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Integrase strand-transfer inhibitors (INSTIs), such as raltegravir (RAL), elvitegravir, or
dolutegravir (DTG), are efficient antiretroviral agents used in HIV treatment in order to
inhibit retroviral integration. By contrast to RAL treatments leading to well-identified
mutation resistance pathways at the integrase level, recent clinical studies report several
cases of patients failing DTG treatment without clearly identified resistance mutation in
the integrase gene raising questions for the mechanism behind the resistance. These
compounds, by impairing the integration of HIV-1 viral DNA into the host DNA, lead to
an accumulation of unintegrated circular viral DNA forms. This viral DNA could be at the
origin of the INSTI resistance by two different ways. The first one, sustained by a recent
report, involves 2-long terminal repeat circles integration and the second one involves
expression of accumulated unintegrated viral DNA leading to a basal production of viral
particles maintaining the viral information.
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INTRODUCTION

Although both the incidence and the number of AIDS-related deaths decreased since 1997 and
2006, respectively, AIDS remains a global health issue. Since the beginning of the pandemic, more
than 35 million of people died. In 2014, the World Health Organization had estimated that 36.9
million people living with HIV, including 2.6 million of children below 15 years old. Moreover,
more than 5000 new infections occur each day all over the world. Due to the high morbidity and
mortality, many efforts have been made to discover efficient inhibitors of HIV replication.

After the entry of HIV into the target cell, reverse transcription occurs, coupled to both
uncoating and nuclear import, leading to the conversion of viral RNA into linear double stranded
viral DNA (for a review, see Campbell and Hope, 2015). During this step, high mutation frequency
due to the lack of a 3′ to 5′ exonuclease proofreading allows an extensive genomic heterogeneity
(Hu and Hughes, 2012).

Integrase (IN), released from the viral particle, catalyses the insertion of the resulting viral linear
DNA into the host cell genome during the integration step. This process involves two consecutive
reactions catalyzed by IN: the 3′-processing (3′-P) and the strand-transfer (ST) reactions (for a
review, see Delelis et al., 2008b). The 3′-P consists in an endonucleolytic cleavage at each viral
DNA end ensuring the positioning of viral DNA ends in the active site necessary for the ST
step, consisting in their insertion in the cellular genome. Once integrated, the viral DNA, named
provirus, is the starting point of the post-integrative steps from transcription to release of infectious
viral particles. The integration step is crucial in the overall HIV-1 replication cycle since (i) it
ensures the stability of the viral information and (ii) the provirus is described to be the sole template
for an efficient viral transcription responsible in turn for the synthesis of new infectious viral
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particles (for a review, see Vandegraaff and Engelman, 2007). Due
to its central role in HIV-1 replication, many inhibitors targeting
the integration step have been developed since the end of the
1990s (for a review, see Park et al., 2015).

In the beginning of the development of anti-integrase
inhibitors, two classes of drugs were investigated: integrase
binding inhibitors (INBI) and integrase strand-transfer inhibitors
(INSTI) (Zouhiri et al., 2000) (for a review, see Egbertson,
2007). These two classes were distinct from their mechanism
of action. INBI inhibited the interaction of IN to viral DNA
and INSTI targeted the ST step. To date, only INSTI were
successfully developed to treat patients. Among these inhibitors,
raltegravir (RAL) and elvitegravir (EVG) belongs to the first
generation of INSTI (Figure 1). Unfortunately, the genetic
barrier of these inhibitors has been revealed to be low, illustrated
by the emergence of different pathways of resistance, thus
prompting the development of second generation inhibitors. To
date, dolutegravir (DTG) is the only second generation INSTI
approved by the U.S. Food and Drug Administration (FDA)
(Figure 1), and has been shown to inhibit efficiently viral resistant
strains to RAL and EVG (Hare et al., 2011).

Nevertheless, it is important to note that INSTIs do not lead
to the disappearance of the viral genome. Unintegrated viral
DNA (uDNA) strongly accumulated in the infected cells under
INSTI treatment (Svarovskaia et al., 2004). uDNA is composed
of different forms of viral genomes; linear or circular. More
particularly, two circular genomes can be quantified in infected
cells, harboring either 1 or 2 long terminal repeat (LTRs) named
1- and 2-LTR circles, respectively. To date, uDNA is considered to
be a by-product of reverse transcription without significant role

FIGURE 1 | Strand-transfer (ST) inhibitors and mechanism of action.
Chemical structures of the three integrase strand-transfer inhibitors (INSTIs)
approved by FDA. The common INSTI structure indicated includes (i) a triad of
coplanar oxygen atoms chelating a pair of divalent metal ions (Mg2+), (ii) an
halogenated phenyl ring (brown) invading the pocket natively occupied by the
viral DNA extremity, and (iii) a linker (blue) of variable length and flexibility which
separates these two parts. The IN catalytic residues of the catalytic triad
chelating the two Mg2+ are indicated. The two structural part of INSTIs are
involved in weak interactions with IN residues, depending on the INSTI
considered.

in HIV-1 replication. Even if transcription of both multi-spliced
and single or unspliced RNA from uDNA has been observed,
only transcription of some accessory proteins, such as nef, vpr,
and rev has been reported (for a review, see Sloan and Wainberg,
2011). However, uDNA accumulation under INSTI treatment
could have important consequences in terms of persistence and
expression of HIV-1 genomes.

