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In Parkinson’s disease (PD), there are alterations of the basal ganglia (BG) thalamocorti-
cal networks, primarily due to degeneration of nigrostriatal dopaminergic neurons. These
changes in subcortical networks lead to plastic changes in primary motor cortex (M1),
which mediates cortical motor output and is a potential target for treatment of PD. Studies
investigating the motor cortical plasticity using non-invasive transcranial magnetic stimula-
tion (TMS) have found altered plasticity in PD, but there are inconsistencies among these
studies. This is likely because plasticity depends on many factors such as the extent of
dopaminergic loss and disease severity, response to dopaminergic replacement therapies,
development of L-DOPA-induced dyskinesias (LID), the plasticity protocol used, medica-
tion, and stimulation status in patients treated with deep brain stimulation (DBS). The
influences of LID and DBS on BG and M1 plasticity have been explored in animal models
and in PD patients. In addition, many other factors such age, genetic factors (e.g., brain
derived neurotropic factor and other neurotransmitters or receptors polymorphism), emo-
tional state, time of the day, physical fitness have been documented to play role in the
extent of plasticity induced by TMS in human studies. In this review, we summarize the
studies that investigated M1 plasticity in PD and demonstrate how these afore-mentioned
factors affect motor cortical plasticity in PD. We conclude that it is important to consider
the clinical, demographic, and technical factors that influence various plasticity protocols
while developing these protocols as diagnostic or prognostic tools in PD. We also discuss
how the modulation of cortical excitability and the plasticity with these non-invasive brain
stimulation techniques facilitate the understanding of the pathophysiology of PD and help
design potential therapeutic possibilities in this disorder.

Keywords: M1 plasticity, Parkinson’s disease, transcranial magnetic stimulation, paired associative stimulation,
theta burst stimulation, transcranial direct current stimulation, repetitive transcranial magnetic stimulation

PLASTICITY – LONG-TERM POTENTIATION AND LONG-TERM
DEPRESSION
The word plasticity is derived from Spanish word “plasticina”
meaning “play-doh” describing the property of a substance being
impressionable or changes the structure or function depending
on the situation. Neuronal plasticity refers to the ability of the
neuron to modify its structure or functions in response to stim-
uli and these modifications outlast the stimulation period (1).
These changes generally occur in the synaptic functions, thus
modifying the interneuronal connections and is termed synaptic
plasticity (2–4). These changes encompasses all possible mecha-
nisms of neuronal network reorganization, including recruitment
of pathways that are functionally homologous but anatomically
distinct from the original ones, reinforcement of existing synap-
tic connections, dendritic arborization, and synaptogenesis (5).
Such stimulation-induced modifications in synaptic efficacy, such
as long-term potentiation (LTP) and long-term depression (LTD),
represent key cellular substrates for adaptive motor control and
procedural memory as demonstrated in animal models (6). LTP
is generally defined as long-lasting but not necessarily irreversible
increase in synaptic strength and LTD refers to decrease in synap-
tic strength (7). Induction of LTP and LTD depends on N -
methyl d-aspartate (NMDA) receptor activation by glutamate and

post-synaptic calcium influx (8). A rapid increase in post-synaptic
calcium concentration binds the C-terminal of calmodulin and
triggers a kinase pathway that increases the density and conduc-
tance surface α-amino-3-hydroxy-5-methyl-4-isoxazole propionic
acid (AMPA) receptors leading to LTP (Figure 1). In contrast, a
slower increase in calcium concentration promotes binding to the
N-terminal of calmodulin, which operates via the phosphatase
pathway and has opposite effect on surface AMPA receptors
leading to LTD (9).

PARKINSON’S DISEASE
Parkinson’s disease (PD) is a progressive neurodegenerative dis-
order with degeneration of nigrostriatal dopaminergic neurons
in basal ganglia (BG) resulting in a movement disorder char-
acterized by tremor, rigidity, bradykinesia, and postural insta-
bility (10). According to the Braak model of PD (11), there is
degeneration of other areas such as the brainstem in the early
stages of the disease and in widespread regions including the
neocortex in late stages and these changes lead to non-motor
features of PD. Previous studies have demonstrated altered plas-
ticity in BG related subcortical structures and in the primary
motor cortex (M1) in animal and human studies in various stages
of PD.
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Udupa and Chen Motor cortical plasticity in Parkinson’s disease

FIGURE 1 | Schematic representation of the cascades of events involved
in long-term potentiation (LTP) and depression (LTD). Different
neurotransmitters are involved in these cascades. Different changes occur
depending on the rate of increase of post-synaptic calcium (Ca++). Rapid
influx of Ca++ preferentially promotes binding of Ca++ to the C-terminal of

calmodulin, activating the kinase pathways. These reactions lead to increase
in AMPA receptor density on the post-synaptic membrane resulting in LTP. On
the other hand, slower release of Ca++ leads to Ca++ binding to the N-terminal
of calmodulin, activating the phosphatase pathways. This leads to decrease in
AMPA receptor density on the post-synaptic membrane, resulting in LTD.

