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Dopamine (DA) plays an essential role in the control of coordinated movements.
Alterations in DA balance in the striatum lead to pathological conditions such as Parkinson’s
and Huntington’s diseases (HD). HD is a progressive, invariably fatal neurodegenerative
disease caused by a genetic mutation producing an expansion of glutamine repeats and
is characterized by abnormal dance-like movements (chorea). The principal pathology is
the loss of striatal and cortical projection neurons. Changes in brain DA content and
receptor number contribute to abnormal movements and cognitive deficits in HD. In
particular, during the early hyperkinetic stage of HD, DA levels are increased whereas
expression of DA receptors is reduced. In contrast, in the late akinetic stage, DA levels
are significantly decreased and resemble those of a Parkinsonian state. Time-dependent
changes in DA transmission parallel biphasic changes in glutamate synaptic transmission
and may enhance alterations in glutamate receptor-mediated synaptic activity. In this
review, we focus on neuronal electrophysiological mechanisms that may lead to some
of the motor and cognitive symptoms of HD and how they relate to dysfunction in DA
neurotransmission. Based on clinical and experimental findings, we propose that some of
the behavioral alterations in HD, including reduced behavioral flexibility, may be caused by
altered DA modulatory function. Thus, restoring DA balance alone or in conjunction with
glutamate receptor antagonists could be a viable therapeutic approach.
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INTRODUCTION
Huntington’s disease (HD) is an inherited, autosomal domi-
nant, and progressive neurodegenerative disorder caused by a
mutation in the huntingtin gene (HTT) resulting in an abnor-
mally long polyglutamine (CAG >40) repeat (The Huntington’s
Disease Collaborative Research Group, 1993). It is character-
ized by involuntary dance-like movements (chorea) in the early
stages, then akinesia and dystonia in the late stages. Other symp-
toms include psychiatric alterations and cognitive deterioration
(Bonelli and Hofmann, 2007). Cognitive disturbances affecting
learning, memory processes, as well as attention and executive
function emerge early in the course of the disease and become
prominent in the advanced stages (Brandt and Butters, 1986;
Peinemann et al., 2005; Wang et al., 2012). A juvenile form of
HD also occurs, generally when the length of CAG repeats is >60.
These patients develop epileptic seizures and intellectual decline
associated with a more rapidly progressing course of the disease
(Andrew et al., 1993; Seneca et al., 2004).

In HD, the most striking neuropathology is massive loss of
medium-sized spiny neurons (MSNs) in the striatum (Vonsattel
and Difiglia, 1998), as well as laminar thinning and white mat-
ter loss in the cerebral cortex (Rosas et al., 2006). Other structures
such as the globus pallidus, thalamus, hypothalamus, subthalamic
nucleus (STN), and substantia nigra also are affected, partic-
ularly in the later stages (Kremer et al., 1990; Heinsen et al.,
1996; Petersen et al., 2005). Although the symptomatology of

HD is classically attributed to striatal and cortical neuronal loss,
studies have demonstrated that neuronal dysfunction precedes
cell death (Tobin and Signer, 2000; Levine et al., 2004). For exam-
ple, psychiatric, cognitive, and motor symptoms can and often
appear alongside cellular and synaptic alterations in the absence
of neuronal loss (Vonsattel and Difiglia, 1998).

This review examines the role of striatal dopamine (DA) in
HD. We focus on neuronal electrophysiological mechanisms that
may lead to some of the motor and cognitive symptoms of HD
and how they relate to dysfunction in DA neurotransmission.
Data from human and animal studies are reviewed with particu-
lar emphasis on alterations of the DA system and how they relate
to behavioral inflexibility. The central thesis is that the major
symptoms of HD can be associated with biphasic changes in DA
transmission and its modulatory role on glutamate (GLU) recep-
tor function. Thus, treatments of HD symptoms should take into
account and be tailored according to the temporal progression
of neurotransmitter and receptor changes. Before elaborating on
these changes, we first need to understand the role of the DA sys-
tem and its interactions in normal neuronal function, particularly
in the striatum.

STRIATAL ORGANIZATION
GABAergic projection MSNs comprise 90–95% of striatal neu-
rons (Kita and Kitai, 1988) and receive glutamatergic inputs pri-
marily from the cortex as well as specific thalamic nuclei (Kemp
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and Powell, 1971; Smith et al., 2004). There are two striatal pro-
jection pathways (Figure 1), each with distinct MSN populations
expressing different DA receptors and neuropeptides (Graybiel,
2000). The direct pathway consists of MSNs expressing DA D1
receptors, substance P, and dynorphin (Vincent et al., 1982; Haber
and Nauta, 1983; Gerfen et al., 1990). It projects monosynap-
tically to the substantia nigra pars reticulata and the internal
segment of the globus pallidus (Albin et al., 1989; Gerfen et al.,
1990). The indirect pathway is composed of MSNs that express
D2 receptors, adenosine A2A receptors, and enkephalin (Gerfen
et al., 1990; Schiffmann and Vanderhaeghen, 1993; Steiner and
Gerfen, 1999), and projects to the external segment of the globus
pallidus (Gerfen, 1992; Bolam et al., 2000). The external seg-
ment of the globus pallidus, in turn, projects to the STN (Albin
et al., 1989). Electrophysiological studies using mice expressing
enhanced green fluorescent protein (EGFP) in MSNs enriched
with D1 or D2 DA receptors demonstrated that, although direct
and indirect pathway neurons display similar basic membrane
properties, indirect pathway MSNs are more excitable and thus
may be more susceptible to abnormal GLU release or receptor
dysfunction (Kreitzer and Malenka, 2007; Cepeda et al., 2008).
This is partially due to a difference in dendritic surface area, where
indirect pathway MSNs have fewer primary dendrites than direct
pathway MSNs, suggesting that the increased excitability of indi-
rect pathway MSNs partially results from a higher membrane
input resistance due to their more compact morphology (Gertler
et al., 2008; Flores-Barrera et al., 2010). The remaining 5–10%