In this review, we focus on the integration inhibition and in
particular on different escape pathways to these inhibitors. We
discuss the importance of resistance mutations but also of the
role of uDNA that could explain the emergence of viral strains
resistant to INSTIs compounds.

INTEGRASE AND ITS CATALYTIC
ACTIVITIES

All retroviruses involved the integration step for efficient
replication. Consequently, IN is a highly conserved protein and
represents a common feature of the retrovirus family. HIV-
1 IN is a 288-amino acids protein (32 kDa) produced by
the maturation of the Gag-Pol precursor by the viral protease
inside the viral particle (Asante-Appiah and Skalka, 1999).
Three canonical domains can be described: (i) the N-terminal
domain (amino acids 1–49) (Zheng et al., 1996; Lee et al.,
1997b; Carayon et al., 2010), that contains a zinc-binding
motif, favoring multimerisation of the protein (Engelman et al.,
1993); (ii) the C-terminal domain (amino acids 213–288) that
is mainly involved in the stability of the IN-DNA complex; and
(iii) a catalytic or core domain that displays a stable dimeric
organization (Goldgur et al., 1998; Maignan et al., 1998; Chen
et al., 2000; Laboulais et al., 2001; Wang et al., 2001; Cherepanov
et al., 2005a; Hare et al., 2010a) encompassing the three highly
conserved acids residues constituting the catalytic triad: Asp64,
Asp116, and Glu152; referred as the DDE motif responsible of
the chelation of the divalent metal ions Mg2+ or Mn2+ (Delelis
et al., 2008b; Hare et al., 2012). This catalytic triad is involved in
all IN activities as described below.

It is important to note that the IN catalytic activities are
ensured through the catalytic triad and the multimerisation of
the protein. Previous reports demonstrate the importance of the
multimeric state to ensure the proper catalytic activities of the
protein (Engelman et al., 1993; van den Ent et al., 1999). For
example, Zn2+ enhances the Mg2+-dependent activity of IN by
promoting its multimerisation and cooperativity of DNA-binding
(Lee et al., 1997a; Cherepanov et al., 2005a). Several independent
studies reported two distinct oligomeric states responsible for IN
activity: (i) dimers of IN responsible of the 3′-processing activity
(Deprez et al., 2000, 2001; Faure et al., 2005; Guiot et al., 2006;
Baranova et al., 2007; Delelis et al., 2008a) and (ii) dimers of
dimers involved in the ST reaction (Li and Craigie, 2005; Li et al.,
2006).

In vitro, the binding of retroviral INs on their cognate
substrate, i.e., the LTR extremity, does not seem to require a
specific sequence. Nevertheless, Prototype Foamy virus 1 (PFV-
1) IN, the model of HIV-1 IN from a structural point of view,
displays a higher affinity for its cognate sequence compared to a
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random sequence (Delelis et al., 2008a). This observation could
be explained by a higher solubility of PFV-1 IN compared to
HIV-1 IN. Indeed, even if the oligomeric state depends on IN
concentration, less aggregates was found in PFV-1 IN purification
compared to HIV-1 IN. This could favor a better fixation of
IN monomers and/or dimers to the detriment of aggregates in
the case of PFV-1 IN and then increase the number of specific
IN/DNA complexes requiring the correct positioning of IN on
its sequence (Delelis et al., 2008a). In vitro, the monitoring of
the IN binding onto oligonucleotide (ODN) mimicking the viral
DNA have shown cooperativity mediated by the Zn2+ motif in
the N-terminal domain only in the presence of the specific ODN
and Mg2+ (Carayon et al., 2010). The highly conserved terminal
5′-CA dinucleotide is critical for the 3′-P activity (Leavitt et al.,
1992; Brown et al., 1999), but the length of the viral attachment
sequence (att) involved in the formation of the IN competent
complex is not precisely determined. First, previous studies have
shown that the terminal 12 base pairs were involved in HIV-
1 IN/DNA specific contacts (Masuda et al., 1998). A recent
study based on the PFV-1 IN structure complexed to its cognate
sequence, revealed specific contacts between IN and DNA on
the last 10 nucleotides from the LTR extremity, and non-specific
interactions on the 17 last nucleotides (Hare et al., 2010a).