There are three main pathways of information processing
in the cortico-BG loop (Figure 2A), the direct (cortico-striato-
pallidal/nigral) and indirect (cortico-striato-pallido-subthalamo-
pallidal/nigral) pathways via the striatum and the hyperdirect
(cortico-subthalamo-pallidal/nigral) pathway via the subthala-
mic nucleus (STN) (12). In vivo, cortical activation leads to a
triphasic synaptic response in SNr neurons, due to the sequen-
tial involvement of the three pathways: a first excitation, due to
hyperdirect pathway activation, followed by an inhibition due to
activation of the direct pathway and a late excitation from the
indirect pathway (13). Functionally, it has been hypothesized that
the hyperdirect pathway suppresses motor programs, allowing the
direct pathway to select the goal-directed behavior, while the indi-
rect pathway completes the motor activity (14). There are other
models such as the center surround model (Figure 2B), which
hypothesize that the direct pathway is the excitatory center, and
the indirect pathway is related to the inhibitory surround (15).
The management strategies of PD involve the use of dopamin-
ergic medications and deep brain stimulation (DBS) which alter
plasticity in both BG and M1, and these will be discussed in the
following sections.

ANIMAL MODELS OF PD AND STUDIES OF SYNAPTIC
PLASTICITY
A commonly used rodent model in PD is prepared by injec-
tion of 6-hydroxy dopamine (6-OHDA) into the striatum. This

causes degeneration of dopaminergic neurons, which leads to
alterations in striatal synaptic neurotransmission and plasticity.
This dopaminergic deficit leads to increased glutamatergic activ-
ity and Ca2+-induced degeneration of dendritic spines of medium
spiny neurons (MSN), which is an important site of the synaptic
plasticity (16). MSN constitute 95% of striatal neurons and receive
inputs from glutamatergic corticostriatal neurons and dopaminer-
gic nigrostriatal neurons in addition to cholinergic interneurons.
These synapses on dendritic spine of MSN undergo both LTP and
LTD in both in vitro and in vivo (17) experiment models. Pharma-
cological studies showed that NMDA, dopaminergic D1 (mainly
direct pathway), adenosine A2A (mainly indirect pathway), and
muscarinic cholinergic receptors are involved in the induction
of LTP (18, 19). The molecular process involves D1-mediated
NMDA receptor (NR) complex modification through different
neurotransmitter systems and finally inserting new AMPA recep-
tors post-synaptically (Figure 1). On the other hand, activation
of D1 and D2, metabotropic AMPA glutamatergic and cholinergic
receptors may be required for LTD (19, 20). Endogenous release
of dopamine has a role in determining the plasticity direction
such that phasic release of dopamine favors LTP where as tonic
release induces LTD (21). Dopamine deficit causes an over activity
of the glutamatergic cortical to MSN projection expressed in part
as an increase in spontaneous activities of MSN. Thus, dopamine
depletion in PD alters the induction of LTP at these glutamatergic
synapses (18).
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Udupa and Chen Motor cortical plasticity in Parkinson’s disease

FIGURE 2 | (A) The basal ganglia-thalamocortical loops involved in motor
control. The internal globus pallidus (GPi) is the main output nucleus of the
basal ganglia and it has inhibitory projection to the thalamus. The direct
pathway projects from the striatum to the GPi. Inhibition of the GPi facilitates
movement by increasing thalamocortical projections. On the other hand, the
indirect pathway through the external globus pallidus (GPe), subthalamic
nucleus (STN), GPi, and thalamus inhibits the excitatory thalamocortical

output. The hyperdirect pathway through cortico-subthalamic nucleus
projection is considered to suppress motor programs through facilitation of
the GPi. (B) Schematic diagram showing the center facilitation surround
inhibition model. The direct pathway shown in the center facilitates the
movement whereas the indirect pathway in periphery of the projection
inhibits the competing motor patterns for the specific movement. STN
modulates the cortex through both the hyperdirect and the indirect pathways.

Spike-timing-dependent plasticity (STDP) is another concept
to explain bidirectional modulation of synaptic plasticity (4, 22).
According to this theory, the generation of LTP or LTD depends
on the timing between the activation of pre and post-synaptic
cells. Classical Hebbian STDP involves the generation of LTP when
presynaptic spikes precede post-synaptic spikes by up to 20 ms
while LTD is induced when post-synaptic spikes lead presynaptic
spikes by up to 100 ms (23). On the other hand, in anti-Hebbian
STDP, pre-leading-post spike order drives LTD and post-leading-
pre spiking drives LTP. This form of STDP opposite to Hebbian
STDP was observed in MSN in BG (24) and in the somatosensory
cortex (25).

It has been demonstrated that an imbalance between dopamine
D2 and NR activities induce altered synaptic plasticity at corticos-
triatal synapses (26). α-calcium-calmodulin-dependent protein
kinase II (α-CaMKII) functions as signal integrator (27) for these
two neurotransmitters (glutamate and dopamine) related path-
ways and increased autophosphorylation of this molecule was
associated with defective synaptic plasticity which parallels the
development of motor abnormalities in Parkinsonian rats (28).
This alteration of plasticity involved the absence of both LTP (29,
30) and LTD (31) in striatum and was postulated as the molecu-
lar mechanisms responsible for motor and cognitive symptoms of
PD (6). In animal models of PD, complete dopaminergic dener-
vation decreases both LTP and LTD but incomplete dopaminergic
loss leads to decreased LTP in corticostriatal neurons (32) while
chronic l-DOPA treatment restored LTD but not LTP types of
synaptic plasticity (29).

