 7–13 years)

Fractal dimension

(HFD and KFD)

Significant difference in HFD in gamma, beta, and

alpha and in KFD in gamma, beta, and delta

Thatcher

et al. (2009)

10/20 System, open

eyes

n=54 ASD (age:

2.6–10.74 years)

n=241 TD (age: 2.2–11 years)

Phase

synchronization

analysis

Shorter phase shift durations in ASD in the alpha-1

frequency band (8–10 Hz); longer phase lock durations

in ASD in the alpha-2 frequency band (10–12 Hz) and;

differences in short and long inter-electrode pairs

Bosl et al.

(2011)

64 Channels, open eyes n=46 HRA (age:

6–24 months)

n=33 TD (age: 6–24 months)

Multiscale Entropy

(MSE) analysis

Reduced MSE in HRA subjects especially in

9–24 months range; discrimination between HRA and

controls at 9 months with 80% of accuracy

Duffy and Als

(2012)

32 Channels, open eyes n=463 ASD (age: 1–18 years)

n=571 TD (age: 1–18 years)

Coherence High classification success between ASD and TD

groups. decrease in short–distance coherence and

increase in long-distance coherence in ASD group

within a wide spectral range

QEEG DURING SPECIFICTASKS

Oberman

et al. (2005)

10/20 System, tasks: (1)

moving their own hand,

(2) watching a video of

a moving hand, (3)

watching a video of two

bouncing balls

(non-biological motion),

and (4) watching visual

white noise

n=10 ASD (age: 9–14 years,

IQ > 80)

n=10 TD (age: 9–14 years)

PSD mu Decreased mu only during the self-initiated hand

movement

Orekhova

et al. (2007)

10/20 System,

sustained visual

attention

n=40 ASD (age: 3–8 years)

n=40 TD (age: 3–8 years)

PSD in high

frequency bands

Higher power especially in gamma1 in midline,

central, and parietal regions

Sheikhani

et al. (2009)

10/20 System, tasks: (1)

eye-closed condition,

(2) eye-opened

condition, (3–5) looking

at three samples of

Kanizsa shapes, (6)

looking at mother’s

picture upright and (7)

inverted, (8) looking at

stranger’s picture

upright, and (9) inverted

in frequency bands

n=15 ASD (age: 6–11 years,

IQ > 85)

n=11 TD (age: 6–11 years,

IQ > 85)

PSD, spectrogram Lower spectrogram criteria at Fp1, Fp2, and T6 in

gamma and higher spectral power at FP1 and FP2 in

open-eyes condition; difference in alpha at T3, F7, and

C3 in looking at the inverted mother’s picture;

difference in alpha and beta at F7, F4, F8, C4, Pz. In

looking at a stranger’s picture inverted

Sheikhani

et al. (2012)

128 Channels (reduced

to 10/20), sustained

visual attention

n=17 ASD (age: 6–11 years,

IQ > 85)

n=11 (age: 6–11 years,

IQ > 85)

Spectrogram criteria Lower spectrogram criteria in alpha, beta, and gamma

especially in temporal and frontal regions in left

hemisphere

Chan et al.

(2011a)

Object recognition (OR)

task

n=21 ASD (age: 5–14 years,

TONI=101.86±16.09)

n=21 TD (age: 5–14 years,

TONI=106±14.59)

Coherence in theta Elevated fronto-posterior coherences in left

hemisphere; higher coherence in the left than in the

right hemisphere; negative correlations between

memory performance and the inter-hemispheric

coherence

(Continued)
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Table 1 | Continued

Study Design Participants Measures Results in ASD

QEEG DURING SPECIFICTASKS

Chan et al.

(2011b)

10/20 System,

Go/No-Go task

n=20 ASD (age: 7–14 years)

n=20 TD (age: 7–14 years)

PSD in theta source

localization with

LORETA

In the “Go” condition theta decreased in the anterior

cingulate cortex (ACC), in the “No-Go” condition in

the ACC and in the precuneus

Lushchekina

et al. (2012)

10/20 System, tasks: (1)

eye-closed condition,

(2) counting during eye

closed

n=27 ASD (age: 5–7 years)

n=19 TD (age: 5–7 years)

PSD, coherence Higher gamma in baseline condition; right-sided

predominance of spectral power in alpha both at rest

and during counting

Catarino

et al. (2011)

10/20 System,

detection tasks: (1)

faces, (2) chairs

n=15 ASD (age:

23.79–42.34 years,

IQ=119±13)

MSE, PSD Reduced MSE in ASD especially in parietal regions;

higher MSE in response to faces in both groups; no

differences in PSD

n=15 TD (age:

21.50–37.77 years, mean

IQ=119±14)

QEEG FORTHE IDENTIFICATION OF AUTISTIC SUBGROUPS

Dawson

et al. (1995)

10/20 System, open

eyes

n=28 ASD (age: 5–19 years,

IQ=119±13)

PSD Reduced delta and theta in the passive group in all

brain regions and reduced alpha in the frontal regions

n=28

Chronological-age-matched

TD (age: 5–19 years)

n=24

Language-age-matched TD

(age: 2–7 years)

Sutton et al.

