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Conventional genotoxic anti-cancer drugs target the proliferative advantage of tumor cells
over normal cells. This kind of approach lacks the selectivity of treatment to cancer cells,
because most of the targeted pathways are essential for the survival of normal cells. As
a result, traditional cancer treatments are often limited by undesirable damage to normal
cells (side-effects). Ideal anti-cancer drugs are expected to be highly effective against malig-
nant tumor cells with minimal cytotoxicity toward normal cells. Such selective killing can
be achieved by targeting pathways essential for the survival of cancer cells, but not normal
cells. As cancer cells are characterized by their resistance to apoptosis, selective apopto-
sis induction is a promising approach for selective killing of cancer cells. Tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL) is a promising tumor-selective anti-cancer
drug. However, the congenital and acquired resistance of some cancer cell types, including
malignant melanoma cells, currently impedes effective TRAIL therapy, and an innovative
approach that can override TRAIL resistance is urgently required. Apoptosis is character-
ized by cell shrinkage caused by disruption of the maintenance of the normal physiological
concentrations of K+ and Na+ and intracellular ion homeostasis. The disrupted ion home-
ostasis leads to depolarization and apoptosis. Recent evidence suggests that depolarization
is an early and prerequisite event duringTRAIL-induced apoptosis. Moreover, diverse natural
products and synthetic chemicals capable of depolarizing the cell membrane exhibit tumor-
selective killing and TRAIL-sensitizing effects. Here, we discuss the role of depolarization
in selective killing of cancer cells in connection with the emerging concept that oxidative
stress is a critical mediator of mitochondrial and endoplasmic reticulum dysfunctions and
serves as a tumor-selective target in cancer treatment.

Keywords: depolarization, ROS,TRAIL, tumor-selective killing, sensitization, apoptosis, oxidative stress, endoplas-
mic reticulum stress

INTRODUCTION
Despite remarkable progress in cancer biology and treatment over
the past 50 years, malignant neoplasms are still highly threatening
diseases for humans, as they are frequently resistant to tradi-
tional chemotherapy, radiotherapy, and immunotherapy with a
poor prognosis. Conventional genotoxic anti-cancer drugs target
the proliferative advantage of tumor cells over normal cells. This

Abbreviations: AIF, apoptosis-inducing factor; ANT, adenine nucleotide translo-
case; Apaf-1, apoptotic peptidase activating factor 1; ATF6, activating transcription
factor 6; DADS, diallyl disulfide; DAS, diallyl sulfide; DATS, diallyl trisulfide DCFH-
DA, 2′,7′-dichlorofluorescein diacetate; DcR, decoy receptor; DHE, dihydroethidine;
DR, death receptor; ∆Ψm, mitochondrial membrane potential; EC, endothelial cell;
eIF2, eukaryotic initiation factor-2; ER, endoplasmic reticulum; ERK, extracellular
signal-regulated protein kinase; ERS, endoplasmic reticulum stress; ETC, electron
transport chain; FasL, Fas ligand; GRP78, glucose-related protein 78; IMM, inner
mitochondrial membrane; IP3, inositol-1,4,5-triphosphate; IRE1, inositol requiring
enzyme 1; JNK, Jun-N-terminal kinase; KATP, ATP-sensitive K+; KCa, calcium-
dependent K+; Kv, voltage-dependent K+; mAbs, monoclonal antibodies; MHP,
mitochondrial hyperpolarization, MMD, mitochondrial membrane depolarization;
MnTBaP, Mn(III)tetrakis(4-benzoic acid)porphyrin chloride; MPT, mitochondr-
ial permeability transition; mPTP, mitochondrial permeability transition pore;

kind of approach lacks the selectivity of treatment to cancer cells,
because most of the targeted pathways are essential for the survival
of normal cells. As a result, traditional cancer treatments are often
limited by undesirable damage to normal cells (side-effects). Ideal
anti-cancer drugs are expected to be highly effective against malig-
nant tumor cells with minimal cytotoxicity toward normal cells.
Such selective killing can be achieved by targeting pathways essen-
tial for the survival of cancer cells, but not normal cells. As cancer

mROS, mitochondrial reactive oxygen species; NAC, N -acetyl-l-cysteine; NAO,
10-N -acrydine orange; NSCLC, non-small cell lung cancer; OMM, outer mito-
chondrial membrane; OXPHOS, oxidative phosphorylation; PARAs, pro-apoptotic
receptor agonists; PEITC, β-phenyethyl isothiocyanate; PI3K, phosphoinositide-3-
kinase; PMD, plasma membrane depolarization; rh, recombinant human; ROS,
reactive oxygen species; siRNA, small interfering RNA; SMAC, second mito-
chondrial activator of caspases; SOD, superoxide dismutase; SUR, sulfonylurea
receptor; TEA, tetraethylammonium; TNF, tumor necrosis factor; TRAIL, TNF-
related apoptosis-inducing ligand; TRAIL-R, TNF-related apoptosis-inducing lig-
and receptor; TRPV1, transient receptor potential vanilloid 1; UPR, unfolded pro-
tein response; VDAC, voltage-dependent anion channel; VEGF, vascular endothe-
lial growth factor; XBP-1, X-box-binding protein-1; XIAP, X-linked inhibitor of
apoptosis protein.

www.frontiersin.org May 2014 | Volume 4 | Article 128 | 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Frontiers - Publisher Connector

https://core.ac.uk/display/82833886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Journal/10.3389/fonc.2014.00128/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2014.00128/abstract
http://www.frontiersin.org/people/u/112505
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive
mailto:suzuki.yoshihiro@nihon-u.ac.jp


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suzuki-Karasaki et al. Depolarization controls tumor-selective killing

cells are characterized by their resistance to apoptosis, selective
apoptosis induction is a promising approach for selective killing
of cancer cells.

A growing list of natural products and synthetic chemicals
exhibit tumor-selective killing effects (Tables 1 and 2). Under
optimal conditions, they exhibit considerable cytotoxicity toward
malignant cells, while sparing non-transformed cells. In addi-
tion, when applied at non-toxic concentrations, some of them
can sensitize cancer cells to tumor necrosis factor (TNF)-related
apoptosis-inducing ligand (TRAIL) cytotoxicity (Table 3). In fact,
overlapping mechanisms appear to be involved in the tumor-
selective killing and TRAIL-sensitizing effects, and the generation
of intracellular reactive oxygen species (ROS) is the most common
cellular event documented in the literature. An emerging view
is that owing to their active metabolism and oncogenic stimula-
tion, most cancer cells exhibit elevated ROS generation that makes
them more vulnerable than normal cells to additional oxidative
stress, and that such vulnerability can be exploited to selectively
kill these cells. We will discuss this concept in more detail later.
Although diverse natural and synthetic chemical compounds have
been shown to possess selective killing effects, this review focuses
on TRAIL, because TRAIL and its related substances are promising
tumor-selective anti-cancer drugs that are currently undergoing
clinical trials.