Four activities are ensured by IN. 3′-P and ST activities are
the two main activities described both in vitro and in vivo. Both
reactions require the full-length protein, the integrity of the
catalytic triad and a metallic cation (Mn2+ or Mg2+) (Delelis
et al., 2008b). 3′-P reaction, corresponding to a nucleophilic
attack by a water molecule on the viral DNA, is highly
specific and strictly requires the CA-dinucleotide sequence, just
before the terminal GT dinucleotide that is removed during
the reaction (Esposito and Craigie, 1998). Thus, this reaction
ensures the maturation of both viral DNA ends necessary for
the subsequent reaction, ST. In an infected cell, the 3′-P reaction
is efficient since the linear DNA from the reverse transcription
is immediately cleaved by IN after its formation (Munir et al.,
2013). Interestingly, in the case of PFV-1, the 3′-P occurs only
on the 3′-LTR whereas the 5′-LTR is not involved in this
process (Juretzek et al., 2004) (for a review, see Delelis et al.,
2004). The consequence of this asymmetrical maturation on
the overall integration process catalyzed by PFV-1 IN remains
elusive.

The resulting 3′-processed DNA is then used as a substrate
for the integration process. During this reaction, the nucleophilic
agent is constituted by the 3′-OH of the 3′-processed DNA end
(Li and Craigie, 2005). ST reaction, performed preferentially
by a dimer of IN, corresponds to the integration of one DNA
extremity. This half-site ST reaction can be easily recorded
in vitro using ODN or long substrate DNA (Sinha et al., 2002;
Sinha and Grandgenett, 2005; Li et al., 2006; Benleulmi et al.,
2015). Concerted integration involves the integration of two
viral DNA extremities in the same location leading to the 5-bp
duplication (in the case of HIV-1) of the sequence flanking the
integration site, and is catalyzed by a tetramer of IN (dimer of
dimer) (Lesbats et al., 2008; Benleulmi et al., 2015). This overall
process actually corresponds to the full-site integration process
that occurs in vivo and can be performed in vitro by recombinant

IN and purified PIC (Faure et al., 2005; Sinha and Grandgenett,
2005).

A third activity of IN, requiring the full length protein, has
been identified by several independent groups and consists in
a specific endonucleolytic activity of IN onto a short ODN
mimicking the palindromic sequence found at the LTR-LTR
junction of 2-LTRc (Delelis et al., 2005, 2007; Shadrina et al., 2014;
Zhang et al., 2014). This reaction occurs symmetrically on the two
DNA strands, at the CA position involved in the 3′-P reaction.
This reaction is also highly specific using a plasmid harboring the
LTR-LTR junction (Delelis et al., 2007). Importantly, this activity
has been recently reported to occur during HIV-1 replication
(Thierry et al., 2015). Finally, disintegration can be considered
to be the reverse of the ST reaction. However, this reaction was
only observed in vitro and can be performed by IN lacking the
N-terminal or the C-terminal domain, in contrast to the three
above-mentioned activities (Gerton and Brown, 1997; Leh et al.,
2000; Zhang et al., 2013).

Integrase interacts with numerous host cell proteins, such as
HSP60, BAF (Barrier-to-autointegration factor), HMG I(Y), INI-
1 (Integrase interactor 1), and Gemin2 (Kalpana et al., 1994;
Li et al., 2000; Parissi et al., 2001; Lin and Engelman, 2003;
Hamamoto et al., 2006; Mathew et al., 2013). These partners
modulate HIV-1 replication by direct or indirect interactions
with IN, not exclusively at the integration step but also at post-
integrative steps in the case of INI-1 (Mathew et al., 2013). The
main cellular partner of HIV-1 IN is LEDGF/p75 (for a recent
review Debyser et al., 2015). LEDGF/p75 interacts directly with
IN and has a major role in the integration efficiency. LEDGF/p75
greatly enhances both 3′-P, ST and concerted viral integration
(Cherepanov et al., 2003; Llano et al., 2006; Botbol et al., 2008;
Engelman and Cherepanov, 2008; Maillot et al., 2013; Fadel
et al., 2014). Moreover, LEDGF/p75 has been reported to have
major role in post-integration step by silencing expression of
the provirus by maintaining histone occupancy at the HIV-1
promoter thanks to its interaction with Spt6 and Iws1 (Gerard
et al., 2015). Due to the central role of LEDGF in the overall
replication process, many efforts are under investigations to
impair the LEDGF/p75 interaction.

TARGETING HIV-1 IN

Due to the crucial role of IN in HIV-1 replication and considering
the absence of cellular counterpart, IN represents an important
target to treat HIV infection. Two main strategies are investigated
to develop inhibitors: (i) catalytic inhibitors targeting 3′-P or ST
reaction and (ii) non catalytic inhibitors targeting IN/LEDGF
interactions.