(2005)

10/20 System, open

eyes and closed eyes

n=23 ASD (age: 9–14 years,

IQ: 110.13±21.21)

n=20 TD (age: 9–14 years IQ:

116.80±11.69)

PSD Higher alpha in anterior, central, and posterior cortical

regions; more left-sided mid-frontal and central

regions; subgroups with greater left-sided mid-frontal

activity had greater social anxiety, greater general

anxiety, greater social stress, and less satisfaction

with interpersonal relations

ASD, autism-spectrum disorder; TD, typical developing; HRA, “high risk” of autism.

this experiment, ASD group showed an elevated relative theta
and reduced relative alpha power primarily in the frontal and
prefrontal regions. In addition, a reduced relative alpha and
increased relative beta power was observed in the occipital/parietal
regions, with bilateral central regions approaching significance.
Significant differences in coherence analysis between the two
groups were also observed in theta and alpha bands. The results of
this study are in agreement with the theory of local overconnectiv-
ity and global under-connectivity in ASD (Courchesne and Pierce,
2005). In fact EEG oscillations in the theta range reflect locally
dominant neocortical processes, whereas alpha oscillations repre-
sent more globally dominant phenomena that are more dependent
on cortico-cortical and callosal fibers (Nunez, 2006).

In a more recent study (Pop-Jordanova et al., 2010) both the
open-eyes and the closed-eyes conditions were investigated. In this
study EEG data obtained on ASD children were compared to data
belonging to neurotypical subjects contained in a database. The
authors found an increase delta/theta power in ASD in both con-
ditions. Moreover they noticed that in the open-eyes condition

there was an increase in beta power with respect to the closed-
eyes condition in both groups. These results were only partially
in agreement with the previous studies. The authors also have
introduced here a new index, namely the spectrum weighted fre-
quency (brain rate), as an indicator of general mental arousal in
these subjects. They found a reduction of brain rate in all regions
in autistic children compared to the controls, indicating a lower
general mental arousal in ASD.

Also in the most recent study by Mathewson et al. (2012) where
QEEG technique was applied in the study of high-functioning
adults with ASD, both the open-eyes and the closed-eyes condi-
tion were analyzed. The novelty of this study is that the features
extracted by QEEG analysis related to power and frequency, were
correlated to behavioral performances measured with the Autism-
Spectrum Quotient (AQ; Baron-Cohen et al., 2001). In particular
in this study the scores obtained with this instrument were clus-
tered in two groups: preferential attention to detail and deficits
in social interaction. EEG data were continuously recorded by
means of a 128-channel system during a resting baseline condition
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in which eyes-open and eyes-closed conditions alternated. The
absolute PSD was calculated for each band separately at each single
electrode, however, in order to reduce the computational complex-
ity, power was averaged within four quadrants: left frontal, right
frontal, left posterior, and right posterior. The main focus of the
study was alpha band because it is thought to indirectly reflect
the level of cortical excitability in the regions where it is found.
It means that higher resting alpha power might denote cortical
deactivation or inactivity (Rihs et al., 2007; Sauseng et al., 2009).
Power analysis showed that in the eye-open condition the alpha
power was higher in ASD group than in the controls in all regions,
while in eye-closed condition no difference was found.

Regarding the other bands, beta, gamma, and theta powers
were increased in ASD group. An analysis of the amount of alpha
suppression in occipital regions was also performed. The results
indicated that at O1 a significantly greater alpha suppression was
present in control subjects than in ASD group. This difference in
suppression is related to the fact that alpha suppression is asso-
ciated with optimal neurological functioning that is impaired in
ASD. In contradiction with the previous studies, no differences in
coherence between the two groups were found.