TRAIL AND CANCER CELL DEATH
Tumor necrosis factor-related apoptosis-inducing ligand is a
member of the TNF cytokine family. It binds to several distinct
receptors, death receptor (DR) 4/TRAIL receptor 1 (TRAIL-R1),
DR5/TRAIL-R2, TRAIL-R3, and TRAIL-R4 (1). Both DR4 and
DR5 contain an intracellular death domain that is essential for
the induction of apoptosis following receptor ligation. In contrast,
despite their binding to TRAIL, neither TRAIL-R3 nor TRAIL-
R4 mediates apoptosis owing to a complete or partial lack of the
intracellular death domain. These receptors are regarded as decoy
receptors (DcRs) (1, 2). TRAIL activates the extrinsic apoptotic
pathway. Binding of TRAIL to DR4/DR5 induces their oligomer-
ization and conformational changes in their death domains, result-
ing in the formation of a death-inducing signaling complex and
subsequent activation of the initial caspase, caspase-8. In turn,
activated caspase-8 activates the effector caspases, caspase-3/6/7
that execute the apoptotic process (3, 4). Activation of caspase-8
is also linked to the intrinsic (mitochondrial) apoptotic path-
way. Activated caspase-8 can cleave and activate the pro-apoptotic
Bcl-2-family molecule Bid. In turn, truncated Bid activates other
Bcl-2-family molecules, Bax and Bak, resulting in their oligomer-
ization and the formation of megachannels in the outer mitochon-
drial membrane (OMM). The release of cytochrome c through
these Bax/Bak megachannels into the cytosol induces assembly of
the apoptosome, representing the activation-platform for another
initial caspase, caspase-9. Activated caspase-9 also promotes the
activation of caspase-3/6/7, thereby providing a positive loop for
caspase activation (3). Unlike TNF-α, TRAIL has been shown to
induce apoptosis in cancer cells with minimal cytotoxicity toward
non-transformed cells (4), although under certain circumstances,
it enhances the cytotoxicity of several drugs to hepatocytes/liver
and mast cells (5–9). Thus, TRAIL is a promising agent in cancer

treatment with high selectivity. However, different cancer cell types
such as malignant melanoma, glioma, and non-small cell lung can-
cer (NSCLC) cells are resistant to TRAIL treatment despite express-
ing DRs on their cell surface. Moreover, TRAIL-responsive tumors
acquire a resistant phenotype that renders TRAIL therapy inef-
fective (10). Therefore, overcoming TRAIL resistance is necessary
for effective TRAIL therapy, and small molecules that can poten-
tiate TRAIL effectiveness are urgently required. Recently, much
progress has been made in therapeutic intervention with TRAIL-
related substances. Recombinant human TRAIL (rhTRAIL) or
agonist monoclonal antibodies (mAbs) against DR4/DR5, collec-
tively referred as to pro-apoptotic receptor agonists (PARAs), have
been subjected to clinical trials for a variety of cancer cell types,
including malignant melanoma and NSCLC cells. In addition,
diverse chemical substances including ABT-737 and SM-164 are
expected to potentiate the intrinsic death pathway by antagonizing
natural inhibitors such as FLICE inhibitory protein, Bcl-2, Mcl-1,
and survivin (11). Some recent clinical trials have demonstrated
the safety and efficiency of combined treatments with PARAs and
conventional genotoxic drugs, while the results of other clinical
trials were disappointing and showed only modest effectiveness.
PARAs such as dulanermin (rhTRAIL), mapatumumab (anti-DR4
mAb), conatumumab, CS-1008, or PRO95780 (anti-DR5 mAb), in
combination with paclitaxel, carboplatin, or bevacizumab [anti-
vascular endothelial growth factor (VEGF) mAb] were tested for
their effects toward NSCLC patients in a randomized phase II trial,
but showed only modest effects (11). Thus, induction of apoptosis
by the intrinsic pathway does not appear to be a suitable target in
the treatment of TRAIL-resistant cancer cells.

DUAL FUNCTION OF DEPOLARIZATION IN THE REGULATION
OF APOPTOSIS
Apoptosis is a fundamental physiological process characterized
by the loss of cell volume (cell shrinkage), chromatin condensa-
tion, and internucleosomal DNA fragmentation. Cell shrinkage
is a hallmark of apoptosis, which is caused by disruption of the
maintenance of normal physiological concentrations of K+ and
Na+ and intracellular ion homeostasis (12, 13). Loss of these
monovalent ions has been reported to facilitate the loss of cell
volume (apoptotic volume decrease) and caspase-3 activation
(13). Cell shrinkage requires ion transport activity across the cell
membrane, including Cl− and K+ channels. Impairment of ion
channels or transporters responsible for Na+, K+, Cl−, and Ca2+

can disrupt intracellular ion homeostasis and lead to cell mem-
brane depolarization and apoptosis. In fact, depolarization has
been shown to be an early event in the apoptosis induced by
diverse agents, including Fas, rotenone, and arsenic trioxide (14–
16), and is considered to play an important pro-apoptotic role.
In contrast, depolarization has also been shown to exhibit anti-
apoptotic effects. Various membrane-depolarizing agents, includ-
ing ouabain, tetraethylammonium (TEA), and veratridine, protect
Purkinje cells against apoptosis (17). In addition, K+ loading and
several K+ channel inhibitors protect various human tumor cells
against staurosporine-induced apoptosis. Thus, depolarization
can act in both pro-apoptotic and anti-apoptotic manners depend-
ing on the cell types and apoptotic stimuli involved. There is no
general model that can depict the dual functions of depolarization.
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Table 1 | Natural products with tumor-selective cytotoxicity.

Compounds Cancer cells Normal cells Mode of

cell death

ROS Mechanisms of cell death Reference

Wogonin Leukemia Lymphocytes Apoptosis H2O2 H2O2-PLC-Ca2+ overload-MMD-intrinsic

death pathway

Baumann

et al. (103)

MMD

Involvement of VDCC in the Ca2+ response

Wogonin Hepatoma

(HepG2)

Hepatic cells

(LO2)

Apoptosis O−2 , H2O2 ROS target Ca2+ release from ER

(IP3-sensitive channels)-Ca2+ overload

Wei et al.

(104)

MMD, AIF release

Blockade by Bcl-2 (intrinsic death pathway)

Wogonin Glioma Astrocytes Apoptosis H2O2 inhibition

by apocynin

Intrinsic death pathway Tsai et al.

(105)ERS (GRP78, GRP94, calpain I, eIF2

phosphorylation)

EGCG Chondrosarcoma Chondrocytes Apoptosis O−2 , H2O2 Upregulation of Bax, Bak Yang et al.