MEASUREMENT OF MOTOR CORTICAL PLASTICITY USING
TRANSCRANIAL MAGNETIC STIMULATION
Non-invasive brain stimulation technique such as transcranial
magnetic stimulation (TMS) has been used to quantify various
neurophysiologic measures in neurological and psychiatric disor-
ders and has the potential to be used as a diagnostic and prognostic
tool (33). Various TMS protocols have been used to induce LTP-
and LTD-like changes in the brain and they may have therapeutic
utilities in movement disorders (34). Depending on the direc-
tion of change in excitability, these protocols have been broadly
divided into LTP-like and LTD-like protocols, which increase or
decrease the excitability. Protocols such as intermittent theta burst
stimulation (iTBS), high-frequency rTMS, and paired associative
stimulation at 25 ms (N20 latency+∼3–5 ms; PAS25) are con-
sidered LTP-like protocols. On the other hand, continuous (c)
TBS, low-frequency rTMS, and PAS10 (PAS with 10 ms between
peripheral nerve stimulation and M1-TMS) are considered LTD-
like protocols as they decrease the excitability of the motor cortex.
However, the mechanisms by which these protocols induce the spe-
cific type of plasticity (LTP or LTD) are different. Although PAS25,
high-frequency rTMS, and iTBS induced LTP-like changes in M1,
the process of induction of plasticity, time courses and the mech-
anisms involved are different (35). In general, plasticity induced
by protocols that activate multiple sets of synapses (such as PAS
acting through sensory-motor communications and intracortical
circuits of M1) is termed as heterosynaptic plasticity. This type
of plasticity depends on spike-timing-dependent mechanisms of
activating pre and post-synaptic terminals within a time window
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as discussed earlier. This is different from homosynaptic plasticity
(e.g., rTMS and TBS), which is induced by stimulating the same
set of synaptic connections repeatedly and the effects are related to
the frequency of stimulation (36). Though the molecular mecha-
nisms of these non-invasive brain stimulation protocols involving
homo and heterosynaptic plasticity have not been elucidated, we
could infer their mechanisms based on similar protocols in slice
preparations in animal models. Furthermore, the effect of sen-
sory inputs are altered in PD (37, 38). Since PAS involves sensory
input and rTMS does not, M1 plasticity probed by PAS and rTMS
protocols may have different results.

Transcranial direct current stimulation (tDCS) has also been
used to induce M1 plasticity. Anodal cortical tDCS typically
induces LTP-like changes while cathodal tDCS induces LTD-like
effects (39). Although the changes in the membrane excitability
have been proposed as potential mechanisms of these changes, the
molecular basis of this plasticity has not been fully determined.
Thus, protocols employing tDCS to investigate M1 plasticity may
involve mechanisms different from those using PAS and rTMS.

When two plasticity protocols are used one after another, the
effect of first one modulates that of the second and this interac-
tion has been termed as metaplasticity. Homeostatic plasticity is
a concept to explain this interaction and is based on the princi-
ple that physiological systems attempt to maintain homeostasis
to prevent excessive unidirectional changes. Therefore, when two
LTP-like protocols applied consecutively, instead of further poten-
tiating the effects, second protocol may bring the excitability back
to the baseline. A similar concept is depotentiation. It refers to a
protocol which on its own does not induce changes in the excitabil-
ity but cancels the effect of a preceding potentiation protocol in
order to achieve the homeostasis, which is maintained by the ratio
of NR subtypes (NR1 and NR2) (40, 41). Thus, the comparison
of different M1 plasticity studies employing different plasticity
induction protocols or combination of protocols should take these
differences into account.

VARIABILITY OF TMS MEASURES
Transcranial magnetic stimulation measures are variable and this
has been widely reported (42–49). In addition to the well known
pulse-to-pulse variation in TMS response which is partly due
to spontaneous variation in cortical excitability, there are vari-
ous intrinsic (genetic polymorphisms of neurotransmitters and
receptors, hormonal level, attention level, fatigue of subjects) and
extrinsic (coil placement, coil and stimulator parameters) factors
responsible for this variation (50). These factors should be consid-
ered in the interpretation of plasticity studies in PD. Furthermore,
the parameters used to measure plasticity are different in differ-
ent studies. Many studies (Table 1) used stimulation intensity to
generate 1 mV motor evoked potential (MEP) amplitude in intrin-
sic hand muscles before the plasticity protocol and used the same
intensity to assess changes in cortical excitability where other stud-
ies used motor threshold, recruitment curve (input-output curve,
MEP amplitudes with increasing stimulation intensities), 120%
resting motor threshold, intracortical circuits, silent period, or
behavioral measures. Since each parameter has its own strengths
and drawbacks, one has to be vigilant when pooling the results of
studies that used different parameters.