FIGURE 1 | Striatal projection pathways. In the direct “GO” pathway,
MSNs expressing DA D1 receptors receive inputs from
intratelencephalically projecting (IT) neurons in the cortex (Ctx) and project
to the substantia nigra pars reticulata (SNr) as well as the internal segment
of the globus pallidus (GPi). In the indirect “STOP” pathway, MSNs
expressing DA D2 receptors receive inputs from pyramidal tract (PT)
neurons in the Ctx and project to the external segment of the globus
pallidus (GPe). The GPe, in turn, projects to the STN and SNr. Both D1 and
D2 MSNs also receive afferents from the substantia nigra pars compacta
(SNc) and thalamus (Thal).

of striatal neurons are interneurons, which are divided into two
main groups: GABAergic interneurons, which provide feedfor-
ward inhibition to MSNs (Tepper et al., 2008); and cholinergic
interneurons, which are responsible for acetylcholine levels in the
striatum (Bolam et al., 1984; Zhou et al., 2002).

The striatum can also be described as a mosaic of two
functionally distinct compartments. The striosome compart-
ment is enriched with μ-opioid receptors while the sur-
rounding extrastriosomal matrix contains neurons that express
acetylcholinesterase, somatostatin, and calbindin (Gerfen, 1984).
GABAergic striosomal neurons innervate DA neurons in the sub-
stantia nigra pars compacta and reticulata, essentially forming a
third striatal output pathway (Gerfen, 1984; Jimenez-Castellanos
and Graybiel, 1989). Since interactions between striosomes and
the extrastriosomal matrix are involved in drug-induced stereo-
typies (Saka et al., 2004; Canales, 2005), it has been proposed that
the striosomal system may change the set point of DA neurons
(Canales and Graybiel, 2000). This, in turn, could modulate DA
neurotransmission in the basal ganglia and alter the occurrence of
stereotypic behaviors (Graybiel, 2000). As discussed later, patho-
logical changes in the striosome compartment could underlie
dysregulation of DA release in the early stages of HD.

MODULATORY ROLE OF DA IN THE BRAIN
The modulatory effects of DA are better understood if consid-
ered as a representation of an inverted “U” shaped function. This
concept suggests that too much or too little DA perturbs cognitive
function (Williams and Castner, 2006; Vijayraghavan et al., 2007).
Furthermore, maximum efficiency in behavioral and cognitive
performance is a result of maintaining an optimal DA level, where
imbalances cause decreased efficiency (Dickinson and Elvevag,
2009). As an extension, we can say that in the dorsal striatum,
increases or decreases in DA alter motor behavior.

One of the main functions of DA in the brain is to enhance the
signal-to-noise ratio. This can be achieved by at least 3 different
mechanisms: (1) DA can modulate neuronal firing in a selective
manner. For example, studies in awake rats show that iontophore-
sis of DA induces excitation of motor-related, and inhibition of
non-motor-related neurons (Pierce and Rebec, 1995). Also, the
effect of D1 agonists on neuronal firing can be excitatory or
inhibitory depending on the membrane potential of the cell. At
hyperpolarized potentials, D1 receptor activation is inhibitory,
whereas at depolarized potentials, it is excitatory (Hernandez-
Lopez et al., 1997). (2) DA affects responses evoked by GLU
in a differential manner. Responses evoked by activation of α-
amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA)
receptors are reduced by DA, whereas responses evoked by acti-
vation of N-methyl-D-aspartate (NMDA) receptors are increased
by DA (Cepeda et al., 1993; Levine et al., 1996; Cepeda and
Levine, 1998). In general, activation of D1 receptors enhances
GLU responses whereas activation of D2 receptors decreases these
responses (Cepeda et al., 1993). (3) DA also can select excita-
tory inputs to the striatum (Flores-Hernandez et al., 1997) and
thus act as a filter for less active inputs (Bamford et al., 2004).
These effects are probably mediated by presynaptic D2 receptors
located on corticostriatal GLU terminals (Cepeda et al., 2001).
DA modulation of neurotransmitter release also is influenced by
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endocannabinoid production and retrograde activation of presy-
naptic corticostriatal CB1 receptors (Maejima et al., 2001; Patel
et al., 2003; Kreitzer and Malenka, 2005).

DA AND BEHAVIORAL INFLEXIBILITY
Behavioral inflexibility is defined as a failure to shift between
behaviors and the inability to adapt behavior to changes in
environmental stimuli. Lack of behavioral flexibility depends
on the inability to stop ongoing behaviors and is mediated
by a discrete cortico-basal ganglia circuit (Aron and Poldrack,
2006; Aron et al., 2007). Although behavioral routines are
often stereotyped through learning and result in habit forma-
tion, extremely repetitive behaviors (stereotypies) appear to be
prominent symptoms in various neuropsychiatric disorders and
addiction. These range from impaired behavioral inhibition in
attention deficit/hyperactivity disorder and inability to suppress
emotions in autism spectrum disorders, to repetitive twitches
or vocalizations in Tourette’s syndrome, movement fixation in
obsessive-compulsive disorder, punding due to over-medication
of Parkinson’s disease patients, and may include some of the
involuntary movements in HD. Despite the wide range of behav-
ioral phenotypes in these disorders, central features of these
behaviors are DA-dependent and related to striatal dysfunction
(Frank et al., 2004; Beste et al., 2010).