Inhibitors targeting the catalytic site or other regions involved
in the binding of DNA substrate were the first to be developed.
This family includes nucleic acids or nucleotide-based inhibitors
(Mazumder et al., 1997; Pinskaya et al., 2004), peptides (Sourgen
et al., 1996), small organic polycyclic compounds (Robinson et al.,
1996; Deprez et al., 2004) and impair the binding of IN to
the viral DNA end. However, only inhibitors that preferentially
or specifically target the ST reaction have reached clinical use,
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belonging to the INSTI family. To date, from a chemical point
of view, nine classes can be determined among INSTIs, based on
their scaffolds (for a review, see Li et al., 2015). RAL, the first anti-
integrase inhibitor approved by FDA in 2007 (Grinsztejn et al.,
2007; Summa et al., 2008), was followed by EVG in 2012 and
DTG in 2013, the latter belonging to the second generation of
INSTI (for a review, see Serrao et al., 2009) (Hare et al., 2011). All
these compounds target the IN/DNA complex and not IN alone
(Espeseth et al., 2000).

Raltegravir, EVG, and DTG share a structure in two moieties
joined by a linker (Figure 1). The first one contains three oxygen
atoms chelating the metallic cations indispensable for the IN
catalytic activities. The second one, the halogenated benzyl group,
interacts with the G:C base pair of the viral DNA end, preceding
the terminal adenine, and with residues 145 and 146 of IN. This
interaction leads to the displacement of the terminal adenine of
the 3′-processed DNA from the active site. Furthermore, INSTI
binding competes with the binding of the target DNA in the active
site (Espeseth et al., 2000; Maertens et al., 2010) (for a review, see
Engelman and Cherepanov, 2012).

Raltegravir and EVG, the latter being given with a
pharmacokinetic booster, such as cobicistat, demonstrated
their strong efficacy to counteract HIV-1 replication even in
highly therapy antiretroviral-experienced patients (Steigbigel
et al., 2008; Marchand, 2012). This efficacy is similar for HIV-2
in the case of RAL (Charpentier et al., 2011; Ni et al., 2011).

However, RAL and EVG treatments lead to resistance caused
by mutations in IN gene, involving for instance the Q148/G140
and N155/E92 pathways (Cooper et al., 2008; Malet et al., 2008;
Shimura et al., 2008; Delelis et al., 2009). A third pathway
involving the Y143 residue has been specifically described for
RAL (da Silva et al., 2010; Delelis et al., 2010). While IN
polymorphism has low impact on INSTI susceptibility when no
associated to a resistance mutation (Van Baelen et al., 2008;
Low et al., 2009), some mutations such as S119R have been
shown to increase the resistance to INSTIs when combined to
the primary mutations Y143C, Q148H, and N155H (Hachiya
et al., 2015). Otherwise, secondary non-polymorphic mutations
are selected according to the observed resistance pathway
(Rhee et al., 2008). Primary resistance mutations confer a
selective advantage explaining their emergence (Quercia et al.,
2009) but can be associated with different IN activity defects
(Marinello et al., 2008; Delelis et al., 2009), depending on
the nature of the residue substituted. For example, Y143R/C
mutations lead to a similar decrease in 3′-P activity while the
ST activity of the Y143C mutant is more reduced compared to
the Y143R mutant (Delelis et al., 2010). Secondary mutations
have been described to increase the INSTI resistance, such
as the E92Q mutation associated with the Y143 or N155H
pathways, or to restore the defect of activity due to the
primary mutation, exemplified by the G140S that leads to a
recovery of the activity of the Q148H mutant (Fransen et al.,
2009; Huang et al., 2013). Interestingly, some mutations in the
reverse transcriptase or protease can compensate the decrease
of IN activity due to primary mutations (Buzon et al., 2010a),
highlighting the functional cooperation between IN and other
viral proteins.

Similar susceptibilities between PFV-1 and HIV-1 INs,
coupled with the PFV-1 structure, allowed to obtain information
for a better comprehension of mechanisms involved in resistance
(Valkov et al., 2009; Hare et al., 2010a).

Structures of PFV-1 intasome, complexed with INSTIs,
confirmed the importance of the halogenated benzyl group, as
well as the three oxygen atoms allowing complete octahedral
coordination of both Mg2+ in the active site (Hare et al., 2010a,b,
2011).

Raltegravir interaction was observed with the Y212 residue
of PFV-1 (equivalent to the Y143 in HIV-1), its oxadiazole ring
laying π interactions with the aromatic ring of tyrosine. Loss
of this interaction in the mutants of the Y143 pathway can
explain emergence of resistant mutants belonging to the Y143
pathway (Hare et al., 2010b). Structural studies highlight that,
in the context of R224H mutant of PFV-1 (equivalent to the
N155H mutant in HIV-1), an interaction occurs between the
histidine and the phosphate group of the terminal adenine (in
terminal 3′ position of the processed viral DNA). RAL was
shown to be inefficient to abolish this distinctive interaction
thus explaining the resistance of the N155H mutant (Hare et al.,
2010b).

Finally, the resistance of the Q148H mutant was explained by
the need for large and energetically unfavorable conformational
changes to allow RAL binding (Hare et al., 2010b). The rapid
emergence of pathways involved in resistance of RAL and EVG
demonstrated that both RAL and EVG have a low genetic barrier.