EFFECT OF DOPAMINERGIC MEDICATIONS
In healthy humans, l-DOPA or dopamine agonists exert a power-
ful effect on M1 plasticity induced by rTMS (68), PAS and tDCS
(69). The dopaminergic dose–plasticity response curve in healthy
subjects has an inverted “U”-shape, in which low dopaminergic
tone impairs plasticity, while moderate doses facilitate plasticity
(69–71). Dopamine effects are different in two different plasticity-
inducing protocols with diminution of plasticity following tDCS
and stabilization or increase of PAS-induced plasticity. However,
such non-linear relationship has not been investigated in PD. It
has been observed that low (25 mg) and high (200 mg) dose of
l-DOPA converts LTP-like plasticity of M1 (induced by PAS25)
to LTD whereas moderate dose of l-DOPA (100 mg) potentiates
the plasticity effects in healthy subjects (72). While low dose of
dopamine activates presynaptic receptors and increases dopamine
release, this reversal of plasticity at high doses (200 mg) was attrib-
uted to the high levels of D1 receptor stimulation which in turn
inhibits NRs (72). Animal studies showed that dopamine directly
regulates the induction of LTP and LTD in glutamatergic synapses
in the striatum and the prefrontal cortex (73, 74). It is critical to
activate the NRs situated on the membrane of MSN in the stria-
tum to induce plastic changes in the corticostriatal synapse. At the
molecular level, the interactions between dopamine and the NRs,
the intracellular signal transduction of which requires a common
integrator (α-CaMKII), control the striatal plasticity (28).

Although the exact cellular mechanism of the influence of
dopamine on the M1 plasticity remains unknown, it is possible
that dopamine modulates the dynamic circuitry of the cortical
plasticity in the M1 through NRs. There are two possible dopamin-
ergic pathways for modulating plasticity in the M1: an indirect
nigrostriatal pathway via the BG-thalamocortical loop or a direct
mesocorticolimbic pathway projected from the ventral tegmental
area. In the nigrostriatal pathway, the motor cortical areas, includ-
ing the M1, the supplementary motor area (SMA), the premotor
area, and the cingulate motor areas project major glutamatergic
fibers to the striatum, which belongs to a series of BG thalamo-
cortical loops that project back to the motor cortex via the motor
thalamic nuclei (75–78).

DYSKINESIAS AND ALTERED PLASTICITY
Following typically 5–10 years of l-DOPA therapy (79), PD
patients may develop l-DOPA-induced dyskinesia (LID) charac-
terized by purposeless, involuntary, repetitive movements which
often reduce the quality of life (80). LID was associated with the
loss of LTD expression at glutamatergic striatal spiny neuronal
synapses and drugs that selectively targeting phosphodiesterases
can ameliorate LID (81), possibly by restoring physiological synap-
tic plasticity in the striatum. LID in animal models are associated
with an altered corticostriatal synaptic plasticity (29). In particular,
in dyskinetic Parkinsonian animals the ability to reverse previously
induced LTP is lost (27, 29).

DEPOTENTIATION STUDIES IN PD
Depotentiation represents a homoeostatic mechanism which
allows the reversal of previously induced strengthening of synaptic
efficacy in order to remove redundant synaptic information and,
consequently, increase storage capability (17,29). Picconi et al. (29)
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Table 1 | Studies measuring M1 plasticity in PD withTMS plasticity protocols.

Study Protocol(s)

used

n Age Dis dur

(y)

UPDRS-III

(OFF)

H andY L-DOPA LID Main findings

PAS

Morgante et al.

(51)

PAS21.5 16 70±5 9±3 26±10 2.3±0.5 ON and

OFF

7− Decreased LTP in patients with OFF

condition, improved with medication in

patients without dyskinesias but not with

LID

67±9 12±5 29±7 2.9±0.8 9+

Ueki et al. (52) PAS25 18 65±9 5±3 19±8 2–3 ON and

OFF

− Dopaminergic medications restored the

impaired plasticity in PD although not to

the level of healthy subjects

Bagnato et al.

(53)

PAS25 16 63±9 8±4 – 2–3 ON and

OFF

± Exaggerated and overflow of M1 plasticity

during OFF, normalized by medications;

heterogeneous sample, more and less

affected side not identified

Schwingenschuh

et al. (54)

PAS25 25 69±8 7±3 28±12 – OFF − Deficient plasticity in PD which is different

from healthy subjects (normal plasticity)

and dystonia, scans without dopaminergic

deficit and essential tremor. All three

patient groups had exaggerated plasticity

Kojovic et al.

(55)

PAS25 16 59±3 2±0.3 15±2 – – DN Impairment of plasticity on the more

affected side, exaggeration of plasticity on

the less affected side

Kacar et al. (56) PAS25 20 52±12 3±2 32±11 2±1 OFF 10 M1 plasticity is equally deficient in

drug-naïve and patients taking

dopaminergic drugs

55±13 5±4 31±12 2.4±1 DN 10−

Kishore et al.