(106)Downregulation of Bcl-2, Bcl-xL

MMD, ASK1-p38/JNK pathway

Capsaicin Leukemia T lymphocytes Apoptosis O−2 (outside of

mitochondria)

Plasma membrane electron transport system Macho et al.

(107)MMD

Ca2+ mobilization (TRPV1)

Capsaicin Pancreatic cancer HPDE-6 Apoptosis H2O2 Complex I and III-mediated H2O2 Pramanik

et al. (108)MMD

Cardiolipin oxidation

Intrinsic death pathway

Pancratistatin Neuroblastoma Fibroblasts Apoptosis H2O2 Intrinsic death pathway McLachlan

et al. (109)MMD, ATP decrease

Pancratistatin Metastatic

prostate cancer

Fibroblasts Apoptosis H2O2 Intrinsic death pathway Griffin et al.

(110)Autophagy MMD

Pancratistatin Colorectal

carcinoma

Fibroblasts Apoptosis Not determined Bax, p53, caspase-independent death

pathway

Griffin et al.

(111)

MMD

mtDNA-depleted cells are resistant

Piperlongumine Breast cancer,

lung cancer,

osteosarcoma

Fibroblasts,

epithelial cells

Apoptosis H2O2, NO Transformation-associated ROS Raj et al.

(112)p53-Independent

Glutathione transferase-π/CBRl

Diallyl sulfide

(DAS)/diallyl

disulfide (DADS)

Neuroblastoma Neurons Apoptosis Not determined Intrinsic death pathway Karmakar

et al. (113)Ca2+ mobilization

Increase in Bax/Bcl-2 ratio, Smac/Diablo

release

Calpain activation, ICAD cleavage

Resveratrol

derivative

Prostate, colon

cancer, hepatoma

Fibroblasts Apoptosis Not determined Intrinsic death pathway Gosslau et al.

(114)Increase in Bax/Bcl-2 ratio, p53, Bax protein

level

Perinuclear aggregation of mitochondria

Bezielle Breast cancer Epithelial cells Apoptosis Mitochondrial O−2 ,

H2O2

ROS-DNA damage-PARP

hyperactivation-NAD/ATP depletion-glycolysis

inhibition-energy collapse OXPHOS inhibition

Chen et al.

(115)

bis-Dehydroxy-

Curcumin

Colorectal

carcinoma

Fibroblasts Apoptosis Not determined Mitochondria-dependent apoptosis Basile et al.

(116)Autophagy Caspase-7/8/9

ERS-induced autophagy
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Table 2 | Synthetic compounds with tumor-selective cytotoxicity.

Compounds Cancer cells Normal

cells

Mode of

cell death

ROS Mechanisms of cell death Reference

Glitazones Glioma Astrocytes Apoptosis O−2 , NO, ONOO− MMD Pérez-Ortiz

et al. (117)Reduction in mitochondrial pH

ETC complex I

Salinomycin Prostate, breast cancer Fibroblasts Autophagy (cell

protective)

Not determined Increased mitochondrial mass Jangamreddy

et al. (118)MMD, MHP (subpopulation)

Apoptosis Caspase-3, -8, -9

Necrosis ATP decrease

Mitochondrial fragmentation

Mitophagy

Mitoptosis

Rosiglitazone

ciglitazone

(PPARγ ligands)

Glioma Astrocytes Apoptosis H2O2 PPARγ-independent Pérez-Ortiz

et al. (119)MMD

Inhibition by ebselen, NAC

Rotenone/TT FA Glioma Astrocytes Apoptosis Mitochondrial O−2 Complex I and II-mediated

ROS-autophagy

Chen et al.

(120)Autophagy

2-Methoxy-

estradiol

Glioma Astrocytes Autophagy O−2 Apoptosis-independent Chen et al.

(121)ROS-mediated autophagy

GYY4137 Hepatoma, leukemia,

colorectal carcinoma, etc.

Fibroblasts Apoptosis (H2S) Intrinsic death pathway Lee et al. (122)

Na+–K+-ATPase IS A KEY PLAYER CONNECTING DEATH
LIGANDS, DEPOLARIZATION, AND APOPTOSIS
The Na+ pump Na+–K+-ATPase mediates the export of three Na+

ions the import of two K+ ions, thereby maintaining high K+ and
low Na+ intracellular concentrations. Diverse apoptotic stimuli
including anti-Fas, A23187, and thapsigargin have been shown to
induce depolarization without repolarization in Jurkat cells (14).
This response is rapid (1–2 h after stimulation) and observed in
a time-dependent manner. Unlike the depolarization observed in
electrically excited cells, this apoptosis-associated depolarization is
rather sustained (observed for throughout at least 8 h),as the depo-
larization lacks repolarization. These effects can be accounted for
inactivation of Na+–K+-ATPase protein and its activity. Persistent
depolarization caused by impairment of Na+–K+-ATPase is also
associated with other apoptotic stimuli such as the mitochondrial
toxins rotenone and squamocin (15). The persistent depolariza-
tion is observed not only in human leukemia cells such as Jurkat
cells and U937 cells but also in human primary T cells, although
primary cells are more resistant than leukemia cells to the effect.
The persistent depolarization is pro-apoptotic, because some car-
diac glycoside inhibitors of Na+–K+-ATPase such as ouabain and
oleandrin, can sensitize human leukemia cells and NSCLC cells to
apoptosis induced by anti-Fas, TRAIL, and mitochondrial toxins
(14, 15, 18). These observations suggest that Na+–K+-ATPase is a
key player connecting death ligands,depolarization,and apoptosis.

ROLE OF DEPOLARIZATION IN TRAIL-INDUCED APOPTOSIS
OF MALIGNANT TUMOR CELLS
Our recent work has shown that persistent depolarization
also occurs in the early stage of TRAIL-induced apoptosis