SECOND GENERATION INSTIs

To impair these resistance pathways described previously, INSTIs
belonging to the second generation, such as DTG, have been
developed. DTG has proven its efficacy in naive patients
when combined with nucleotide reverse transcriptase inhibitors
(NRTIs) with non-inferiority efficiency compared to RAL (Raffi
et al., 2013; Walmsley et al., 2013). Furthermore, the VIKING
trial (Eron et al., 2013; Castagna et al., 2014; Akil et al., 2015)
reported the efficacy of DTG when administrated to patients with
virological failure due to the emergence of primary mutations
conferring resistance to RAL and EVG. However, the same study
reported that DTG was less efficient concerning mutants of the
Q148 pathway (Eron et al., 2013; Castagna et al., 2014; Akil
et al., 2015). To date, no pathway leading to DTG resistance
has been highlighted by in vitro selection. Only some mutations
in the C-terminal domain of IN have been reported to confer
a moderate resistance to DTG (Anstett et al., 2015; Cutillas
et al., 2015). The study of the susceptibility to DTG of the
mutants resistant to the first generation of INSTI confirmed
its highest genetic barrier (Underwood et al., 2012; Canducci
et al., 2013). The intrinsic stability of DTG onto the IN/DNA
complex mainly explains the higher efficacy of DTG compared
to RAL and EVG. Indeed, the dissociation half-time for RAL
and EVG are 8.8 and 2.7 h, respectively, compared to 71 h for
DTG. Structural studies using PFV-1 reported that DTG binding
is similar to other INSTIs belonging to the first generation (Hare
et al., 2011), i.e., that the three coplanar oxygen atoms allow the
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chelation of Mg2+ cations, while the halogenated group competes
with the binding of the 3′-processed end (Hare et al., 2010a).
However, some features characterized the DTG binding to the
IN/DNA complex. DTG is characterized by a straighter structure
compared to RAL and EVG which enables the deeper penetration
of this compound into the space released by the movement of
the terminal adenine of the 3′-processed DNA leading to more
stable interactions with the adjacent cytidine (Hare et al., 2011).
This explains why mutations at position G118 confer resistance
to DTG (Malet et al., 2014; Munir et al., 2015). Moreover, van
der Waals interactions between the two-fluoro atom of DTG and
the Cγ and Cδ atoms of the E221 residue (equivalent to the
E152 in HIV-1) (Hare et al., 2011) and between the four-fluoro
atom of DTG and the C6 of the guanine are closer to those
involved with RAL and EVG. In a general manner, structural
study indicates a greater adaptability of DTG, compared to RAL
and EVG, to the structural modifications induced by the mutants
from the first INSTI generation (Hare et al., 2011; DeAnda et al.,
2013).

Other second generation INSTIs are under development.
Cabotegravir (GSK1265744), showing a similar structure to DTG,
is under phase II clinical testing and was shown to be efficient
in the reduction of the viral load (for a review, see Spreen
et al., 2013). In vitro assays demonstrated its efficiency to impair
replication of resistant mutants from the first generation with
the notable exception of the mutants belonging to the Q148
pathway (Yoshinaga et al., 2015). The intrinsic properties of
cabotegravir allow formulation of injectable nanosuspension in
order to develop a long-acting antiretroviral treatment (Spreen
et al., 2013).

NON-CATALYTIC IN INHIBITORS

Anti-IN inhibitors were first focused on the inhibition of
catalytical activities. However, due to the emergence of viral
strains resistant to INSTIs, compounds with another mode of
action were developed. Interestingly, the IN binding domain
(IBD) over-expression leads to a decrease in HIV-1 integration
efficiency by a competition with the endogenous LEDGF (De
Rijck et al., 2006). The essential role of LEDGF in HIV-
1 integration mentioned above and the determination of the
structural determinants involved in IN/LEDGF interaction allow
to define a therapeutic target (Cherepanov et al., 2005a,b;
Emiliani et al., 2005; Christ and Debyser, 2013). Several
peptides, derived from the IBD, were efficient to impair
IN oligomerization and thus prevented its catalytic activities
(Hayouka et al., 2007; Al-Mawsawi et al., 2008). Moreover,
inhibition efficiency increased when cyclic peptides were used
(Hayouka et al., 2010a,b). Other peptides were developed to
specifically impair IN oligomerization belonging to the “shiftides”
family (Kessl et al., 2009; Maes et al., 2012). A similar
approach, based on the design of peptides impairing IN/LEDGF
interaction but targeting LEDGF, was employed. Expression of
these peptides using lentiviral vectors was efficient to inhibit
viral replication without cellular toxicity (Desimmie et al.,
2012).