(57)

PAS25 16

+20

55±2 9±1 40±4 ON and

OFF

+ Deficient PAS-induced plasticity in PD

patients with LID is restored by inhibitory

cTBS to the cerebellum

55±2 11±1 42±5

TBS

Eggers et al.

(58)

cTBS 8 69±5 4±3 26±7 2±1 OFF − No decrease in cortical excitability after

cTBS

Benninger et al.

(59)

iTBS (sham) 26 62±7 11±7 – 3±0.4 − Increase in MEP after first session of

iTBS. No change in clinical parameters

except mood improvement

Suppa et al. (60) iTBS 20 62±8 5±4 26±9 2.5 ON and

OFF

11− Decreased potentiation with iTBS and no

difference with medication and LID63±7 9±5 29±9 3 9+

Stephani et al.

(61)

iTBS 8 62±8 – – 1–2 ON − No changes in excitability with iTBS

Zamir et al. (62) iTBS 12 65±10 7±3 23±9 – ON and

OFF

7−

5+

Normal response in PD. ON medication

showed increased in cortical excitability

within 20 min after iTBS compared to OFF

medication condition

Kishore et al.

(63)

iTBS cTBS 10 51±4 3±1 12±1 – ON and

OFF

− Both protocols did not elicit changes in

the motor cortical excitability, in contrast

to the changes in healthy controls. Less

severe patients

11 54±4 3±1 11±1

(Continued)
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Table 1 | Continued

Study Protocol(s)

used

n Age Dis dur

(y)

UPDRS-III

(OFF)

H andY L-DOPA LID Main findings

Kishore et al.

(64)

iTBS cTBS 17

(SR)

59±3 4±1 28±3 ON and

OFF

− Three groups of patients with a spectrum

of response to dopaminergic medication.

Near normal LTP-like response to iTBS but

decreased LTD-like response to cTBS in

OFF medication state in all groups.

L-DOPA normalizes LTD in the earlier

stage of disease, which correlated with

clinical improvement. In the patients with

LID, L-DOPA reverses the direction of

plasticity response with cTBS leading to

paradoxical facilitation

18

(FND)

56±2 7±1 32±2 −

20

(FD)

56±2 9±1 44±21 +

rTMS

Gilio et al. (65) 5 Hz rTMS 15 63±2 – 23±5 ON and

OFF

− Decreased facilitatory response in relaxed

state in ON and OFF medication sessions,

response during muscle contraction

similar to controls

Lomarev et al.

(66)

25 Hz 18 65±10 – 22–39 2–4 ON and

OFF

− Increase in MEP amplitude after 8

sessions of rTMS

Buhmann et al.

(67)

1 Hz (PMd) 10 58±11 – 16±6.9 2±1 Single

dose

No 1 Hz rTMS to PMd normalized the

decreased short intracortical inhibition

connection (5 ms) in drug naive PD.

Similar results were obtained with first

dose of L-DOPA

Dis dur, disease duration; DN, drug-naïve; FD, fluctuating dyskinetics; FND, fluctuating non-dyskinetics; H andY, Hoehn andYahr; LID, L-DOPA-induced dyskinesia; LTP,

long-term potentiation; LTD, long-term depression, MEP, motor evoked potential; PD, Parkinson’s disease; PAS, paired associative stimulation (21.5 and 25 represents

the latency in milliseconds between peripheral nerve stimulation and M1-transcranial magnetic stimulation), PMd, dorsal premotor cortex; rTMS, repetitive transcranial

magnetic stimulation; SR, stable responders; TBS, theta burst stimulation; UPDRS, unified Parkinson’s disease rating scale.

showed that dyskinetic rats lack this depotentiation ability com-
pared to non-dyskinetic rats. Both group of rats showed poten-
tiation following high-frequency stimulation but dyskinetic rats
failed to show reversal to baseline excitability following subsequent
low-frequency stimulation. Both dyskinetic and non-dyskinetic
Parkinsonian rats showed normal LTP following chronic l-DOPA
treatment. In PD patients, a study (82) using a depotentiation
protocol that consisted of cTBS 150 (shorter protocol which has
no direct effect by itself compared to cTBS300 which has LTD-
like effects) showed that PD patients with LID failed to show
depotentiation, which was present in healthy subjects and PD
patients without LID. This loss of depotentiation could be attrib-
uted to an inability to erase unwanted motor information leading
to aberrant abnormal motor pattern seen in dyskinesias. This lack
of depotentiation may be due to changes occurring along the
D1 dopamine receptor signaling pathway leading to abnormally
high levels of Thr34-phosphorylated proteins (DARPP-32) and
subsequent inhibition of protein phosphatase activity (17).

In animal models of LID, enhanced activation of the striatal
glutamate receptors, particularly the NMDAR subtype, appears to
be a major factor in the expression of dyskinetic movements (83).
Variations in the organization of NR subunits (decreased NR2B

and NR1A without change in NR2A) are closely associated with
altered synaptic plasticity and are believed to be the cornerstone in
the pathophysiology of LID in PD (41). In the normal physiolog-
ical state, NRs localized to synaptosomal membranes are com-
prised of heterodimeric NR1/NR2A and NR1/NR2B receptors,
and heterotrimeric NR1/NR2A/NR2B receptors (84). Following
dopamine depletion in the Parkinsonian state, there is a selective
reduction of NR1/NR2B heterodimeric receptors. This results in a
relative enrichment of NRs containing NR2A subunits. Following
repeated l-DOPA treatment causing LID, there is normalization
in the level of NRs comprised of NR1 and NR2B subunits and
an increase in NRs containing NR2A subunits. This increase in
NR2A-containing NRs may bring about important changes to
NR-mediated signaling in dyskinesia (85).