in malignant tumor cells. TRAIL dose- and time-dependently
induces robust depolarization in human malignant tumor cells,
including melanoma, leukemia, and lung cancer cells after a time
lag of 2-4 h (19, 20). In all tumor cell lines tested, the magnitude of
depolarization is correlated with their sensitivity to TRAIL. Impor-
tantly, the depolarization appears to be a prerequisite event for
TRAIL-induced apoptosis, because TRAIL induces minimal depo-
larization in normal melanocytes, to which it shows minimal cyto-
toxicity despite their substantial cell surface expression of DR4 and
DR5 (19). The pro-apoptotic role of depolarization is supported
by the finding that high K+ loading sensitizes melanoma cells, but
not melanocytes, to TRAIL. As ATP-sensitive K+ (KATP) channels
mediate the efflux of intracellular K+ into the cytosol, thereby pro-
moting plasma membrane hyperpolarization, inhibition of these
channels is expected to induce depolarization and show similar
effects. In fact, selective inhibitors of KATP channels such as gliben-
clamide and U37883A show similar TRAIL-sensitizing effects,
while TEA, which mainly inhibits voltage-dependent K+ (Kv) and
calcium-dependent K+ (KCa) channels, is ineffective, suggesting
a specific role of KATP channels in the potentiation. In support
of this view, the Kv channel-specific inhibitor α-dendrotoxin,
KCa channel-specific inhibitor charybdotoxin, and mitochondrial
KATP channel inhibitor 5-hydroxydecanoate have no such effects
in melanoma and leukemia cells (19–21). As discussed below, the
depolarization-mediated potentiation of apoptosis is associated
with activation of the mitochondrial apoptotic pathway and intra-
cellular ROS generation. Consistent with this view, glibenclamide
has been shown to exert antitumor activity in human gastric can-
cer cells through the intrinsic pathway and ROS generation. Since
Na+–K+-ATPase seems to play a key role in controlling death
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Table 3 | Reactive oxygen species-generatingTRAIL sensitizers.

Compounds Action Target cells Mode of

cell death

ROS Mechanisms of sensitization Reference

CCCP OXPHOS

uncoupler

Colon

carcinoma

Apoptosis O−2 Caspase-dependent Izaradjene et al.

(67)MMD

ROS-dependent Bax and

caspase-8 activation

Inhibition by Bcl-2, XIAP

Caspase-9-independent

LY303511 Inactive

LY294402 analog

Neuroblastoma Apoptosis H2O2 H2O2-induced

JNK/ERK-mediated

upregulation of DR4 and DR5

Shenoy et al. (49)

Selenium Chemopreventive

agent

Prostate

cancer

Apoptosis O−2 O−2 mediated p53 Ser15 Hu et al. (123)
Phosphorylation

Bax increase and

translocation

Wogonin Anti-cancer agent Prostate

cancer

Apoptosis H2O2 O−2 mediated upregulation of

p53 and Puma

Lee et al. (50)

KCl/U37883A/

glibenclamide

PMD Melanoma,

leukemia, lung

cancer

Apoptosis Mitochondrial O−2 PMD Suzuki et al. (19),

Suzuki-Karasaki

et al. (21)

ATP-sensitive K+

channel inhibitors

MMD
Upregulation of DR4 and DR5

ERS (XBP-1, caspase-12)

DATS Anti-cancer agent Melanoma Apoptosis H2O2, O−2 Upregulation of DR4 and DR5 Murai et al. (22)

PMD, MMD

ERS (XBP-1, caspase-12)

H2O2 Membrane-

permeable

ROS

Melanoma Apoptosis Mitochondrial O−2 Upregulation of DR4 and DR5 Tochigi et al. (23)

PMD, MMD

ERS (XBP-1, caspase-12)

Rotenone,

antimycin A, FCCP

OXPHOS inhibitor Melanoma,

lung cancer

Apoptosis Mitochondrial O−2 PMD, MMD Inoue and Suzuki-

Karasaki (20)

ligand-induced depolarization and apoptosis, the enzyme may
also be involved in the depolarization induced by TRAIL. How-
ever, it is noted that among these death ligands, only TRAIL exerts
tumor-selective cytotoxicity. Nonetheless, cardiac glycoside Na+–
K+-ATPase inhibitors such as oleandrin (18) and KATP channel
inhibitors share some biological effects including upregulation of
DR4 and DR5. Thus, further studies are necessary to define the
role of Na+–K+-ATPase in TRAIL-induced apoptosis in human
cancer cells.

ROLE OF THE MITOCHONDRIAL DEATH PATHWAY IN THE
EFFECTS OF DEPOLARIZATION
In addition to high K+ and KATP channel inhibitors, different
natural and synthetic chemicals have recently been identified as
powerful potentiators of TRAIL-induced apoptosis in malignant
melanoma cells regardless of their diverse chemical structures
and biological targets. These include diallyltrisulfide (DATS), a
major garlic organosulfur compound (22), the cell-permeable oxi-
dant H2O2 (23), and mitochondrial metabolic inhibitors such
as rotenone, antimycin A, and FCCP (20). Moreover, when
employed at higher concentrations and longer exposures, all of

these chemicals kill malignant cells while sparing normal cells.
Strikingly, all of these agents also can commonly induce robust
depolarization prior to apoptosis, supporting a universal role for
depolarization in the potentiation of TRAIL-induced apoptosis
and tumor-selective killing. In contrast, agents that do not affect
cell survival such as TEA, have no effect on DR5 expression, sug-
gesting that upregulation of DR5 expression is a common target of
these membrane-depolarizing agents for potentiating apoptosis.
This view is also in agreement with previous studies demonstrating
that amplification of TRAIL-induced apoptosis by diverse agents,
including thapsigargin, tunicamycin, and 2-deoxy-d-glucose, is
associated with upregulation of DR5 expression (24–26). The
intrinsic mitochondrial pathway plays a crucial role in amplify-
ing TRAIL-induced apoptosis, and collapse of the mitochondrial
membrane potential (∆Ψm) is considered to be a hallmark of
this pathway, although it remains a matter of debate whether this
event is a cause or a result of permeabilization of the OMM (27,
28). Permeabilization of the OMM by pro-apoptotic Bcl-2 family
proteins promotes the release of a number of apoptogenic factors,
such as cytochrome c, endonuclease G, second mitochondrial acti-
vator of caspases (SMAC), Omi/HtrA2, and apoptosis-inducing
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factor (AIF), from the inner mitochondrial membrane (IMM)
space into the cytosol, and these apoptogenic proteins promote
activation of the caspase cascade, thereby leading to apoptosis.
Cytochrome c interacts with the apoptotic peptidase activating
factor 1 (Apaf-1), leading to the formation of the multimeric apop-
tosome in the presence of ATP/dATP (29). The apoptosome acts as
a platform for activation of the initiator caspase, caspase-9, which
subsequently cleaves and activates the effector caspases, caspases-3
and -7. A cytochrome c-independent apoptosis pathway has also
been defined, and this pathway requires proteins such as endonu-
clease G and AIF to carry out apoptosis. Although the molecular
mechanisms underlying the OMM permeabilization are poorly
understood, it is widely accepted that the mitochondrial perme-
ability transition (MPT), which was originally defined as a sudden
increase in IMM permeability to solutes with molecular masses of
~1,500 Da, is involved. It is now believed that opening of puta-
tive megachannels referred to as the mitochondrial permeability
transition pores (mPTPs) plays pivotal roles (30, 31). mPTPs are
high-conductance non-specific pores in the IMM composed of
proteins that link the IMM and OMM. Several mitochondrial pro-
teins localized in the IMM and OMM, such as voltage-dependent
anion channels (VDACs), adenine nucleotide translocase (ANT),
hexokinase, peripheral benzodiazepine receptors, and cyclophilin-
D are thought to constitute the mPTP. Under physiological condi-
tions, the proteins in the OMM and IMM that constitute mPTPs
are thought to be in close proximity to one another and in a closed
or low-conductance conformation,although mPTPs have not been
isolated and the components of these complexes remain contro-
versial (32–34). When an mPTP changes to an open conformation,
water and solutes with molecular masses of up to 1,500 Da enter
the mitochondrial matrix, resulting in osmotic swelling of the
mitochondrion. It is thought that when multiple mPTPs open
concurrently and extensive mitochondrial swelling takes place,
physical disorganization of the OMM occurs and mitochondr-
ial apoptogenic proteins are released, thereby triggering apoptosis
(27). Hence, much attention has been paid to the potential role
of mPTPs as a target for anti-cancer and chemopreventive agents
(27, 28). TRAIL induces both ∆Ψm collapse and caspase-3/7 acti-
vation in melanoma and leukemia cells and the sensitization of
TRAIL-induced apoptosis by membrane-depolarizing agents is
associated with their enhancement, indicating the involvement
of the intrinsic pathway. Although glibenclamide and U37883A
are potent KATP channel inhibitors, glibenclamide targets sul-
fonylurea receptors (SURs) while U37883A is non-SUR drug. It
is noted that glibenclamide and U37883A have different effects
on TRAIL-induced cell death depending on TRAIL sensitivity.
In TRAIL-resistant A375 melanoma cells, U37883A can poten-
tiate TRAIL-induced cell death as rapidly as within 24 h, while
glibenclamide is ineffective, despite considerable potentiation of
TRAIL-induced ∆Ψm collapse and caspase-3/7 activation. This
cell death is mainly caused by apoptosis. However, after 72 h of
treatment, glibenclamide alone can induce considerable apop-
totic and necrotic cell death and potentiates TRAIL effectiveness.
However, both U37883A and glibenclamide can enhance apop-
tosis in TRAIL-sensitive Jurkat leukemia cells during the initial
24 h (20). Thus, these observations suggest that: (i) TRAIL and
the two KATP channel inhibitors can induce different modes of