Screenings of existing or virtual chemical libraries, as well
as the development of compounds based on the IN/LEDGF
interface, have been performed (Du et al., 2008; Hou et al.,
2008; De Luca et al., 2009, 2010; Christ et al., 2010, 2012; Fan
et al., 2011; Peat et al., 2012). Several molecules have been shown
to be efficient under the micromolar range (EC50 < 100 nM)
(Christ et al., 2012; Fader et al., 2014) and are now referred to as
LEDGINs, NCINIs (non-catalytic site IN inhibitors) or ALLINIs
(Allosteric IN inhibitors). A common feature of these compounds
is the presence of an acetic acid mimicking the D366 residue of
LEDGF, the latter involved in the IN interaction using the D170,
H171, and T174 residues (for a review, see Demeulemeester
et al., 2014). These inhibitors have been described to display
three modes of action. First, they inhibit HIV-1 integration
by impairing the IN/LEDGF interaction (Christ et al., 2010).
Second, they can favor the formation of inactive IN multimers
(Desimmie et al., 2013; Le Rouzic et al., 2013). By enhancing IN
multimerization, LEDGINs interfere with IN catalytic activities
in an allosteric manner, leading to 2-LTR circles accumulation
similarly to RAL treatment (Hayouka et al., 2007). Finally, they
are also able to target the post-integrative steps leading to inactive
viral particles formation with aberrant capsids (Balakrishnan
et al., 2013; Sharma et al., 2014). Interestingly, only inhibitors
targeting integrase catalytic activities lead to 2-LTR circles
accumulation, which is not observed with NCINIs such as GS-B
(Al-Mawsawi et al., 2008). These results highlight that 2-LTR
circles accumulation is not systematically observed when HIV-1
integration is inhibited, but depends on inhibition of IN catalytic
activities. The lack of 2-LTR circles accumulation after NCINIS
treatment could be explained by their impact on viral DNA
synthesis.

Among the NCINIs, the compound BI-224436 is under phase
I clinical testing after showing its efficacy in in vitro assays, in
infected cells and in experiments on animals (Fenwick et al.,
2014). This compound has shown no cross-resistance with
RAL and EVG (Fenwick et al., 2014). The resistant mutants
G140S/Q148H are efficiently inhibited by BI-224436 (Fenwick
et al., 2014). Conversely, the resistant mutants selected in vitro
by BI-224436 (for example A128N) were sensitive to RAL and
EVG. These promising results obtained by these inhibitors and
the fact that there is no cross-resistance with INSTIs provides an
opportunity to use them in combination for future treatments.
However, due to differences in the residues of HIV-2 IN involved
in the interaction with LEDGF and targeted by these compounds,
their development has to be specifically investigated for HIV-2 to
overcome this natural resistance (Christ et al., 2010; Desimmie
et al., 2012).

Emergence of IN mutations, leading to INSTI resistance,
constitutes the classical way for the virus to escape when INSTIs
are used. However, recent clinical trials involving DTG treatment
in naïve patients did not report any resistance mutation in the
cases of virological failure (Raffi et al., 2013; Walmsley et al.,
2013; Molina et al., 2014). This observation suggests another
pathway of escape used by the virus to replicate under INSTI
treatment. One hypothesis is based on recent studies underlying
the roles of unintegrated HIV genome, accumulated under INSTI
treatment.
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UNINTEGRATED VIRAL DNA

As mentioned previously, integration of the viral genome is a
central step in the HIV-1 replication life cycle since it ensures
the stability of the viral information and efficient transcription.
The provirus is considered to be the sole template for HIV-
1 expression. It is important to note that, impairing HIV-1
integration does not lead to the disappearance of HIV-1 genomes
in infected cells but to the formation of uDNA instead of
integrated DNA (Chun et al., 1997; Sharkey et al., 2000). Multiple
forms of uDNA could be detected as linear (issued from the
reverse transcription step and precursor of the provirus) or
circular forms. Two circular forms exist, harboring 1 or 2-LTR,
and are called 1 and 2-LTR circles, respectively. 1-LTR circles
(1-LTRc) and 2-LTR circles (2-LTRc) are mainly detected in the
nucleus of the infected cell. The origin of such circular forms is
diverse but the common point is that these circular forms derived
from linear viral DNA and are found in the nucleus of infected
cells (Munir et al., 2013). The circular nature confers them a
greater stability compared to the linear viral DNA, the latter being
quickly degraded. They are only diluted by cell division (Sharkey
et al., 2000; Butler et al., 2002; Pierson et al., 2002; Munir et al.,
2013). Due to their apparent stability, they were used as a marker
of recent infections even if they can persist for a long time in cells
with a weak division rate such as macrophages (Sharkey et al.,
2000; Gillim-Ross et al., 2005).