M1 PLASTICITY STUDIES IN PD
Most plasticity studies using TMS protocols showed impaired M1
plasticity in PD (Table 1). However, there are discrepancies which
could be attributed to factors such as the age of the patient, disease
duration, side of involvement (in asymmetric PD), dopaminergic
medications, and the TMS protocol used to explore plasticity. We
discuss these issues in the following sections.
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PAS PROTOCOLS
When PAS was used to assess the M1 plasticity in PD patients,
impairment of plasticity was observed in most studies (51, 52,
55–57). However, two studies showed exaggerated plasticity on
the less affected side in drug-naïve patients (55) and in the OFF
medication condition, which was normalized with dopaminergic
medications (53). In the study of Kojovic et al. (55), this exag-
gerated plasticity observed on the less affected side was associated
with less severe clinical involvement. Thus, this increased plasticity
may represent compensatory changes on the less affected side in
early PD. Since only drug-naïve patients were studied, it would be
interesting to explore the short and long-term effects of dopamin-
ergic medications on this plasticity. In the study of Bagnato et
al. (53), exaggerated plasticity in PD with overflow to neigh-
boring muscles (heterotopic plasticity) was observed in the OFF
medication condition, which was normalized with dopaminergic
medications (53). However, the study patients were heterogeneous
in terms of disease duration, l-DOPA dosage and development of
LID. Also, the authors investigated the right side irrespective of
the clinical involvement. Exaggerated plasticity was also seen in
tremulous patients with “scans without evidence of dopaminergic
deficit (SWEDD)” (54), compared to deficient plasticity observed
in PD patients with dopaminergic deficit. This study suggests that
SWEDD patients may be closer to dystonia in terms of electrophys-
iological response to plasticity protocols than PD. Hence, plasticity
response may differ in PD depending on subgroups and stages
of PD.

Dopaminergic medications modulate the altered plasticity in
PD (51, 52). This restoration correlated with decreased plasticity
and disease severity as measured by Unified Parkinson’s Disease
Rating Scale (UPDRS) scores (52). Furthermore, only PD patients
without dyskinesias showed restoration of M1 plasticity by l-
DOPA (51). However, the history of dopaminergic therapy per se
may not have any effects on modulating the plasticity as shown
by a study (56) that compared drug-naïve PD patients with those
on l-DOPA and dopamine agonists in their plasticity response
induced by PAS. They showed that M1 plasticity is equally defi-
cient in both groups compared to healthy controls. However, the
study was performed only in OFF medication condition without
exploring the acute effects of dopaminergic medication (ON med-
ication condition). Hence, the acute (ON) effects of dopaminergic
medications may be required to restore the altered PAS-induced
M1 plasticity in PD in the earlier stages of the disease.

In the later stage of PD, deficient plasticity in patients with LID
was not restored by dopaminergic medications (51). A recent study
(57) showed the deficient PAS-induced plasticity in PD patients
with LID is restored by inhibitory cTBS to the cerebellum. The
authors showed this restoration may be due to modulation of
sensory input as only PAS but not iTBS induced M1 plasticity
impairment was restored by cerebellar cTBS. In patients with LID
treated with STN DBS, optimal stimulation in the on medication
condition also restored PAS-induced M1 plasticity to normal level
(86). Thus, M1 plasticity in PD changes with the phase of the
disease with compensatory exaggeration on the unaffected side in
early PD to deficient plasticity in later stages of PD, which may
be restored with dopaminergic drugs and STN DBS. Furthermore,
a study found involvement of cerebellar circuits in longer latency

PAS (PAS25) and but not in shorter latency PAS21.5 [median nerve
stimulation followed by TMS 21.5 ms later, Ref. (87)]. Since the
neuronal circuits that mediate these two latencies of PAS are likely
different, this may account some of the different results in previous
studies. Further studies are required to elucidate the mechanisms
and circuits involved in these two different latencies of PAS in PD.