Changes in the DA system have long been implicated in human
cognitive inflexibility. However, patients with DA impairments
do not show deficits on all tasks that assess cognitive flexibil-
ity. Specifically, DA function in the striatum involves set-shifting
between object features but is not involved in shifting between
abstract rules (Cools et al., 2006; Dang et al., 2012). Patients with
disorders of the basal ganglia, such as in Parkinson’s Disease or
HD, routinely show cognitive inflexibility as demonstrated by
impaired performance on the Wisconsin Card Sorting Test and
attentional set-shifting tests (Owen et al., 1993; Lawrence et al.,
1996).

In the striatum, different subregions are involved in specific
behavioral strategies and learning. Rats with lesions of the lat-
eral striatum have deficits in motor skill learning and arbitrary
stimulus-response associations (Reading et al., 1991; Devan et al.,
1999), whereas those with lesions of the medial striatum have
impairments in spatial and reversal learning (Whishaw et al.,
1987; Pisa and Cyr, 1990). Furthermore, the medial striatum plays
a role in switching between navigational strategies in response to
changes in the environment (Mizumori et al., 2000). The dorso-
medial striatum also is necessary for maintaining and executing
a new strategy. Failure to maintain a proper response pattern by
shifting strategies results in behavioral inflexibility (Ragozzino,
2007). Additionally, reversal learning and trait impulsivity in mice
is associated with DA receptor density in the midbrain (Dalley
et al., 2007; Lee et al., 2009). Taken together, these studies indicate
that the striatum and DA neurotransmission play a crucial role in
determining behavioral flexibility.

Stereotypies in rodents are an extreme form of behavioral
inflexibility that manifest as rigid, repetitive movements. These
include excessive grooming, sniffing, rearing, as well as locomo-
tion, and may be more manifest during social isolation and stress
(Ridley, 1994). Stereotypies present as behavioral abnormalities

with little flexibility and high repetition, often similar to addictive
states. Drugs that act on the DA system can produce stereo-
typed behaviors in a dose-dependent manner. For example, low
doses of amphetamine and cocaine induce repetitive locomotion
while high doses cause more focal stereotypy, such as sniffing and
grooming (Cooper and Dourish, 1990). Striatal cocaine adminis-
tration also results in impaired reversal learning (Stalnaker et al.,
2009), further indicating that aberrant DA transmission results in
behavioral inflexibility. The intensity of drug-induced stereotyp-
ies is determined by striatal DA, where rats with high extracellular
DA levels demonstrate complex stereotypic behavior, including
syntactic grooming (Berridge et al., 2005). In fact, robust stereo-
typies in rats similar to those induced by amphetamine and
cocaine can be induced by striatal infusions of D1 and D2 receptor
agonists (Waszczak et al., 2002).

It would be misleading, however, to think that only DA alter-
ations are involved in behavioral inflexibility. In fact, the capacity
for attentional shifts and inhibition of ongoing motor activity
by salient stimuli seems to depend on thalamostriatal inputs
onto cholinergic interneurons (Ding et al., 2010). These aspiny
interneurons have rich terminal connections and are implicated
in stereotypic behavior as well as associative learning (Aosaki
et al., 1994, 2010). For example, striatal application of the mus-
carinic receptor antagonist pirenzepine impairs reversal learning,
indicating that these cholinergic receptors play a role in the
shifting of response patterns (Tzavos et al., 2004). Thus, cholin-
ergic interneurons may also play an important role in the loss
of cognitive and behavioral flexibility in pathological conditions
including HD.

DA ALTERATIONS IN HUNTINGTON’S DISEASE
Alterations in DA function play a significant role in the motor
and cognitive symptoms of HD. Here we will discuss changes
in DA transmission that may underlie the neuropathological
changes in HD. There is evidence from studies in HD patients
that increased DA release induces chorea while a reduction in DA
leads to akinesia (Bird, 1980; Spokes, 1980), thus giving rise to
the biphasic movement symptoms of early and late HD. The idea
that aberrant DA signaling underlies behavioral abnormalities
was first proposed as a predictive test when asymptomatic off-
spring of individuals with HD developed dyskinesias in response
to levodopa (L-DOPA) administration (Klawans et al., 1970). The
hypothesis was that stimulation of DA receptors was involved in
the production of dyskinesias as a basic mechanism of chorea.
Early studies indicating an involvement of the DA nigrostriatal
pathway in HD demonstrated increased levels of DA in post-
mortem brains of HD patients and showed that DA-depleting
agents and DA receptor agonists can be used with therapeutic
benefit (Bird, 1980; Spokes, 1980). Later, neurochemical studies
of HD patients suggested that increased DA occurs in the early
stages of the disease (Garrett and Soares-Da-Silva, 1992) while
postmortem studies of late-stage HD patients showed reduced
levels of caudate DA and homovanillic acid, the principal DA
metabolite (Bernheimer et al., 1973; Kish et al., 1987). Thus, it
was thought that DA levels in HD may show biphasic, time-
dependent changes, with early increases followed by late decreases
(Table 1).
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Table 1 | DA in human HD and animal models.