1-LTRc are mainly due to recombination between each LTR
by homologous recombination (HR) despite several conflicting
reports. Viral extremities are recognized by the MRN complex
(MRE11/RAD50/NBS1), activated by the ATM pathway as soon
as the reverse transcription step occurs, and then supported by
the proteins of the HR pathway (Kilzer et al., 2003). However,
1-LTRc quantification in cells deficient in MRE11 protein did
not result in a decrease of 1-LTRc amount (Sakurai et al., 2009).
Indeed, a significant proportion of 1-LTRc has been shown to be
generated in the cytoplasm during reverse transcription (Munir
et al., 2013).

2-LTRc are formed by circularization of linear DNA by the
non-homologous end-joining (NHEJ) pathway (Kilzer et al.,
2003). A peculiar feature shared by many retroviruses is the
presence of a palindromic sequence at the LTR-LTR junction
(Delelis et al., 2005, 2007). The amount of 1-LTRc can reach
20–30% of the viral genome whereas 2-LTRc amount is quite
low in wt infection (2–5% of total viral DNA) (Munir et al.,
2013). uDNA has been considered for a long time as a by-
product of reverse transcription with no significance in the
overall process of HIV-1 replication (Sloan and Wainberg, 2011).
However, it is important to note that inhibition of HIV-1 IN
catalytic activities lead to an accumulation of uDNA and more
particularly circular viral DNA forms (Munir et al., 2013). While
the 1-LTRc representativeness can reach more than 50% of
total vDNA, the greater increase is observed with the amount
of 2-LTRc, that can be increased by a 10-fold factor (Munir
et al., 2013). Consequences of such accumulation are yet poorly
described.

Despite their efficiency to inhibit integration, it is worthy to
note that viral replication still occurs under INSTI treatment,

raising the question of the viral genome originating this residual
replication.

DIFFERENT WAYS TO BYPASS INSTIs
EFFECTS

uDNA Expression
The role of uDNA expression in the HIV-1 cycle is still a matter of
debate. Indeed, uDNA displays the same genomic organization as
the provirus. However, all reports agreed that uDNA expression
is weaker compared to the provirus. Interestingly, a recent report
clearly demonstrates that viral production could be detected
from uDNA after reactivation of resting CD4+ T cells (Chan
et al., 2016). Depending on the experimental settings, expression
of uDNA is comprised between 10 and 70% of the proviral
expression (Stevenson et al., 1990; Iyer et al., 2009). Transcription
from uDNA leads to the synthesis of unspliced and spliced viral
RNAs but spliced RNAs are found in a greater amount (Wu
and Marsh, 2001, 2003; Kelly et al., 2008). The low amount of
Rev protein, that is essential for the late replication stages, has
been shown to contribute to the mechanisms leading to a weaker
replication from uDNA compared to proviral DNA. Indeed,
infections of cells expressing Rev lead to an efficient replication
from uDNA (Sloan et al., 2011). However, uDNA expression
occurs during infection of different cell lines using INSTIs or
an IN catalytic mutant. In this case, viral gene expression of
early genes such as Tat can be highlighted by the transcriptional
activity of Tat on LTRs (Wu and Marsh, 2001; Gelderblom et al.,
2008; Kelly et al., 2008). Among proteins translated from fully
spliced mRNA, only Nef was directly observed (Sloan et al.,
2011). Furthermore, it has been clearly demonstrated that, under
specific conditions, HIV-1 replication could be evidenced without
integration (Gelderblom et al., 2008; Trinite et al., 2013). More
particularly, Chan et al. (2016) demonstrate that, in resting
CD4 T cells, uDNA leads to the production of infectious viral
particles. Several parameters influence uDNA expression. For
example, in conditions where integration is impaired (catalytic
mutant IN or INSTI treatment), Vpr protein enclosed within
viral particles promotes uDNA transcription leading to Tat
expression (Trinite et al., 2013). Furthermore, HDAC inhibitors
lead to an increase of uDNA expression, suggesting a chromatin
organization of uDNA (Kantor et al., 2009). However, the
detection of transcripts does not ensure the presence of the viral
proteins since a post-transcriptional control could be involved,
as suggested by a controversial report studying SLFN11 (Li et al.,
2012).

Expression of uDNA is mainly due to circular genomes.
Indeed, linear DNA can be excluded due to its weak stability in
the cell. Both 1-LTRc and 2-LTRc have been shown to lead to
infectious viral particles when transfected into HeLa cells even
with a low efficiency compared to the proviral DNA (Cara et al.,
1996). Although a specific type of mRNA transcribed from 2-
LTRc has been detected (Brussel and Sonigo, 2004), it has been
reported that uDNA expression from 1-LTRc is stronger than
from 2-LTRc (Cara et al., 1996). A recent report sustains this
observation since uDNA expression is similar after infection
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of cells deficient in 2-LTRc formation (Thierry et al., 2016).
The precise contribution of these two circular forms to uDNA
expression needs to be further investigated.