TBS PROTOCOLS
Several studies have shown impaired plasticity in PD patients using
TBS protocols. Kishore et al. (63) examined 10 drug-naïve PD
patients with cTBS and iTBS. Both protocols failed to elicit changes
in M1 excitability PD in contrast to the changes observed in con-
trols. Interestingly, the first dose of l-DOPA failed to modulate
the plasticity in these patients and there was no significant dif-
ference between the more and less affected sides. Deficient iTBS
induced LTP-like plasticity in PD was observed in other studies
(58, 60, 61). In one study (60) following facilitatory iTBS, neither
the medication state (ON and OFF), disease severity nor the pres-
ence of LID had any effect on this lack of potentiation, suggesting
that the reduced M1 plasticity in PD is unrelated to dopaminergic
therapy, disease severity, and the developments of LID. Similarly,
instead of potentiation, iTBS produced no change in excitability
in eight patients ON dopaminergic drugs (61). In another study
(58), inhibitory cTBS on M1 did not change in M1 excitability in
PD patients. Another study (64) demonstrated altered plasticity in
both early and late stages of PD and different effects of dopamin-
ergic medications at different stages of the disease. In this study,
patients were grouped into “stable responders,” “fluctuating non-
dyskinetics,” and “fluctuating dyskinetics” based on their clinical
response to dopaminergic medications. In OFF medication condi-
tion, LTP-like plasticity induced by iTBS was present, although at
a lower level compared to healthy subjects in all patient groups. In
contrast, LTD-like plasticity induced by cTBS was normal only in
the stable response group, while it was reduced in the fluctuating
non-dyskinetic group and was absent in the fluctuating dyskinetic
group. In the ON medication conditions, l-DOPA in the stable
responder group led to increased LTP induced by iTBS (to nor-
mal levels). On the other hand, in the fluctuating non-dyskinetic
group, l-DOPA decreased LTP, and in the fluctuating dyskinetic
group, no changes were observed following l-DOPA. There was
reversal of the depression (toward LTP) induced by cTBS in all
three groups following the medication. This reversal of plasticity
negatively correlated with clinical effects of l-DOPA especially in
patients with motor complications (fluctuating non-dyskinetics
and fluctuating dyskinetics). Thus, l-DOPA modulation of cTBS
induced M1 plasticity increases with disease progression and was
associated with the development of LID.

On the other hand, another study (62) showed normal response
to iTBS in PD in both on and off medication states compared to
controls. Several factors may be responsible for these different
results such as heterogeneous clinical features (different disease
severity, patients with and without LID) and the highly variable
response to TBS even in healthy subjects (88). Another study
administered iTBS in PD patients and found increased cortical
excitability after the first iTBS session, but no change in cor-
tical excitability or motor symptoms after 2 weeks of treatment
(59). Furthermore, studies in hemiparkinsonian rats (89) found
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restoration of LTD at corticostriatal synapses using iTBS to M1.
Thus the results of M1 plasticity in PD using TBS protocols are
variable.

rTMS PROTOCOLS
Several studies used rTMS to the M1 and other cortical regions
to modulate their excitability and to alleviate PD symptoms. Only
studies that assessed the M1 excitability changes will be discussed
here. A study using high-frequency (5 Hz) rTMS on M1 (65) dur-
ing muscle relaxation showed that PD patients failed to show
MEP facilitation irrespective of the medication state (ON or OFF).
These findings were different from control subjects who showed
progressive increase in M1 excitability with trains of 5 Hz rTMS.
However, when the study was performed during muscle contrac-
tion, there were no changes in cortical excitability in either the PD
or control groups. Thus, this study showed decreased facilitatory
response to LTP-like induction protocol in PD compared to con-
trols in the relaxed state. This result is different from increased
MEP amplitude induced by eight sessions of 25 Hz rTMS to bilat-
eral M1 and dorsolateral prefrontal cortex (DLPFC) in PD patients
with gait difficulties and LID (66). The clinical improvement
with rTMS may be due to dopamine release, as dopamine level
correlated with improvement in UPDRS scores (90).

rTMS was also used to explore the dorsal premotor (PMd)-
M1 connections in PD. One study (67) investigated the PMd-M1
connection using 1 Hz rTMS to PMd in patients with early PD
who were never treated with l-DOPA. This inhibitory protocol
normalized the decreased intracortical inhibition of M1 tested
with paired pulse protocol at 5 ms (with subthreshold condi-
tioning and suprathreshold test stimuli to M1 with interstimulus
interval of 5 ms). Similar results of increasing the cortical inhibi-
tion were obtained with the first dose of l-DOPA in medication
naïve patients. Thus the authors concluded that 1 Hz rTMS to
PMd modulates M1 intracortical circuits, probably by induction
of dopamine release. In another study (91), 5 Hz rTMS of M1
alone did not change but when preconditioned with 5 Hz rTMS
of PMd increased M1 excitability (measured by MEP amplitudes
before and after the protocol) in the ON medication state. Since,
such modulation occurred only with ON and not with OFF med-
ication state, the authors concluded that dopamine restored the
short-term plasticity of M1 by modulating PMd-M1 connectivity.