While correlating the SP with the AQ score it was found that
in ASD participants, alpha power was inversely correlated with
preferential attention to detail in posterior and frontal regions
both in eye-open and eye-closed condition, while no correlation
was found in controls. From the coherence analysis, a positive
correlation between alpha coherence in eye-closed condition and
attention to details was found in the right centro-parietal region
in controls, while in ASD group, attention to details was inversely
correlated with coherence in eye-opened condition in the right
centro-parietal region and in eye-closed condition in the parieto-
occipital regions. Moreover in both groups alpha coherence in
eye open was inversely correlated to social functioning in the
right fronto-central region. For the other bands, increased theta
coherence in the left centro-parietal region in eye-closed condi-
tion appeared to be related to poorer social functioning in ASD,
while increased gamma coherence in the same region and condi-
tion appeared to be beneficial to social functioning in controls.
The negative correlation between attention to detail and alpha
power and coherence in parietal regions in ASD is consistent with
the theory of altered parietal functioning in ASD. An explana-
tion of this result could be that in ASD the mapping of attention
focus may be exaggerated at the expense of attention prioritiz-
ing. Moreover the negative correlation between alpha coherence
and attention to details is consistent with the fact that the brain
is more receptive to incoming sensory information when neural
activity is desynchronized than when it is engaged in performing
a specific task.

In a few articles non-linear analysis techniques have been
used to study particular properties of EEG signals. In the study
of Sheikhani et al. (2007) the authors computed three types of
transforms at each electrode for discriminating between ASD and
controls: the STFT, the STFT-BW calculated considering the band-
width of all the spectra as window, and the bispectrum. Data
were acquired using a standard 10/20 system during eye-closed
condition. The authors did not find any difference in STFT or
bispectrum but they found significant differences in STFT-BW

over Fp1, F3, F7, T3, T5, and O1. Since the sample of ASD and
controls is very small in this study, it is difficult to draw any con-
clusions from the results. The bispectral analysis needs to be tested
in a larger sample of subjects to see if it gives significant results
and relevant information on brain activation not evidenced by the
most common power spectral analysis.

In another study by Ahmadlou et al. (2010), the complexity of
EEG signals in ASD and controls was investigated by using fractal
dimension analysis. Data were acquired during eye-closed condi-
tion and a wavelet analysis approach aimed at decomposing the
signal into the five standard EEG bands was performed. For each
band and electrode the fractal dimension was computed using two
methods: Higuchi’s Fractal Dimension (HFD) (Higuchi,1988) and
Katz’s Fractal Dimension (KFD) (Katz, 1988). Significant differ-
ences between ASD and controls in HFD were detected, especially
in gamma, beta, and alpha and in KFD in gamma, beta, and
delta. Differences were most significant for KFD, meaning that this
method is a more effective tool for discriminating between ASD
and controls. This study shows how fractal dimension, providing
additional information about EEG signals, could be an important
instrument for the identification of brain abnormalities in ASD.

Thatcher et al. (2009) applied phase analysis for the investiga-
tion of phase-reset mechanism in high-functioning children with
ASD. Phase reset (PR) is defined as the succession of phase shifts
(e.g., 30–80 ms) and phase locking (e.g., 100–800 ms) of clusters
and sub-clusters of neurons. This process is regulated by GABA
mediated thalamo-cortical circuits that is believed to be compro-
mised in ASD (Orekhova et al., 2008). EEG data were acquired on
ASD subjects and age-matched controls during eyes-open resting
condition. Complex demodulation was used to compute phase
differences between the signals from each pairs of electrodes. Each
PR was composed by a phase shift of a finite duration (SD) and a
phase locking of an extended duration (LD). SD is the interval of
time from the onset of phase shift to its termination, defined by a
peak in the first derivative and a peak in the second derivative or
inflection on the declining side of the time series of first deriva-
tives. LD was defined as the interval of time between the end of
a significant phase shift and the beginning of a subsequent sig-
nificant phase shift. Both in ASD and in controls SD, LD, and PR
were computed for each pairs of electrodes in each EEG band. The
comparison between the two groups showed that SD was signifi-
cantly shorter in ASD than in the controls in particular in alpha-1
frequency band (8–10 Hz). On the contrary, LD was consistently
longer in ASD especially in alpha-2 frequency band (10–12 Hz).
The results of this study demonstrate an altered mechanism of
neural synchronization in ASD, and suggest that increased phase
lock periods, that represent the time in which clusters of neu-
rons are synchronized, could reflect less cognitive flexibility and
less availability of neural resources. However, higher statistically
significant differences were found at short rather than long inter-
electrode distances, suggesting that the defect in the mechanism
of phase locking is particularly present in local neural.