cell death depending on the basal cellular sensitivity to TRAIL
and experimental conditions such as exposure time, which is sup-
ported by the fact that substantial necrotic cell death is associated
with the late cell death, but not the early cell death; (ii) SURs
may play differential roles in the two modes of cell death in
TRAIL-resistant cells; and (iii) activation of mitochondrial death
pathway is insufficient for complete overriding of TRAIL resis-
tance in malignant cells. This view coincides with the findings in
clinical trials that the combined use of PARAs and other conven-
tional chemotherapeutic drugs exhibit only modest effects toward
TRAIL-resistant cancers, although they can induce substantial
activation of the intrinsic death pathway (11). Consequently, the
potentiation of TRAIL-induced apoptosis in TRAIL-resistant can-
cer cells by membrane-depolarizing agents may involve another
cell death pathway.

ROLE OF THE ENDOPLASMIC RETICULUM DEATH PATHWAY
IN THE EFFECTS OF DEPOLARIZATION
The emerging concept is that, besides mitochondria, the endo-
plasmic reticulum (ER) is another key player in the regulation of
apoptosis induced by a variety of death stimuli, including TRAIL.
Disparate perturbations in their normal ER functions, such as
accumulation of unfolded or misfolded proteins, ER lipid imbal-
ances or changes in the redox balance, or Ca2+ conditions in the
ER lumen, trigger ER stress (ERS) (35–38). The cells then acti-
vate ERS responses, called the unfolded protein response (UPR),
to alleviate the stress, but an excessive and prolonged UPR leads
to apoptosis (36–38). The UPR involves transcription-dependent
upregulation of ER-resident chaperones, and the ER chaperone
glucose-related protein 78 (GRP78; also known as Bip) is thought
to be a primary sensor in this response. Upon ERS, GRP78 disso-
ciates from ER transmembrane proteins, such as inositol requiring
enzyme 1 (IRE1) and activating transcription factor 6 (ATF6), to
bind to unfolded or misfolded proteins, resulting in aggregation of
the transmembrane proteins and their activation. Activated IRE 1
splices the mRNA for X-box-binding protein-1 (XBP-1) to allow
translation of the mature spliced form of XBP-1 protein,which acts
as a transcription factor and mediates the transcriptional upreg-
ulation of numerous genes involved in ER function as well as
TRAIL-R2 (25). In support of the role of ERS in TRAIL-induced
apoptosis, TRAIL induces the splicing of XBP-1, and membrane-
depolarizing agents including high K+, U37883A (19, 21), DATS
(22), H2O2 (23), and mitochondrial inhibitors such as antimycin
A and FCCP (20) all commonly potentiate this effect, although
none of these agents except H2O2 alone can induce the splicing.
Only glibenclamide cannot potentiate TRAIL-induced XBP-1 acti-
vation, although it upregulates GRP78 expression in accordance
with its minimal effect on TRAIL-induced cell death during the
initial 24 h (19). These observations are interesting because GRP78
acts as an anti-apoptotic factor in the cells, since downregulation of
GRP78 expression by small interfering RNA (siRNA) administra-
tion potentiates the apoptosis induced by diverse drugs including
cisplatin, adriamycin (25), fenretinide [N -(4-hydroxyphenyl) reti-
namide], a synthetic derivative of retinoic acid, and bortezomib, a
26S proteasome inhibitor (39). Taken together, it is strongly sug-
gested that pro-apoptotic ERS responses including GRP78 down-
regulation, XBP-1 upregulation and processing are activated by
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depolarization and play an important role in TRAIL-sensitization
and tumor-selective killing.