Early stage Late stage

HUMAN HD

DA levels in
striatum

Increased Decreased
Garrett and
Soares-Da-Silva, 1992

Bernheimer et al., 1973;
Kish et al., 1987

DA receptor
density

Decreased Decreased
Joyce et al., 1988;
Richfield et al., 1991; Van
Oostrom et al., 2009

Antonini et al., 1996;
Weeks et al., 1996

DAT Not determined Decreased

Backman et al., 1997;
Ginovart et al., 1997;
Suzuki et al., 2001

ANIMAL MODELS

DA levels Increased* Decreased

*tgHD rat model
Jahanshahi et al., 2010

Hickey et al., 2002;
Johnson et al., 2006;
Callahan and Abercrombie,
2011

DA receptors Decreased Decreased

Cha et al., 1998; Bibb
et al., 2000; Ariano et al.,
2002; Petersen et al.,
2002b

Pouladi et al., 2012

DAT Not determined Not determined

During the early phase of HD, neuropathological studies have
shown that discrete islands of neuronal loss and astrocytosis
appear in the striosomes almost exclusively, whereas in the late
phase, cell loss increasingly occurs in the matrix compartment
(Hedreen and Folstein, 1995). As MSNs from the striosomes
project to the substantia nigra pars compacta, it may be that
early degeneration of these inhibitory neurons produces hyper-
activity of the DA pathway, contributing to chorea and other
early clinical manifestations of HD. Studies using positron emis-
sion tomography, autoradiography, and markers for pre- and
postsynaptic neurons have observed reduced striatal D1 and
D2 DA receptor density, even in asymptomatic HD patients,
further indicating that DA signaling is disrupted early in HD
(Joyce et al., 1988; Richfield et al., 1991; Van Oostrom et al.,
2009). These observations have been confirmed by imaging
studies, which reported reduced striatal D1 and D2 receptors
in both HD patients and asymptomatic HD mutation carri-
ers (Antonini et al., 1996; Weeks et al., 1996). There also is a
progressive reduction of D1 and D2 receptor binding in the tem-
poral and frontal cortices (Ginovart et al., 1997; Pavese et al.,
2003). Striatal and cortical loss of DA receptors in presymp-
tomatic and early stage HD patients have been correlated with
early cognitive decline, which may reflect altered synaptic plastic-
ity and lead to deficits in cognitive processes such as attention,

executive function, learning, and memory (Backman and Farde,
2001).

Studies also have examined DA transporter (DAT) density as
both an index of DA neurotransmission and a correlate of clin-
ical status (Hwang and Yao, 2011). DAT is a key regulator of
DA receptor stimulation and, in turn, affects locomotion and
cognitive function. DA transmission is initiated by DA release
from the presynaptic terminal and is terminated by its reuptake
through DAT. In fact, postmortem analyses of brains from HD
patients have shown reduced striatal DAT binding and reduced
levels of vesicular monoamine transporter type-2, which is used
to estimate the extent of DA innervation (Backman et al., 1997;
Ginovart et al., 1997; Suzuki et al., 2001). This indicates that
the reduction in DAT binding likely results from a loss of DA
nigrostriatal terminals, consistent with the view that the dys-
tonic late-stage symptoms of HD may arise in part from critical
reductions in DA input.

DA IN ANIMAL MODELS OF HD
Animal models of HD have been available for more than 30
years, beginning with the first neurotoxin-based models in which
chemically-induced striatal lesions reproduced HD neuropathol-
ogy, providing insights into the mechanisms underlying striatal
cell death (Difiglia, 1990; Brouillet et al., 1999). After the dis-
covery of the HD gene, transgenic and knock-in rodent models
were generated. These better replicated the processes and mecha-
nisms underlying the slow development of the human disease far
beyond endpoint analyses. We have previously reviewed the phe-
notypic properties of a number of these models (Cepeda et al.,
2010; Raymond et al., 2011). Here, we will briefly describe those
that have been used for electrophysiological studies examining
DA neurotransmission.

The most widely used mouse model for electrophysiology
is the R6/2 line, a transgenic fragment model expressing exon
1 of HTT with ∼150 CAG repeats (Mangiarini et al., 1996).
R6/2 mice display a very rapidly progressing phenotype, simi-
lar to the juvenile form of HD in humans. In these mice, overt
symptoms begin to appear at 5–7 weeks of age and become
fully manifest after 8 weeks. The R6/1 transgenic mouse model,
with ∼110 CAG repeats and less mutant HTT expression than
the R6/2, displays similar phenotypic alterations but in a more
protracted form (Mangiarini et al., 1996). HD mouse models
with full-length mutant HTT include the yeast artificial chro-
mosome model with 128 CAG repeats (YAC128) and the bac-
terial artificial chromosome model with 97 CAG/CAA repeats
(BACHD) (Slow et al., 2003; Gray et al., 2008). These mod-
els show a longer development of the HD phenotype and thus
are generally studied at the early (1.5–2 months of age) and
late stages (12 months of age), corresponding roughly to peri-
ods of hyperkinesia and hypokinesia, respectively. In contrast to
transgenic mice where the mutant HTT is randomly inserted
into the mouse genome, knock-in mouse models have the CAG
expansion inserted into the mouse huntingtin gene, which allows
gene expression in its appropriate genomic and protein con-
text (Menalled, 2005). The transgenic rat model of HD (tgHD)
carries a truncated huntingtin cDNA fragment with 51 CAG
repeats (Von Horsten et al., 2003). The tgHD model and most
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knock-in mouse models also manifest a slow progression of the
HD phenotype.

There is evidence that DA release is reduced in transgenic
mouse models in the late stages of the disease, consistent with
what is proposed to occur in human HD. There is a progressive
reduction in striatal DA levels in both R6/2 and YAC128 mice con-
comitant with motor abnormalities (Hickey et al., 2002; Johnson
et al., 2006; Callahan and Abercrombie, 2011). Furthermore,
motorically asymptomatic R6/2 mice show a significant reduc-
tion in DA metabolites by 4 weeks of age (Mochel et al., 2011).
Deficits in DA levels and/or release have been attributed to either
impaired vesicle loading or a reduction in DA reserve pool vesi-
cles available for mobilization (Suzuki et al., 2001; Ortiz et al.,
2010). The tgHD rat model displays an increase in striatal DA lev-
els and DA neurons at the early symptomatic stage in two main
sources of striatal DA input, the substantia nigra pars compacta
and the ventral tegmental area (Jahanshahi et al., 2010). However,
these rats also show impaired DA release dynamics, as demon-
strated by a reduction in evoked release of DA (Ortiz et al., 2012).
Since these results from animal models are not entirely consis-
tent, future studies on DA release dynamics in HD will be needed
to parse out changes in DA levels that occur in the early and late
disease stages (Table 1).