In a recent study by Bosl et al. (2011) a non-linear analysis
based on the calculation of MSE was performed. The analysis was
applied to EEG signals acquired on a group of infants at “High
Risk” because siblings of children with ASD. Data were obtained
during resting state eyes open using a 64 channels EEG system. For
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a more accurate comparison, the sample set was divided in sub-
groups according to age: 6, 9, 12, 18, and 24 months. The authors
found a decrease of MSE in HRA over all EEG channels across all
scales and ages. When considering the trajectories of mean MSE
with age, it was shown that while the pattern of complexity was
almost the same in the two groups in the age range 6–9 months,
there was a strong decrease in EEG complexity in the HRA groups
in the age range 9–12 months. Several classification approaches
were then applied to distinguish between the groups of controls
and HRA subjects according to the EEG complexity features. The
machine learning approach represents an accurate classification
method, especially in the first year of life of the children. As under-
lined by Griffin and Westbury (2011), in their commentary to the
article of Bosl et al. (2011), these results should be viewed with
caution because they identify an alteration of MSE in the whole
population of HRA subjects without differentiating between the
ones who will really develop autism and the ones who will have
a typical development or other neuropsychiatric disorders. How-
ever, this study could be a promising starting point to carry out
further investigation in order to highlight the differences in EEG
complexity at the individual level, possibly helping to predict the
risk of developing autistic traits.

Another interesting attempt in differentiating ASD and con-
trols group based on a data-driven approach has been recently
performed by Duffy and Als (2012). In this study, EEG data were
recording on a large sample of ASD and TD subjects during
awake state and coherence values were measured for each EEG
frequency band.

In a first step, the dimensionality of the coherence data was
reduced by applying a Principal Component Analysis (PCA) based
on a Singular Value Decomposition (SVD) approach (SVD-based
PCA). In the following step a classification algorithm, in particu-
lar the Discriminant Function Analysis (DFA), was applied to the
variables selected by PCA. This technique allows producing a new
canonical variable, the discriminant function, which is based on a
weighted combination of the input variables and allows maximally
separating the ASD and TD groups.

Given the wide age range of subjects, the classification analy-
sis was applied also to subset of subjects with a narrower age
span. The coherence factors given by DFA analysis allowed to
accurately classifying ASD and TD across all three age spans.
Moreover, it was observed that 70% of the factors were asso-
ciated with reduced coherence for ASD subjects, in particular
in the left temporal regions and frontal (short–distance connec-
tions). The decreased connectivity within these regions could be
associated to language and communication problems. The other
coherence factors showed an increased coherence in ASD subjects
in particular in the long-distance connection. This finding could
be explained as a compensatory mechanism of the autistic brain
which establish atypical, spatially disparate, cortical networks to
replace deficit function normally associated to more localized net-
work. These results were quite stable across all broad spectral
ranges.

The results of this study are very encouraging because it seems
that the coherence factors could be used as a possible useful
neurophysiological ASD-phenotype.

QEEG DURING SPECIFIC TASKS
The application of QEEG processing technique during cognitive
tasks can give the possibility to view the dynamic changes which
take place in the brain during these conditions, determining in
this way which areas of the brain are engaged. Although in the
past some researchers have considered that EEG signals acquired
during task conditions are destabilized or otherwise corrupted
(Thatcher, 1998), recent researches have challenged this conclu-
sion. For example, McEvoy et al. (2000) have demonstrated greater
stability of QEEG signals recorded during cognitive tasks, with
respect to the resting condition and therefore paving the way for
developing task-specific understandings of brain operation.

Oberman et al. (2005) have analyzed the mu (8–13 Hz) power,
an index of neuron synchronization or desynchronization,over the
sensorimotor cortex during imitation tasks. At rest, sensorimotor
neurons spontaneously fire in synchrony, leading to large ampli-
tude EEG oscillations and to elevated power in mu frequency band.
Conversely, during action, these neurons fire asynchronously, and
therefore the power in mu band decreases. In this investigation,
EEG from high-functioning ASD and controls were recorded dur-
ing observation of biological and non-biological motion. While
controls showed a decreased mu power both in self-initiated hand
movement and in observed biological motion conditions, the
ASD group obtained the same effect only during the first task,
suggesting mirror neuron dysfunction in autism.

In fact, sensorimotor neurons could be considered as belonging
to the well-known mirror neurons system (Rizzolatti et al., 2001).
Several studies have related the imitation deficit in subjects with
autism to an impairment of this neural circuitry (Williams et al.,
2001; Nishitani et al., 2004; Iacoboni and Dapretto, 2006). Never-
theless, the findings of some recent studies argue against a mirror
system dysfunction in ASD (Dinstein et al., 2010; Fan et al., 2010).

Sheikhani et al. (2012) used the spectrogram method to analyze
data acquired on a group of children with ASD and age-matched
controls during sustained visual attention. The spectrogram cri-
teria – defined as the average of all the frequency component
values of spectrogram >70% of the maximum value for each
frequency band – as well as the coherence between pairs of dif-
ferent electrodes were computed. The ASD group exhibited lower
values of spectrogram criteria in alpha, beta, and gamma bands,
whereas no significant difference was observed in the delta band.
According to these results, EEG signal show the most significant
differences in the temporal and in the frontal regions of the left
brain hemisphere. These results agree with several studies show-
ing an impairment of left hemisphere, in particular in temporal
and frontal regions, in ASD (Rojas et al., 2002, 2005; Chandana
et al., 2005). The authors also showed an increase in the degree of
coherence in the ASD group, and suggested increased functional
connectivity of temporal lobes with other regions in the gamma
band frequency.