DUAL ROLE OF ROS IN APOPTOSIS
Reactive oxygen species, such as superoxide anions (O•−2 ), H2O2,
and hydroxyl radicals (•OH), are the products of normal metabo-
lism in virtually all aerobic organisms. Low physiological levels of
ROS function as second messengers in intracellular signaling and
are required for normal cell function, while excessive ROS cause
damage to multiple macromolecules, impair cell function, and
promote apoptotic or necrotic cell death including those induced
by DR ligands (40, 41). ROS levels are controlled by the antioxidant
defense system, including the antioxidant enzymes manganese-
or copper–zinc-containing superoxide dismutase (SOD), which
catalyzes the dismutation of O•−2 into H2O2, and catalase and
glutathione peroxidase, which degrade H2O2. Thus, the balance
between the machinery for ROS generation (prooxidant system)
and the machinery for ROS scavenging (antioxidant system) is
a critical determinant of whether the cell fate is proliferation or
death. Indeed, generation of ROS is also associated with the apop-
tosis induced by DR ligands such as Fas (42–45) and TNF-α (46,
47). TRAIL has been shown to induce the generation of intracel-
lular ROS, including H2O2, which may be critical in regulating the
responses of cancer cells to TRAIL (48). A variety of natural and
synthetic compounds capable of increasing the intracellular H2O2

level, including LY35001 (49), wogonin (50), and diallyl poly-
sulfides (51, 52) potentiate TRAIL cytotoxicity toward different
human malignant cells (Table 3). Moreover, direct application of
H2O2 alone induces apoptosis or potentiates death ligand-induced
apoptosis in different cell types (23, 53). In addition, various
antioxidants such as N -acetyl-l-cysteine (NAC) and manganese
SOD, and catalase block TNF-α- and Fas-induced apoptosis (54,
55). These observations suggest that ROS are important mediators
of death ligand-induced apoptosis. Both NADPH oxidase (42, 45,
47) and mitochondria (43, 46) have been implicated as the cellular
sources of ROS generated by TNF-α- or Fas-mediated signaling in
various cell types. Conversely, ROS or prooxidative conditions are
protective under certain circumstances (56). Thus, ROS seem to
exhibit both pro-apoptotic and anti-apoptotic functions. Hence,
the role of H2O2 in DR-mediated cell death remains controver-
sial. To date there is no general model that can explain the dual
role of ROS in apoptosis. However, accumulating evidence sug-
gests that ROS control another form of cell death, autophagy (57,
58), which protects cancer cells against apoptosis. This emerg-
ing concept is interesting because it may explain that ROS exert
their anti-apoptotic function through the control of cancer cell
autophagy. However, this issue is not the focus of the present
review, as it has been comprehensively reviewed by others (59–61).

ROLE OF MITOCHONDRIAL O•−2 IN CANCER CELL APOPTOSIS
Another possible explanation for the dual role of ROS in TRAIL-
induced apoptosis is that different oxidant species mediate reci-
procal effects. Indeed, the generation of various ROS and reac-
tive nitrogen species including H2O2, O•−2 , nitric oxide (NO),
and peroxynitrite (ONOO−) is associated with selective killing
(Tables 1 and 2) and TRAIL-sensitization (Table 3) in cancer
cells. To define the oxidant species mediating TRAIL-induced

apoptosis in cancer cells, we analyzed ROS generation using
2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) and dihy-
droethidine (DHE) after TRAIL treatment. DCFH-DA is rapidly
taken up by cells and hydrolyzed into DCFH by cellular esterase
activity. DCFH is then converted into the fluorescent compound
DCF by oxidation mediated by H2O2, ONOO−, and •OH, but not
O•−2 . Conversely, DHE undergoes two-electron oxidation to form
DNA-binding ethidium bromide in a reaction that is relatively
specific for O•−2 . Consequently, DCFH-DA and DHE have been
widely used to detect intracellular H2O2 and O•−2 , respectively in
various cell types (62–64). TRAIL treatment results in the gener-
ation of intracellular H2O2 and O•−2 in Jurkat leukemia and A375
melanoma cells (20). The time courses of the generation of these
two oxidants are different in that the H2O2 generation is rapid
(detected within 30 min) and transient (declining to the basal level
within 1 h), while the O•−2 generation is initially detected at 2 h
and persistent (increasing for another 2 h), and the latter, but not
the former, is correlated with apoptosis. In support of the role of
O•−2 , Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnT-
BaP), a SOD mimetic that can scavenge O•−2 and ONOO−, but not
NO, abolishes TRAIL-induced apoptosis and DHE responses (20).
Moreover, analyses using MitoSOX, which is localized to mito-
chondria and thereby serve as a selective probe for O•−2 in these
organelles (65), revealed that TRAIL dose-dependently induces
O•−2 generation within the mitochondria, which is blocked by
MnTBaP. ONOO− can also oxidize DCFH, and MnTBaP was
reported to selectively scavenge ONOO− over O•−2 (66). However,
ONOO− seems to play a minor role in TRAIL-induced apop-
tosis, because: (i) TRAIL induces no substantial NO production
for up to at least 4 h; and (ii) synthesized ONOO− causes min-
imal cell death, although it can dose-dependently cause DCFH
oxidation. The observations that MnTBaP blocks TRAIL-induced
∆Ψm collapse and caspase-3/7 activation indicate that O•−2 is the
main participator in the mitochondrial dysfunction. In addition,
MnTBaP reduces TRAIL-induced XBP-1 activation (20). These
observations suggest that mitochondrial ROS (mROS) mediate
both mitochondrial and ER dysfunctions during TRAIL-induced
apoptosis.

Studies on the effects of exogenously applied H2O2 have pro-
vided another line of evidence for the role of mROS in mediating
apoptosis. Direct application of H2O2 causes apoptosis in TRAIL-
resistant melanoma cells and sensitizes these cells to TRAIL (23).
The potentiation of apoptosis mainly occurs through the mito-
chondrial and ERS pathways, as shown by ∆Ψm collapse, caspase-
3/7 activation, GRP-78 downregulation, and XBP-1 activation.
Strikingly, after TRAIL treatment, the intracellular H2O2 level
increases rapidly (within 10–30 min) but transiently (declining
to the basal level at 1 h), while the intracellular O•−2 level increases
over time for at least 4 h. MnTBaP, but not catalase, can block the
O•−2 increase and apoptosis in parallel, indicating that O•−2 mainly
mediates the apoptosis. In addition, a robust increase in MitoSOX
signals is observed in parallel with the O•−2 increase and MnT-
BaP blocks this oxidative response, suggesting an O•−2 increase
within the mitochondria. Moreover, H2O2 induces ∆Ψm collapse,
caspase-3/7 activation, and XBP-1 activation, all of which are
blocked by MnTBaP treatment. These observations suggest that
exogenously applied H2O2 can stimulate O•−2 generation within
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mitochondria and that the mROS mediate the mitochondrial and
ER dysfunctions. In addition, H2O2 causes minimal intracellular
and mROS generation in melanocytes in parallel with its mini-
mal cytotoxic effect (23). Taken together, these findings strongly
suggest a pro-apoptotic role of mROS in cancer cell apoptosis.