In agreement with analyses of HD patients, striatal D1 and D2
receptors also are compromised in HD mouse models. Striatal D1
and D2 receptor binding is reduced early, with deficiencies in DA
signaling seen in R6/2 and R6/1 mice (Cha et al., 1998; Bibb et al.,
2000; Ariano et al., 2002; Petersen et al., 2002a). Significant reduc-
tions also are seen in mRNA levels of striatal D1 and D2 receptors
in late stage YAC128 mice, but not in BACHD mice (Pouladi et al.,
2012). It is unclear why these differences occur between the two
full-length models.

The traditional view of behavioral abnormalities in HD pro-
poses that hyperkinetic choreic movements in the early stages
result from initial dysfunction of D2-enriched indirect pathway
MSNs, while hypokinesia during the late stages is a consequence
of further defects in D1-enriched direct pathway MSNs (Spektor
et al., 2002). This view has been challenged by recent data
obtained in experimental mouse models of HD (YAC128 and
BACHD) crossed with mice expressing EGFP in direct and indi-
rect pathway neurons. In the early hyperkinetic stage (1.5 months
of age), direct pathway MSNs receive more excitatory inputs
than control animals, whereas indirect pathway MSNs are not
as affected. In contrast, in the late hypokinetic stage (12 months
of age) both pathways receive less excitatory inputs compared to
controls (André et al., 2011b; Galvan et al., 2012).

DAT dysregulation also may mediate key alterations in DA
neurotransmission and behavior in HD mouse models. A marked
reduction of DAT immunoreactivity is observed in the stria-
tum of R6/2 mice (Stack et al., 2007). DAT knock-out mice
present not only neuropathological but also behavioral hallmarks
of HD, i.e., elevated striatal extracellular DA levels, selective MSN
degeneration, and locomotor hyperactivity (Giros et al., 1996;
Jones et al., 1998; Cyr et al., 2006; Crook and Housman, 2012).
Additionally, studies of DAT knock-out mice crossed with a
knock-in mouse model of HD demonstrate an increase in stereo-
typic behavior that emerges at 6 months of age before returning

to baseline by 12 months. Wild-type mice crossed with these
knock-in HD mice merely demonstrate a similar but less pro-
nounced biphasic pattern of locomotor alteration (Cyr et al.,
2006). Thus, it can be concluded that enhanced DA transmis-
sion in HD mice exacerbates the behavioral phenotype of the
disease.

DA AND SYNAPTIC PLASTICITY IN HD
Striatal long-term depression (LTD), a long-lasting decrease in the
efficacy of GLU synapses, can be induced through high frequency
afferent stimulation or sustained postsynaptic membrane depo-
larization paired with activation of presynaptic metabotropic
GLU receptors (Calabresi et al., 1994; Kreitzer and Malenka,
2005). Additionally, acetylcholine and activation of DA D2 and
endocannabinoid CB1 receptors is necessary for LTD induction
(Wang et al., 2006; Singla et al., 2007). Induction of striatal long-
term potentiation (LTP), a long-lasting increase in the efficacy of
GLU synapses, requires activation of DA D1, NMDA, and mus-
carinic acetylcholine receptors (Calabresi et al., 1999; Kerr and
Wickens, 2001). LTD is more easily induced in the dorsolateral
and caudal striatum while LTP is more prevalent in the dorso-
medial and rostral striatum (Partridge et al., 2000; Spencer and
Murphy, 2000; Smith et al., 2001).

The 3-nitropropionic acid (3-NP) toxin model shows an
increase in NMDA receptor-dependent LTP at cortico-striatal
synapses (Akopian et al., 2008). This form of LTP is mediated by
D1 receptors and can be reversed by exogenous addition of DA
or a D2 receptor agonist. In genetic HD mouse models, DA levels
and receptor numbers are altered, resulting in impaired synaptic
plasticity. Furthermore, R6/2 mice display a significant reduction
in D1-receptor mediated LTP in the striatum (Kung et al., 2007).
Impaired LTP in the medial prefrontal cortex of presymptomatic
R6/1 mice can be reversed by D1 receptor agonists (Dallerac et al.,
2011). Additionally, layer II/III cells in the perirhinal cortex of
symptomatic R6/1 mice are unable to support LTD, which may be
a result of reductions in D2 receptor activation (Cummings et al.,
2006). Paired-pulse profiles, which are measures of short-term
plasticity, are aberrant in cortical slices from R6/1 mice. Instead of
exhibiting paired-pulse depression seen in control mice, mutants
show a more facilitatory profile. Quinpirole, a D2 receptor ago-
nist, produces a profile that resembles age-matched controls and
restores LTD (Cummings et al., 2006). Evidence that D1 receptor
agonists rescue impaired LTP while D2 receptor agonists rescue
impaired LTD show that there is much promise in therapeu-
tics targeting DA modulation of synaptic plasticity. These are
functional consequences that hold important implications for
ameliorating the cognitive deficits in HD.