In another investigation of the same authors (Sheikhani et al.,
2009), children with ASD and controls underwent EEG acquisi-
tion in nine different conditions: [(1) eye-closed condition, (2)
eye-opened condition, (3–5) looking at three samples of Kanizsa
shapes, (6) looking at mother’s picture upright and (7) inverted,
(8) looking at stranger’s picture upright, and (9) inverted in
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frequency bands]. Spectrogram and PSDs were calculated for each
band at each condition. In the relaxed eye-opened condition, chil-
dren with ASD obtained significant differences in gamma band
with lower values of spectrogram criteria and higher values of
SP. Spectrogram criteria were also significantly different in the
alpha band when ASD and control children looked at the inverted
mother’s picture, and in alpha, beta, and gamma bands, when they
looked at an inverted stranger’s picture. Given that gamma band
seems to play a role in the synchronization of cortical nets region,
especially in recognition and perception, the authors suggested an
abnormal functioning on these issues in ASD. Furthermore, since
the alpha band is associated with the coordination of wider areas
of the brain, and beta band plays a role in integrating neighboring
areas, the abnormal spectrogram criteria found in this study might
suggest a defect of coordination and integration in ASD.

In a recent study (Chan et al., 2011a), QEEG techniques were
employed in order to examine the association between memory
performance and fronto-posterior theta coherence in individu-
als with ASD. Several studies have found associations of theta-
band amplitude with the performance of working memory tasks
(Klimesch et al., 1994) and long-term memory encoding and
retrieval (Larson et al., 1986). Moreover, basic research in ani-
mals and neuroimaging studies in humans have shown that during
working memory tasks multiple brain areas are activated, in par-
ticular the prefrontal and postrolandic association cortices as well
as the cingulate cortex and medial temporal areas (Fuster, 1995;
Krause et al., 2000; Postle and D’Esposito, 2000). Given these find-
ings, it has been suggested that connectivity abnormalities in these
brain areas could be the neural bases of memory deficits in autism
(Rippon et al., 2007). In the study by Chan et al. (2011a), EEG data
were recorded during an object recognition task. ASD individu-
als showed elevated fronto-posterior long-range theta coherences,
both intra-hemispheric (in the left hemisphere) and inter hemi-
spheric (from left anterior to right posterior regions). Moreover,
an opposite asymmetry pattern was observed: coherences in con-
trols were higher in the right than in the left hemisphere, while
in ASD children the pattern was opposite. A significant negative
correlation between memory performance and inter-hemispheric
long-range coherence was present in ASD subjects, whilst no sig-
nificant correlations were found in controls. The abnormal pattern
in ASD children could be explained with a hyper-functional con-
nectivity in theta band with respect to controls that decrease the
efficiency of memory processing.

In another study by the same research group (Chan et al.,
2011b) the association between the performance of children with
ASD in attention and inhibitory control and brain activity was
investigated. The analysis was focused on relative PSD within theta
band, which is related to attentional and inhibitory processing
during a Go/No-Go task.

The authors found a decrease of theta activity in ASD children
with respect to controls in the anterior regions for the “Go” and in
anterior and centrotemporal regions for the “No-Go” condition.
The application of LORETA software allowed a more accurate
source localization ad it showed that in the “Go” condition theta
decreased occurred in particular in the anterior cingulate cortex
(ACC), while in the “No-Go” condition in the ACC and also in
the precuneus. Significant correlations were found between theta

power and scores obtained at the several tests performed showing
an association between depressed brain activity, in particular in
the ACC, and poorer performance in attention and inhibition.

Some authors have outlined the importance of studying the
high EEG frequencies in order to characterize brain activity in
ASD. The paper from Orekhova et al. (2007) aims at analyz-
ing the differences between controls and ASD in high frequency
EEG bands. EEG activity was recorded in young children with
autism and age-matched controls during sustained visual atten-
tion. The mean PSD was calculated in three high frequency bands:
beta (13.2–24 Hz), gamma 1 (24.4–44.0 Hz), and gamma 2 (56.0–
70 Hz). An enhancement of spontaneous high frequency EEG
oscillations in ASD was found, especially in gamma 1 band. The
most involved brain areas were the midline, central, and parietal
regions. Moreover, a significant positive correlation between the
power spectrum value of gamma 1 and the degree of developmen-
tal delay in ASD group was detected. The excess of high frequencies
in ASD agrees with the theory of an increase in ratio of exci-
tation/inhibition in autism that leads to the formation of “noisy”
and unstable cortical networks (Rubenstein and Merzenich, 2003).