In normal resting cells, 0.1–2% of electrons carried by the
mitochondrial electron transport chain (ETC) leak from this path-
way and form O•−2 . Impaired mitochondrial metabolism causes
robust leakage of free electrons, thereby resulting in ROS genera-
tion within the organelles. Consequently, mitochondrial metabolic
inhibitors serve as powerful tools for studying the role of mROS
in a given biological response. Studies using Jurkat cells and A375
melanoma cells as a model have revealed that in both cell types,
rotenone, an inhibitor of complex I, is the most potent at inducing
apoptosis, while FCCP, a classic uncoupler of oxidative phospho-
rylation (OXPHOS) is less effective and complex III inhibitor
antimycin A is ineffective. However, all of these compounds
markedly potentiate TRAIL-induced apoptosis and mROS gener-
ation (20, 21). The three metabolic inhibitors can also potentiate
TRAIL-induced activation of caspase-3/7 and XBP-1, and both
effects are blocked by MnTBaP, indicating that mROS generated by
the ETC mediate both mitochondrial and ER dysfunctions during
TRAIL-induced apoptosis (20). These findings are similar to a pre-
vious report that CCCP, another OXPHOS uncoupler, enhances
TRAIL-induced apoptosis in TRAIL-resistant human colon carci-
noma cell lines (RKO, HT29, and HCT8), while CCCP alone has
little effect on apoptosis or release of pro-apoptotic factors from
mitochondria (67). CCCP also enhances TRAIL-induced caspase-
8, Bid, caspase-9 activation, and Bax conformational change and
translocation to mitochondria. CCCP treatment results in the gen-
eration of ROS as determined by DHE, and the synergistic effect
of CCCP on the TRAIL-induced apoptotic pathway is abrogated
by the non-specific ROS scavenger NAC. It is noteworthy that
when mitochondria are uncoupled, shRNA-mediated caspase-9
depletion cannot protect the cells against cell death, suggesting
modulation of the mode of the caspase cascade. It has been shown
that alterations in mitochondrial function, such as OXPHOS,
affect the response of tumor cells to apoptosis induced by death
ligands including O•−2 generation (68, 69), while death ligands
affect mitochondrial metabolism and function. Thus, mitochon-
drial function and death ligand-induced apoptosis are intimately
associated with one another. In this functional relationship, loss of
∆Ψm, i.e., mitochondrial membrane depolarization (MMD), may
play a central role, because it is not only a major cause of mROS
generation but also provokes membrane integrity disruption and
caspase cascade activation. There is accumulating evidence to sug-
gest that mROS play a key role in MPT induction by affecting
the mPTP conformation. First, ROS are byproducts of OXPHOS
and excessive ROS generation is potentially deleterious to mito-
chondrial and cellular functions. Second, ANT has three cysteine
residues whose oxidation is critical for mPTP open–closed transi-
tions and Ca2+ release from the mitochondrial matrix, and mPTPs
are believed to be particularly vulnerable to ROS (30–32). Conse-
quently, the MPT can be triggered by excessive mROS generation
and/or disruption of the mitochondrial redox homeostasis (70–
73). Third, within mitochondria, cytochrome c is bound to the
outer surface of the IMM by its association with the mitochondrial

phospholipid cardiolipin, and oxidation of cardiolipin is thought
to decrease this contact (74). Thus, oxidation of cardiolipin may
also be required to liberate sufficient cytochrome c to trigger cas-
pase activation and induce apoptosis. Consequently, oxidation
of cardiolipin may serve as a biochemical hallmark of mito-
chondrial oxidative stress and apoptosis. As the fluorescent dye
10-N -acridine orange (NAO) binds to the non-oxidized, but not
oxidized, form of cardiolipin independently of ∆Ψm, measure-
ments of NAO fluorescence enable monitoring of the oxidation of
cardiolipin in mitochondria (75). It has been shown that in paral-
lel with the increase in MitoSOX signals, TRAIL treatment results
in oxidation of cardiolipin in human leukemia and melanoma
cells (20, 21). Agonistic antibodies against DR4 and DR5, which
trigger the formation of multimeric complexes containing only
specific TRAIL-Rs (76, 77) also induce robust cardiolipin oxida-
tion in a dose-dependent manner, indicating that this oxidation
is mediated by DR4/DR5 (21). The MPT also results in dissipa-
tion of ∆Ψm and enhances mROS production via disintegration
of the ETC, thereby progressively shutting down OXPHOS and
impairing energetic metabolism (78). Hence, the MPT is a rate-
limiting and self-amplifying process for apoptosis in which ROS
and MMD play key roles. Indeed, MMD is the most common
event observed concomitantly with ROS generation in cell death
induced by diverse death-inducing stimuli (Tables 1 and 2).

CROSSTALK BETWEEN MEMBRANE DEPOLARIZATION
AND ROS
Several lines of evidence suggest that membrane depolarization
and ROS are intimately associated with one another. First, mem-
brane depolarization controls the generation of ROS via NADPH
oxidase activation. In endothelial cells (ECs), it has been shown
that loss of fluid shear stress or ischemia results in the genera-
tion of ROS associated with the activation of EC NADPH oxidase
(79, 80). It has been suggested that this activation of ROS gener-
ation is caused by the activation and assembly of NOX2 through
phosphoinositide-3-kinase (PI3K)/serine threonine kinase Akt
(81). It is noted that the activation of ROS generation is trig-
gered by EC membrane depolarization caused by inactivation of
KATP channels. It is widely accepted that cancer cells express var-
ious NOX family members (NOX 1–5, Duox 1, 2) and that these
NADPH oxidases play important roles in cancer cell proliferation,
death, function, and tumorigenesis (82). For instance, it has been
shown that binding of SDF-1α to the chemokine receptor, cysteine
(C)-X-C receptor-4, which contributes to the enhanced metastatic
functions in prostate cancer cells, promotes ROS generation via
NOX2 activation through the PI3K/Akt signaling pathway (83).
VEGF that plays a critical role in vascular pathophysiology and
induces ROS generation in B1647 cells, a human leukemia cell line,
through activation of NOX2 and NOX4, and the NOX-generated
ROS are required to sustain cell viability and proliferation, and
prevent apoptosis (84). Second, ROS were shown to regulate the
sustained membrane depolarization during tumor cell apoptosis.
As mentioned above, inactivation of Na+–K+-ATPase is respon-
sible for the sustained membrane depolarization during Fas-
induced apoptosis (14, 15). This Na+–K+-ATPase inactivation was
shown to be associated with cleavage of the 42-kDa β subunit and
decreased levels of the 110-kDa α subunit (15). Fas ligation also
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triggers the internalization of plasma membrane Na+–K+-ATPase
in tumor and normal cells, which is induced by intracellular glu-
tathione depletion and H2O2 generation (85). A molecular mech-
anism for the H2O2-induced internalization of Na+–K+-ATPase
is considered to be serine phosphorylation of the α1 subunit and
regulation by mitochondrial H2O2 and the anti-apoptotic pro-
tein Bcl-2 (15, 85). Collectively, these observations suggest that
ROS can control depolarization in malignant cells through the
modification, degradation, and inactivation of Na+–K+-ATPase.
Recently, another crosstalk between depolarization and mROS
in cancer cells was suggested. Membrane-depolarizing agents by
themselves increase mROS and potentiate TRAIL-induced mROS
generation, indicating that depolarization controls mROS (21). It
is notable that depolarization increases the surface expression of
DR5, the triggering of which increases mROS. Since depolarization
potentiates TRAIL-induced activation of the transcription factor
XBP-1, which is engaged in the regulation of surface DR5 expres-
sion (26), it is possible to speculate that the upregulation of surface
DR5 expression results in increased mROS accumulation. How-
ever, scavenging of mROS by the antioxidant MnTBaP reduces
depolarization, while mROS accumulation caused by mitochon-
drial metabolic dysfunction potentiates the depolarization (21).
Collectively, these observations suggest that depolarization and
mROS mutually regulate one another. Figure 1 shows the current
model for the potentiation of TRAIL-induced apoptosis in cancer
cells by membrane depolarization in connection with ROS.