As cholinergic transmission and DA are involved in both LTD
and LTP, disturbances of the DA-acetylcholine balance in synaptic
plasticity could lead to behavioral deficits. In several HD rodent
models, LTP does not occur in cholinergic interneurons. As a con-
sequence, MSNs do not display depotentiation, a process induced
by low frequency stimulation that leads to reversion of LTP and
requires activation of muscarinic receptors (Picconi et al., 2006).
This lack of depotentiation may represent a synaptic mechanism
for early behavioral abnormalities observed in HD (Picconi et al.,
2006).
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DA AND GLU RECEPTOR INTERACTIONS IN HD
Although it is unknown why MSNs preferentially degenerate
in HD, one major hypothesis has been that MSNs are more
susceptible to excitotoxicity. This theory posits that an excess
of excitatory neurotransmitters such as GLU and/or overactiva-
tion of GLU receptors, particularly the NMDA receptor, mediate
MSN neurodegeneration. Overactivity of NMDA receptors can
induce cell death through sustained neuronal membrane depolar-
ization, unchecked Ca2+ influx, and/or mitochondrial dysfunc-
tion (Difiglia, 1990; Coyle and Puttfarcken, 1993). In addition,
although DA exists in high concentrations in the striatum, studies
also suggest a toxic role for DA in which cell death is accelerated
through increases in free radical production (Hastings et al., 1996;
Jakel and Maragos, 2000; Wersinger et al., 2004; Hastings, 2009).
In striatal cultures derived from R6/2 mice, MSNs undergo DA-
mediated oxidative stress and apoptosis (Petersen et al., 2001).
Further, DAT knock-out mice are hypersensitive to 3-NP striatal
damage (Fernagut et al., 2002).

DA and GLU neurotransmission are intimately intertwined.
Understanding this interplay could help elucidate the cause of
biphasic DA changes in human HD. In animal models of HD,
biphasic changes in corticostriatal GLU transmission are char-
acterized by initial increases in GLU synaptic activity followed
by later decreases (Klapstein et al., 2001; Cepeda et al., 2003;
Joshi et al., 2009; André et al., 2011a). Early increases in GLU
are associated with cortical hyperexcitability (Cepeda et al., 2003;
Spampanato et al., 2008; Cummings et al., 2009) and loss of D2
receptors contributes to increased synaptic activity. Stimulation
of corticostriatal neurons has been shown to activate DA release
in the striatum (Nieoullon et al., 1978). In addition, DA neurons
that modulate GLU release in the corticostriatal pathway are sub-
ject to afferent GLU regulation, which is suggested by the presence
of GLU receptors on DA neurons (Meltzer et al., 1997). There is
substantial evidence for a direct cortico-nigral projection (Afifi
et al., 1974; Kornhuber et al., 1984; Naito and Kita, 1994) and
work in rodents demonstrates that this pathway both directly and
indirectly regulates the firing pattern of DA neurons (Maurice
et al., 1999; Sesack and Carr, 2002). Other studies indicate that
stimulation of GLU receptors on DA neurons increases DA release
in both the substantia nigra and in DA innervated areas (Mintz
et al., 1986; Kalivas et al., 1989; Murase et al., 1993). Thus, if DA
neuron firing is regulated by frontal cortical neurons, the activ-
ity of which is upregulated in early HD, the biphasic trends of
DA levels in early and late human HD may be correlated with the
biphasic changes of GLU release by cortical afferents. This indi-
cates that biphasic changes in DA levels during early and late HD
parallel changes occurring in GLU transmission.

In forebrain neurons, which receive both DA and GLU input,
a diminished signal-to-noise ratio can impair both motor and
cognitive functions (Kiyatkin and Rebec, 1996). Furthermore, a
reduction in DA diminishes the strength of the GLU signal above
background activity (Kiyatkin and Rebec, 1996). Recently, Hong
and Rebec (2012) developed a theoretical framework suggesting
that inflexibility rather than inconsistency is the more relevant
problem to explain changes during aging and neurodegeneration.
Dysfunction in the DA and GLU systems restricts their ability to
modulate neural noise. With aging and neurodegeneration, the

range over which DA and GLU can be modulated is decreased,
leading to dysfunctional neuronal communication, increased
neural noise, and inflexibility in brain activity (Hong and Rebec,
2012). Increased neural noise is evident in HD, appearing as a
decrease in burst activity and a loss of correlation in the firing pat-
terns of pairs of neurons in the striatum of HD mice (Miller et al.,
2008). As a consequence, behavioral adaptations in response to
environmental challenges are reduced.

DA and GLU signaling pathways can synergistically enhance
MSN sensitivity to huntingtin toxicity. Studies demonstrate that
this deleterious process occurs through D1 but not D2 receptor
activation (Tang et al., 2007; Paoletti et al., 2008) and are in agree-
ment with previous studies demonstrating that DA and D1 recep-
tor agonists enhance excitotoxicity (Cepeda and Levine, 1998;
McLaughlin et al., 1998). D1 receptor-mediated potentiation of
NMDA responses, which holds key functional consequences in
HD, has been verified in the cortex and striatum (Cepeda et al.,
1993; Wang and O’donnell, 2001; Flores-Hernandez et al., 2002).
For example, D1 receptor-induced cell death in MSNs of knock-
in HD mice is increased with pretreatment with NMDA when
compared with cells from wild-type mice (Paoletti et al., 2008). In
neurons from YAC128 mice or Q111 knock-in mice, the conver-
gence of DA and GLU signaling pathways leads to Ca2+ overload,
resulting in excitotoxic processes such as induction of mitochon-
drial depolarization and caspase activation (Cepeda et al., 2001;
Zeron et al., 2002, 2004; Tang et al., 2007; Paoletti et al., 2008).