In the most recent study (Lushchekina et al., 2012), the authors
have tried to identify the neurophysiological components of cog-
nitive abnormalities in ASD. EEG recordings, made in the standard
10/20 scheme were performed at baseline (rest with closed eyes),
and during a cognitive task, consisting of counting, adding, and
subtracting. SP and mean coherence were studied in the alpha,
beta, and gamma ranges. Both typical and ASD subjects showed
a marked frontal-occipital alpha gradient in baseline conditions.
ASD individuals were characterized by right-sided predominance
of PSD in the alpha range, both at rest and during cognitive tasks.
In addition, in ASD the PSD of the gamma rhythm in baseline
conditions was higher than that in the controls. During the cogni-
tive task in ASD group the SP and mean coherence of fast rhythms
did not change.

Another study (Catarino et al., 2011) analyzed EEG data
acquired from adult ASD individuals and controls during a visual
task (pictures of neutral faces versus pictures of chairs); a com-
plexity analysis was performed using the MSE measure already
described (Bosl et al., 2011). The task consisted in the detection of
pictures of neutral faces and of chairs. Both a MSE investigation
and a more traditional power spectral analysis were performed
for each group and condition. While no differences were found
in PSD, the authors demonstrated reduced entropy in ASD with
respect to controls, especially at higher time scales, confirming
that the decrease of MSE can be associated to impairments in
brain function and connectivity.

QEEG FOR THE IDENTIFICATION OF AUTISTIC SUBGROUPS
Clinical observation as well as research data, suggest that ASD
are a set of neurodevelopmental disorders with a considerable
heterogeneity in the phenotypic presentation (Witwer and Lecav-
alier, 2008; Georgiades et al., 2013). Among the several methods
used to stratify ASD subjects into more homogeneous subgroups,
the QEEG may provide more objective and quantitative features
characterizing different groups of affected individuals. However,
despite the fact that QEEG approach seems very promising, only
few studies have so far been directed to this end.
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The first investigation on this topic (Dawson et al., 1995)
showed how QEEG is not only useful in differentiating subjects
with high-functioning ASD from controls, but also in distinguish-
ing amongst subgroups which differ in degree and nature of social
impairments. Twenty-eight children with autism were classified
according to Wing and Gould (1979) classification system:“Aloof,”
“Passive,” and “Active-but-odd.” In particular, the authors studied
the “passive” and the “active-but-odd” groups. EEG was acquired
during sustained visual attention, and the PSD were calculated for
each band. The passive group showed reduced EEG power in delta
and theta bands in all brain regions and reduced alpha power in the
frontal regions. Since the alpha activity is related to social engage-
ment, a reduced alpha activity could reflect, in this“passive”group,
a lack of active engagement in social information processing.

A subsequent study by Sutton et al. (2005), QEEG analysis was
performed in order to correlate resting cortical brain activity with
social-emotional abilities behaviors in high functioning children
with autism (HFA).

Data were acquired on high-functioning ASD children and
controls during eyes-opened and closed conditions. The analy-
sis focused on the alpha band, due to its stronger relation with
behavioral measures with respect to other frequency bands. More-
over an asymmetry index was calculated for homologous elec-
trode pairs and was used for subgrouping autistic children. Three
subgroups were obtained using computer-generated cut points:
(1) the most extreme right mid-frontal asymmetry scores (RFA
group), (2) the most extreme left medial frontal asymmetry scores
(LFA group), and (3) the intermediate frontal asymmetry (IFA
group A reduction of alpha power density in anterior, central, and
posterior cortical regions of control individuals compared with
HFA subjects was detected. Moreover, the HFA group showed
a different asymmetry pattern compared to the control group.
Finally, some brain-behavior relationship were found: in particu-
lar, the LFA group reported greater symptoms of anxiety and social
stress, while the RFA group was characterized by a greater social
impairment.

DISCUSSION AND CONCLUSION
This review focuses on key findings of quantitative EEG applica-
tion in subjects with ASD. Despite conflicting results, literature
analysis suggests that QEEG may help in detecting features of
altered brain function, in linking behavior with brain activity and
in defining more phenotypically homogeneous subgroups within
the affected individuals.