Several TRAIL-resistant cancer cell types, such as malignant
melanoma cells, appear to gain considerable tolerance for oxidative

stress-mediated activation of the intrinsic death pathway. How-
ever, accumulation of mROS can also promote the formation of
unfolded or misfolded proteins, thereby provoking ERS responses
such as activation of the transcriptional factor XBP-1. XBP-1 acti-
vation leads to upregulation of the surface TRAIL-R2 expression
level, thereby enhancing the death signaling. When used together
with TRAIL, membrane-depolarizing agents can potentiate mROS
accumulation sufficiently to activate not only the intrinsic death
pathway, but also the ERS-mediated death pathway, thereby com-
mitting drug-resistant cancer cells to apoptosis. Although the
precise biochemical and biological consequences between mem-
brane depolarization and mROS generation remain to be eluci-
dated, these two events occur in parallel, indicating that they are
intimately associated. Since TRAIL signaling alone can induce sus-
tained depolarization, it is possible that the ROS increase causes
this response by inactivating plasma membrane Na+–K+-ATPase
and/or KATP channels.

ABNORMAL INCREASES IN ROS IN CANCER
CELLS – A TARGET FOR SELECTIVE KILLING
The steady-state levels of endogenous ROS including O•−2 and
H2O2 are elevated in cancer cells (86, 87). The increase in ROS
is thought to contribute to maintenance of the cancer cell pheno-
type through their effects on cell growth, proliferation, and genetic
instability (88, 89). Increased ROS generation is common in can-
cer cells with active metabolism and genetic instability under the
impact of various oncogenes such as Bcr/Abl, Ras, c-Myc, and FLT3,
FMS-like tyrosine kinase (90–95). The imbalance between the

FIGURE 1 |The current model for the potentiation ofTRAIL-induced
apoptosis in cancer cells by depolarization. Triggering of TRAIL-R1
(DR4)/TRAIL-R2 (DR5) induces the generation and accumulation of
mROS, leading to impairment of the ETC function and cardiolipin
oxidation. Impairment of the ETC complex I/III function decreases H+

efflux, thereby causing ∆Ψm dissipation, i.e., MMD, and additional
mROS generation and cardiolipin oxidation, thereby forming a positive
loop. Cardiolipin oxidation and ∆Ψm dissipation cooperatively promote
the MPT and liberation of sufficient cytochrome c to trigger caspase

activation and induce apoptosis. TRAIL-resistant cancer cells appear to
gain considerable tolerance for oxidative stress-mediated activation of
the intrinsic death pathway. Accumulation of mROS can also promote
the formation of unfolded or misfolded proteins, thereby provoking ERS
responses such as activation of the transcriptional factor XBP-1. XBP-1
activation leads to upregulation of the surface TRAIL-R2 expression
level, thereby enhancing the death signaling. Activation of this
alternative death pathway may contribute to commit TRAIL-resistant
cancer cells to apoptosis.
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FIGURE 2 | Abnormal increases in ROS in cancer cells serves as a target
for tumor-selective killing. Cellular oxidative stress (OS) level is regulated by
the balance between the machinery for ROS generation (prooxidant system)
and the machinery for ROS scavenging (antioxidant system). In normal cells,
the antioxidant system is normal and low physiological levels of ROS, which
can function as second messengers in intracellular signaling and are required
for normal cell function, are generated. Owing to their active metabolism and
genetic instability under the control of oncogenic transformation such as

Bcr/Abl, Ras, c-Myc, and FLT3, which causes increased ROS generation and
decreased antioxidant systems, cancer cells harbor an excess OS over normal
cells. When equivalent levels of OS are added by the administration of
exogenous ROS-inducing agents (+ROS), OS levels in cancer cells can readily
over the threshold of cell death, while OS levels in normal cells do not.
Hence, cancer cells are expected to be more vulnerable than normal cells to
cell damage induced by ROS-generating agents and this vulnerability can be
exploited to selectively kill these cells.

prooxidant system and the antioxidant system is a consequence
of increased ROS generation and/or decreased antioxidants in
cancer cells. Such abnormal increases in ROS makes cancer cells
more vulnerable than normal cells to cell damage induced by
exogenous ROS-inducing agents and can be exploited to selec-
tively kill cancer cells (96–98) (Figure 2). In this respect, it is
noted that diverse natural products and synthetic chemicals that
exhibit selective killing effects are capable of inducing intracellu-
lar ROS generation (Tables 1 and 2). For instance, β-phenylethyl
isothiocyanate (PEITC) is a natural product found in cruciferous
vegetables with chemopreventive activity, and has been shown to
increase ROS generation and induce apoptosis (99, 100). More-
over, recent work has shown the selective killing of oncogenically
transformed cells by PEITC (101–103), supporting the emerging
view that an intrinsic excess oxidative stress under the control of
oncogenic transformation can be exploited as a cancer-selective
target.

CONCLUSION
Recent work has revealed that membrane depolarization is an
early and prerequisite event during death ligand-induced apopto-
sis in malignant cells. Moreover, it has been shown that persistent
membrane depolarization can facilitate tumor-selective killing and
TRAIL-sensitizing effects by promoting mitochondrial and ER
dysfunctions. It is noted that membrane depolarization and ROS
regulate one another although the precise mechanisms underlying
the mutual regulation remain to be elucidated. The emerging con-
cept is that owing to their active metabolism and genetic instability

under the control of oncogenic transformation, cancer cells harbor
an excess oxidative stress over normal cells and that this intrin-
sic oxidative stress can be exploited to selectively kill malignant
cells. Thus, the crosstalk is one possible rationale why diverse
membrane-depolarizing agents can exhibit tumor-selective killing
and TRAIL-sensitizing effects in cancer cells. Since depolarization
is intimately linked to not only mitochondrial integrity disrup-
tion but also ER dysfunction, and impacts cancer cells selectively,
further studies on its role in cancer cell death may afford a novel
approach for tumor-selective killing.
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