Due to the strong accumulation of circular forms under
INSTIs treatment, uDNA could play an important role in viral
expression and could lead to a weak viral particle synthesis
bypassing the INSTIs treatment (Figure 2). Despite their great
efficiency to inhibit the integration step, INSTIs are unable to
impair the late stages of the viral replication cycle, and thus they
can’t prevent new infections. Clinical studies have not only shown
that low-level viremia can persist in patients with undetectable
plasma HIV RNA (Maldarelli et al., 2007) including patients
treated with RAL-based regimens (Baroncelli et al., 2015), but
also that RAL intensification is unable to suppress this persistent
residual viremia and is associated with an increase in circular
uDNA (Dinoso et al., 2009; Buzon et al., 2010b; Gandhi et al.,
2010; McMahon et al., 2010; Hatano et al., 2011; Vallejo et al.,
2012). An evolution of HIV-1 envelope sequences despite potent
antiviral therapy has previously been shown (Gunthard et al.,
1999; Martinez et al., 1999) with the emergence of a NRTI
resistance mutation (Martinez et al., 1999). Such ongoing basal
replication could occur from uDNA and, taking advantages of the
inability of INSTIs to impair new infections, mutations leading

to INSTI resistance could occur during reverse transcription in
newly infected cells.

INSTI Reversibility
As mentioned previously, inhibition of integration by INSTIs is
dependent from the residence time of the compounds on the
complex formed by the drug, IN and viral DNA. Stability of
the INSTI on the complex depends on the compounds studied,
since different discordant half-life have been described for RAL,
EVG, and DTG (8.8, 2.7, and 71 h, respectively) (Hightower et al.,
2011).

It has been recently reported that removal of RAL from
cell medium until 72 h post-infection leads to viral resumption
mediated by de novo integrated events (Thierry et al., 2015).
This viral resumption was due to the cleavage of the LTR-LTR
junction of 2-LTRc followed by their integration in the host
cell genome indicating that 2-LTRc, accumulated under INSTIs
treatment, can be used as a substrate for integration process.
Moreover, the observation of the 5 bp duplication associated
with these integration events, considered as HIV-1 integrase
mediated integration hallmark, underlined the specificity of these
events. These results also highlight the biological relevance of
the endonucleolytic in vitro activity of IN onto the LTR-LTR

FIGURE 2 | Fate of unintegrated viral DNA (uDNA). Linear viral DNA from the reverse transcription step can have several behaviors. Linear DNA is integrated in
the host cell genome or circularized leading to 1 or 2-long terminal repeat (LTR) circles. Basal transcription from uDNA could lead to the production of infectious viral
particles bypassing the effects of ST inhibitors.
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junction, in the specific context of 2-LTRc accumulation caused
by INSTI treatment. These data highly suggest that 2-LTRc can
be considered as a back-up molecule.

Based on this result, one can speculate that, infection of non-
dividing cells such as quiescent CD4-T cells can lead to 2-LTRc
accumulation under INSTI treatment. Indeed, the presence of
uDNA in macrophages infected with a non-integrative virus has
been detected up to 30 days post-infection (Kelly et al., 2008).
After cellular activation, 2-LTRc could be used as a substrate for
integration. To explain how this activity could be used in the
virological context several hypothesis can be advanced. The first
one is that the LTR-LTR junction maintained IN in an active form
due to the rather stability, in non-dividing cells, of uDNA. The
second one, supported by several reports, involves a faint viral
production from uDNA probably due to its peculiar regulation
compared to the provirus (Gelderblom et al., 2008; Chan et al.,
2016; Thierry et al., 2016). In this case, the faint viral production,
under INSTI condition, could lead to a weak infection of newly
cells providing newly complex formed by 2-LTR circles and IN
in these cells. If these hypotheses are confirmed, 2-LTRc could
be considered as a reservoir for HIV-1 integration and thus a
molecule involved in pre-integration latency.

CONCLUSION

Development of the INSTIs compounds is a great advance
in treatment-naïve and experienced HIV-infected patients.

Inclusion of INSTI in the regimen is considered as a first-line
therapy for treatment-naïve infected patients. However, despite
their efficacy to decrease the viral load, one must not only
monitor the emergence of resistance mutations, but also take
care of the presence of uDNA that could be a source of viral
escape, either by integration of 2-LTRc or by expression of uDNA
at the origin of basal replication. The quantitative importance
of these uDNA forms under treatment with catalytic integrase
inhibitors highlights the issue of reservoirs cells. In particular, the
key DNA forms in latent reservoirs such as quiescent memory
CD4-T cells, the only reservoir where long-term persistence of
HIV-1 in patients receiving optimal antiretroviral therapy has
been repeatedly described, could not be only integrated DNA but
could involve uDNA. Treatment with a non-catalytical integrase
inhibitor in the context of antiretroviral therapy could thus have
different implications in terms of reservoirs.

These alternative pathways making use of uDNA to escape
INSTI treatment emphasizes the need to understand the nature
of the viral DNA forms in the various reservoirs cells. This
knowledge would fuel the research developing curative strategies
that cannot bypass the question of reservoirs.
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