Taken together, reviewed studies show that children with ASD
present several differences in power spectra, coherence, and sym-
metry measures with respect to controls. This is true both when
the signals are acquired in resting conditions – with either open
or closed eyes – and when specific tasks are performed. However,
QEEG features strongly depend on the diverse experimental set-
tings (for example EEG recorded during observation of actions or
during execution of actions) that may lead to different results. In
addition, most parameters such as power spectra, coherence, and
asymmetry, change with age and may vary according to behav-
ioral, cognitive, and comorbid features of ASD subjects. The wide
heterogeneity of the samples examined in the literature, partic-
ularly with regard to the cognitive level and age of subjects, and

the different criteria used to diagnose ASD, makes it difficult to
compare these studies and achieve unique general conclusions. In
addition, drugs could influence the EEG activity (Muroka et al.,
1992; Banoczi, 2005) with a potential impact on brain develop-
mental process, especially in the frontal regions, which are the
slowest in maturating. While some studies are more restrictive in
defining the exclusion criteria of the sample, avoiding the enroll-
ment of subjects taking medication, others do not define strict
exclusion/inclusion criteria, or at least there are not clearly men-
tioned in the participant description. Thus, the variability in med-
ication use across studies may be responsible for mixed findings
in the literature reviewed. A possible role of immune dysregula-
tion, toxicant exposures,and metabolic factors on the development
of ASD abnormalities has been suggested (for a recent review,
see Rossignol and Frye, 2012). However, the evaluation of these
issues are often not specified or considered in the studies exam-
ined, potentially accounting for variation across studies and within
subjects.

In open-eyes condition, the differences between ASD and TD
are more pronounced. Studies performed in an eye-open rest con-
dition present some replicated finding, i.e., the constant increase
on delta power in ASD with respect to controls and the decrease
in high frequency, especially alpha in childhood and adolescents
(Cantor et al., 1986; Chan et al., 2007; Stroganova et al., 2007;
Pop-Jordanova et al., 2010), but also some contradictory results.
The power of alpha band in ASD, with respect to typical controls,
was found to be reduced (Cantor et al., 1986; Chan et al., 2007),
unchanged (Stroganova et al., 2007), or even increased (Math-
ewson et al., 2012) in different studies. A greater level of alpha
amplitude reflects the inhibition of non-essential activity and
consequently a better performance on the task (Klimesch et al.,
2007) that could be explained by the neural efficiency hypothesis
(Doppelmayr et al., 1998).

Also, the degree of asymmetry was found either broad-band
decreased in ASD (Cantor et al., 1986) or leftward increased
(Stroganova et al., 2007). This latter study also showed a symmet-
ric mu rhythm, which was paradoxically asymmetric in healthy
controls. The analysis of coherence between and within hemi-
spheres in ASD subjects revealed an increased (Cantor et al., 1986)
or reduced finding (Mathewson et al., 2012).

Several demographic and clinical differences characterize the
samples involved in the above-mentioned studies, which may in
part explain the conflicting results. In particular, the age range
varies among the studies considered: young children (Cantor et al.,
1986; Stroganova et al., 2007) children and adolescents (Chan
et al., 2007), and adults (Mathewson et al., 2012) were respectively
enrolled. Moreover, the cognitive level of ASD children displays
a wide range of abilities: low functioning (Cantor et al., 1986),
both high and low functioning (Stroganova et al., 2007), and only
high-functioning (Chan et al., 2007; Mathewson et al., 2012) ASD
subjects were evaluated.

Since QEEG indices are related to brain maturation and devel-
opment (Clarke et al., 2001), the age represents a critical factor in
the interpretation of results.

In typical development children low frequencies tend to
decrease with age from childhood to adulthood while high fre-
quencies increase (Gasser et al., 1988a). As regards coherence
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it broad-band increases with age (Gasser et al., 1988b). Autistic
children seems to have a late maturation as they show more slow-
wave and less alpha activity, as well as greater coherence than the
age-matched typical controls. As coherence increases with age in
TD subjects, in adulthood coherence values became comparable
between ASD and TD groups (Murias et al., 2007; Mathewson
et al., 2012).

In addition, EEG activity is influenced by level of cognitive abili-
ties: in fact, Thatcher et al. (2005) showed that absolute EEG power
is positively correlated with full scale, verbal, and performance IQ,
while coherence is negatively correlated with these scores.

The comorbidity between ASD and other psychiatric or neuro-
logical disorders is a common feature of ASD clinical manifestation
(Simonoff et al., 2008). The presence of an additional non-ASD
disorder represents a potential confounding factor in EEG research
that frequently hasn’t been taken into account in the interpretation
of results. Thus, future exploration into the EEG presentations
of subjects with comorbid psychopathology versus ASD singly
may be of seminal importance for a better knowledge of the ASD
biological underpinnings.