While D1-NMDA receptor activation is thought to be neu-
rotoxic, activation of D2 receptors reduces NMDA receptor
responses and thus may be neuroprotective (Lee et al., 2002;
Bozzi and Borrelli, 2006; Blanke and Vandongen, 2009). For
example, activation of D2 receptors by quinpirole reduces the
toxicity of both NMDA and kainic acid in rat striatal neurons
(Cepeda and Levine, 1998), as well as in mesencephalic and cor-
tical neurons (Sawada et al., 1998; Kihara et al., 2002). However,
an exclusive role for D1 receptor activation in mediating MSN
degeneration is contradicted by evidence that blocking D2 recep-
tor stimulation significantly reverses DA potentiation of mutant
huntingtin-induced MSN cell death (Charvin et al., 2005). As
cultured striatal neurons can be protected by antagonism of D1
and D2 receptors, it is possible that both D1 and D2 receptor
activation might contribute to neurotoxicity (Davis et al., 2002;
Bozzi and Borrelli, 2006). Thus, the exact nature of DA and
NMDA interactions are dynamic and complex, indicating a need
for further investigation into the differential effects of D1 and D2
activation on GLU signaling in the HD striatum.

DA AGONISTS AND ANTAGONISTS AS TREATMENTS
FOR HD
Since the abnormalities in the DA system appear to under-
lie many of the behavioral symptoms of HD, DA agonists,
antagonists, and/or stabilizers may provide potential treatment
options (Table 2). Conceptually, DA stabilizers (or partial ago-
nists) increase or decrease DA receptor activity depending on the
level of DA tone. HD patients treated with aripiprazole, a par-
tial D2 receptor agonist, demonstrate improvements in chorea,
but not cognitive function (Brusa et al., 2009). A recent phase
3 clinical trial of the DA stabilizer pridopidine demonstrated
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Table 2 | Available and potential treatments.

HUMAN HD

Tetrabenazine Well-supported antichoreatic effects but frequent adverse reactions limit its usefulness (Huntington Study Group, 2006).

D2 antagonists Haloperidol: a traditional D2 antagonist; improves chorea, but does not increase functional capacity (Bonelli and Wenning, 2006).
Olanzapine and risperidone: atypical antipsychotic drugs with D2 antagonist properties; improve chorea and behavioral disturbances
(Squitieri et al., 2001; Duff et al., 2008).

D2 agonists Bromocriptine: effects are both positive and negative (Frattola et al., 1977; Caraceni et al., 1980).
Lisuride: limited positive effects (Caraceni et al., 1980; Frattola et al., 1983).
Aripiprazole: a partial D2 agonist; improves chorea but not cognitive function (Brusa et al., 2009).

Other DA drugs Pridopidine: a DA stabilizer; produces slight improvements in motor dysfunction (De Yebenes et al., 2011).
L-DOPA: possibly useful for treatment of rigidity (Racette and Perlmutter, 1998).

ANIMAL MODELS

Tetrabenazine Alleviates motor alterations and reduces striatal loss in both early and late stages (Tang et al., 2007; Wang and Morris, 2010; André
et al., 2011a).

D1 antagonist SCH23390: rescues electrophysiological changes in excitatory and inhibitory synaptic transmission in direct pathway MSNs (André
et al., 2011a).

D1 agonist SKF38393: reverses impaired LTP in the medial prefrontal cortex of presymptomatic R6/1 mice (Dallerac et al., 2011).

D2 antagonist Haloperidol: early and chronic treatment significantly reduces striatal toxicity in the tgHD rat model (Charvin et al., 2008).

D2 agonist Quinpirole: restores the ability of transgenic cortical slices to support LTD (Cummings et al., 2006).

improvements in hand movements, gait, and balance of HD
patients as defined by the unified HD rating scale (De Yebenes
et al., 2011). Although these changes fell short of the primary
efficacy threshold, the slight improvements in motor dysfunc-
tion without any deleterious side effects suggest that treatments
targeted toward DA imbalance may have therapeutic benefits.

Current treatment options for HD are limited and confined to
antidopaminergic agents for motor symptoms while there are vir-
tually no therapeutics for cognitive deterioration (Venuto et al.,
2012). Additionally, clinical results of these treatments seem con-
tradictory, possibly reflecting the dynamic and time-dependent
changes that occur in the DA system as the disease progresses
(Mochel et al., 2011). For example, both D2 agonists and antag-
onists have demonstrated clinical benefits for improvement of
HD motor symptoms (Tedroff et al., 1999; Haskins and Harrison,
2000; Brusa et al., 2009). Conventional antipsychotic drugs, such
as the D2 antagonist haloperidol, are used in clinical practice, but
they do not improve functional capacity (Bonelli and Wenning,
2006). Atypical antipsychotic drugs with D2 antagonist proper-
ties such as olanzapine, risperidone, quetiapine, and ziprasidone,
can improve chorea and impact a larger range of behavioral dis-
turbances with a reduced risk of side effects (Squitieri et al., 2001;
Bonelli et al., 2003; Alpay and Koroshetz, 2006; Duff et al., 2008).
D2 agonists like bromocriptine and lisuride have also demon-
strated therapeutic potential in HD (Frattola et al., 1977, 1983;
Caraceni et al., 1980).

As the early stages of HD may reflect a hyperdopaminergic
stage, drugs that reduce DA tone can be beneficial during the
choreic movement phase (Mochel et al., 2011). DA-depleting

agents such as tetrabenazine (TBZ), which inhibits vesicu-
lar monoamine transporter type-2 and decreases DA content
in presynaptic vesicles, have been shown to reduce chorea
(Huntington Study Group, 2006). Currently, TBZ is the only drug
formally approved for treatment of Huntington’s chorea by a
regulatory agency (Mestre and Ferreira, 2012).