In closed-eyes condition, results are even more contradictory
both in terms of power and coherence (Murias et al., 2007; Coben
et al., 2008; Pop-Jordanova et al., 2010; Mathewson et al., 2012).
Except for the study of Pop-Jordanova et al. (2010), which do
not define the cognitive level, all these studies enrolled high-
functioning individuals. In addition, two studies (Murias et al.,
2007; Mathewson et al., 2012) have been performed on adults,
whereas one investigation (Coben et al., 2008) on scholar children
and another (Pop-Jordanova et al., 2010) on pre-scholar children.
This suggests again that the different age range of the subjects par-
ticipating to the different studies may at least in part influence the
results. Moreover, the different findings of Murias et al. (2007) and
Mathewson et al. (2012) on adult subjects (with respect to both
alpha power and coherence) may in part be due to the different
methodological approach. By considering all the 128 electrodes
in computing power spectrum and coherence, both a decrease in
power and coherence in alpha band (Murias et al., 2007), and no
differences (Mathewson et al., 2012) were detected. Therefore, the
analysis of neural networks with higher spatial resolution seems
to allow a thinner characterization of brain activation and con-
nectivity. Source localization using software like LORETA used in
the study by Chan et al. (2011b) can also be useful to increase the
spatial resolution of EEG.

In closed-eyes condition the increase in slow-way activity is
more related to theta than delta. Moreover there is an increase
in beta frequencies from childhood to adulthood, which is not
observed in open-eyes condition (Murias et al., 2007; Coben et al.,
2008). Increase of beta activity is associated with a strengthening
of sensory feedback in static motor control when movement has to
be resisted or voluntarily suppressed (Lalo et al., 2007; Zhang et al.,
2008). In children with ASD the increased beta activity in closed-
eyes condition may reflect the difficulty in motor and sensorial
regulation that they present in this situation.

With regards to coherence, it seems that increases with age such
as controls: in fact, it is decreased in childhood and adolescence
and become equal or increased in adulthood.

Although the exact meaning of changes in SP and coherence in
ASD children is not easy to understand, in resting state condition,

both dysfunction of general state of arousal or of more spe-
cific systems of cognitive processing may explain these findings.
However, by correlating brain activity findings with behavioral
measures, Mathewson et al. (2012) showed that cognitive function
and modulation might influence QEEG also at rest.

Acquiring data while children perform specific tasks allows
having a better characterization of the link between behavior
and brain activation, although the possibility to drive defini-
tive conclusions is limited due to the small number of stud-
ies and of sample size. Differences between ASD subjects and
controls during tasks mainly involve high frequencies, alpha,
beta, and gamma, which have been found increased (Orekhova
et al., 2007; Sheikhani et al., 2009; Lushchekina et al., 2012) in
ASD population, regardless of the type of task. Moreover some
authors also found an increase in coherence during tasks, in
ASD with respect to control, supporting the hypothesis of an
enhanced functional connection between cortical networks (over-
connectivity) at the basis of the aberrant behaviors observed in
autism.

In literature, moreover, QEEG was used for subtyping ASD
subjects (Dawson et al., 1995; Sutton et al., 2005), suggesting that
some QEEG parameters may correlate with different behavioral
phenotype The identification of subgroups of subjects with differ-
ent QEEG profiles could contribute to increase the homogeneity
of ASD samples, with the aim to detect specific developmental
time course, treatment responses, and possibly pathophysiological
underpinnings.

In addition, due to the fact that brain activation and QEEG
measures are strictly dependent on age, it is very important evalu-
ating developmental processes in autism. QEEG, in fact, may show
different developmental patterns in infants with high and low risk
for ASD, and could be therefore used as a promising endopheno-
type for early diagnosis in at-risk children (Tierney et al., 2012).
Non-linear techniques, such as entropy (Bosl et al., 2011) have also
been used at this end. This technique, like also fractal dimension
or phase coupling (Sheikhani et al., 2007; Thatcher et al., 2009;
Ahmadlou et al., 2010; Bosl et al., 2011), is appealing not only
in order to characterize autistic brain, but also to obtain potential
biomarkers of the disorder, not otherwise detectable with common
linear methods.

Overall, it is important to underline that QEEG activity com-
ponents may also have some individual characteristics that dif-
ferentiate each subject. The assessment of these features has a
crucial importance for establishing a QEEG “baseline,” which may
be different for each person.

New advanced analysis methods such as entropy or clus-
ter analysis could be useful to identify autistic subgroups with
specific neurophysiological characteristics, providing in this way
different brain endophenotypes, which may benefit from dif-
ferent intervention strategies. Thus, this sort of metrics on
the brain’s function could be used, in the future, to develop
personalized treatments (for example by using connectivity-
guided neurofeedback), and evaluate the effects of therapies
through quantitative measures of brain activity. Also in this
case, source localization is extremely important: in fact, vari-
ation of brain activity in a specific brain area can be a
quick and objective indicator to monitor the effect of the
treatment.
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