In vivo and in vitro studies of animal models support a role
for DA inhibitors in protecting HD MSNs from cell death. The
rationale follows and agrees with experimental and clinical find-
ings suggesting that DA tone is elevated during the early stages
of the disease. In YAC128 mice, TBZ alleviates motor deficits and
reduces striatal loss in both early and late stages (Tang et al., 2007;
Wang et al., 2010). TBZ also rescues the increased stereotypies in
1–2 month old YAC128 and BACHD mice (André et al., 2011a).
D1 receptor antagonists rescue the changes in excitatory synap-
tic transmission of direct pathway MSNs that occur in the early
symptomatic phase of YAC128 and BACHD mice, suggesting that
tonic activation of D1 receptors may underlie early dysfunction
of D1 MSNs (André et al., 2011a). Similarly, D1 receptor antag-
onists prevent DA/GLU-induced MSN death in YAC128 mice
(Tang et al., 2007). In a lentivirus-based rat model, striatal tox-
icity is reduced by early and chronic treatment with haloperidol
(Charvin et al., 2008). However, this evidence is complicated by
the fact that haloperidol, a putative D2 receptor antagonist, also
modulates NMDA receptor function (Fletcher and Macdonald,
1993; Ilyin et al., 1996; Arvanov et al., 1997). Predictably, DA
antagonists may be more beneficial when administered with other
neuroprotective drugs such as memantine, a NMDA receptor
antagonist, as a combination therapy (Wu et al., 2006).
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HD mouse models have demonstrated the therapeutic poten-
tial of not only DA antagonists, but also DA agonists. For exam-
ple, in fully symptomatic R6/2 mice, replacement of reduced
DA levels by chronic treatment with L-DOPA yields short-
term improvements in the HD behavioral phenotype whereas
long-term treatment impairs survival and rotarod performance
(Hickey et al., 2002). Additionally, D1 receptor agonists rescue
cortical LTP impairment and deficits in synaptic plasticity of R6/1
mice (Dallerac et al., 2011), suggesting that increasing DA levels
could improve cognitive dysfunction. Since some treatments may
only be suitable early or late in disease progression, effective ther-
apies need to be temporally oriented to accommodate differential
changes in DA levels throughout the course of the disease.

CONCLUSIONS AND FUTURE DIRECTIONS
While the role of DA in Parkinson’s disease is well-established,
its role in HD is less well-understood. Although an association
between chorea and excess DA levels had long been suspected, a
causal link was not demonstrated until TBZ was shown to alle-
viate abnormal movements in HD. Other less known alterations
in early symptomatic patients, such as cognitive changes, impul-
sivity, gambling, and hypersexuality, could also associate with
perturbations of the DA system (Fedoroff et al., 1994; Stout et al.,
2001; Rosenblatt, 2007; Beglinger et al., 2008; Jhanjee et al., 2011).
TBZ can treat chorea and other early symptoms by reducing
DA, but it can also have deleterious effects on cognitive func-
tion. Understanding time- and region-dependent alterations in
DA function throughout the course of the disease will help in
discovering better therapeutic strategies. Selective manipulation
of DA-producing neurons, such as using optogenetics in animal
models and potentially in human patients, may open new and
exciting alternatives.

While much knowledge on the role of DA in HD has been gath-
ered in the past few years, many questions remain unanswered
and should be the focus of future endeavors. The traditional view
that D2 MSNs are more vulnerable in HD is beginning to change
due to emerging data from experimental animal models. Based
on evidence reviewed here, one may think that, in fact, D1 MSNs
should be more vulnerable to the HD mutation, i.e., they become
dysfunctional in the early stage of HD and D1-NMDA recep-
tor interactions enhance neurotoxicity. Therefore, the standing
question should be reformulated to ask why D1 MSNs are less

susceptible in HD. Do they have a neuroprotective mechanism
that D2 MSNs lack? Recent studies using mice expressing EGFP in
D1 or D2 cells point in that direction. For example, fluorescence-
activated cell sorting array analyses showed that the transcription
factor Zfp521, which is enriched in D1 MSNs, is anti-apoptotic
(Lobo et al., 2008). Specifically, Zfp521 promotes proliferation,
delays differentiation, and reduces apoptosis (Shen et al., 2011).

Another important question is: what causes early perturba-
tions in DA release? Is it the loss of striosome MSN projections to
the substantia nigra pars compacta, increased activity along the
cortico-nigral projection, or dysregulation of DA release due to
loss of D2 auto-receptors? On a similar note, since there are at
least two splice variants for D2 receptors, a short D2S (mostly
presynaptic) and a long D2L (mostly postsynaptic) form, which
one is reduced in early HD? In the striatum, DA D2 auto-receptor
function is mediated by synapsin III, a phosphoprotein that is
specifically involved in regulating vesicular reserve pools and
DA release in the striatum (Feng et al., 2002; Kile et al., 2010).
In brains of R6/2 mice and HD patients, there is a progressive
loss of complexins, synaptic proteins similar to syntaxin III that
are involved in synaptogenesis and modulate neurotransmitter
release (Freeman and Morton, 2004). If a similar reduction in
synapsin III occurs, this could explain increased DA transmis-
sion in early HD and a consequent loss of behavioral flexibility. In
agreement, reversal learning can be improved by increasing lev-
els of synapsin III (Laughlin et al., 2011). Thus far, it is unknown
whether or not presynaptic D2 auto- or hetero-receptors are lost
before postsynaptic receptors (Sandstrom et al., 2010). However,
selective agonists of D2 auto-receptors produce long-lasting sup-
pression of extracellular brain DA levels in vivo and could provide
promising therapeutic benefits for HD (Pifl et al., 1988).

As shown in this review, our knowledge of changes in DA
function in HD has made substantial strides, particularly after
the introduction of genetic rodent models. However, many more
questions remain. Answering these questions is within reach and
use of these animal models should help understand the early
mechanisms of striatal DA dysfunction and its role in behavioral
alterations.
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