TRANSCRANIAL DIRECT CURRENT STIMULATION
Studies using tDCS have found that anodal M1 stimulation
increased cortical excitability and cathodal stimulation decreased
cortical excitability in PD (92). In addition to increasing the M1
excitability, anodal tDCS improved motor signs assessed with
UPDRS, which showed a trend of correlation with excitability
changes. Although healthy control group was not employed in
this study, the polarity specific direction of change of excitability
was similar to that reported in normal subjects (39). tDCS has
been used to investigate the modulation of plasticity by dopamin-
ergic medications and metaplasticity (69) as l-DOPA decreased
anodal tDCS induced potentiation and increased cathodal tDCS
induced depression of cortical excitability. On the other hand, l-
DOPA had inverse U-shaped dose response curve for potentiation
induced by PAS protocols [Ref. (72); more details in the section of

“Effect of Dopaminergic Medications”]. These differential effects
of l-DOPA on different plasticity protocols are further explored
by Monte-Silva et al. (71) who examined modulation of plasticity
by D2/D3 receptor agonist ropinirole in healthy volunteers. They
found that high and low doses of ropinirole diminished plasticity
induced by either PAS or tDCS whereas a medium dose potenti-
ated the effect of plasticity induced by these protocols, producing
parabolic dose-dependency. tDCS have also used to examine meta-
plasticity, as discussed in earlier sections. A study (93) showed
the metaplasticity effects of both cathodal and anodal tDCS and
1 Hz rTMS on various kinematic measures in PD. Cathodal tDCS
followed by 1 Hz rTMS improved finger pointing movements,
whereas 1 Hz rTMS preconditioned by anodal tDCS showed no
such benefits. However, cortical excitability was not examined in
this study. Thus, tDCS is a simple non-invasive technique to study
metaplasticity and the effects of dopaminergic drugs on cortical
plasticity in PD.

FUTURE STUDIES IN PD-M1 PLASTICITY STUDY
Because of the asymmetric involvement of clinical features and
plasticity in the M1 of PD patients (55), it would be ideal to
conduct a prospective study in a population at high risk of devel-
oping PD (e.g., LRRK-2 mutation carriers). Baseline plasticity
measures may be obtained on both the hemispheres in the pre-
clinical stage and the participants followed throughout the course
of development of PD. This would define the utility of these M1
plasticity measures as prognostic or diagnostic tests and clarify
the pathophysiology of M1 plasticity in PD. Furthermore, with a
long-term prospective design, l-DOPA response and subsequent
development of LID could be investigated in this cohort based on
the pharmacogenetic approach to link genetics and subsequent
development of aberrant plasticity in BG (94).

ROLE OF DEEP BRAIN STIMULATION IN MODULATING M1
PLASTICITY
Deep brain stimulation of the BG structures such as STN and
globus pallidus internus (GPi) represents a breakthrough in the
management of late PD with motor complications (10). Although
the exact mechanisms of actions DBS is not known, in addition to
providing clinical benefits, DBS have improved our understanding
of the BG and their connections with M1. By pairing STN-DBS
and M1-TMS, it was found that M1 excitability is increased at two
specific latencies of about 3 and 22 ms after STN DBS (95). The
short latency facilitation (∼3 ms) is likely due to antidromic acti-
vation of the cortical-STN pathway as demonstrated by STN-DBS
in anesthetized rats (96) where as the longer latency (∼23 ms)
may be due to orthodromic conduction in the indirect pathway.
In another study (97), it was shown that repeated pairing of STN-
DBS and M1-TMS at these two specific latencies could induce
M1 plasticity. Therefore, modulation of M1 plasticity could be
one of the mechanisms of action of DBS. In addition, STN DBS
together with dopaminergic medications restored PAS plasticity
in advanced, dyskinetic PD patients (86).

The effects of l-DOPA on plasticity in the BG have been
observed in PD patients undergoing DBS implantation (98). The
authors used high-frequency stimulation to induce plasticity and
recording the field evoked potentials in the substantia nigra pars
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reticulata using microelectrode. They found that little plasticity
was induced in the OFF condition, which was increased by l-
DOPA. Since the l-DOPA dose was very low (100 mg) in this study
to avoid dyskinesias during the surgical procedure, the modula-
tion of BG plasticity by dopaminergic treatment was only partially
addressed. In addition, an optogenetic study showed that mod-
ifying the activity of STN neurons was less effective than direct
cortical stimulation in reversing the movement deficits following
6-OHDA lesions in mice (99). Thus modifying M1 plasticity might
offer therapeutic benefits in PD, and maybe one of the mechanisms
of action of DBS.

THERAPEUTIC STRATEGIES THAT MODULATE M1
PLASTICITY BY NON-INVASIVE BRAIN STIMULATION
In early stages of PD, there is decreased activity in the medial
motor areas such as the SMA whereas hyperactivity was found in
more lateral regions such as the M1 in more advanced stages of the
disease (100, 101). Non-invasive brain stimulation techniques that
alter the plasticity of these cortical-subcortical networks have been

tested as treatment of PD. In early PD, rTMS in single (102, 103)
and multiple session (104) designs as well as anodal tDCS (92,
105, 106) showed variable improvement in PD symptoms. Fur-
ther, in more advanced PD, low-frequency rTMS to SMA (107),
cerebellum (108), and M1 (109, 110) transiently improve LID.
Meta-analyses (111, 112) of rTMS studies in PD found signifi-
cant improvement in PD motor symptoms with high-frequency
rTMS to M1. Thus, modulation of M1 excitability in PD has ther-
apeutic potential. This may be further explored with pairing M1
stimulation with stimulation of BG structures such as STN and
GPi DBS, other cortical structures (SMA, DLPFC, and other cor-
tical areas involved in PD) to further increase the clinical benefits.
Furthermore, studies that investigate other neurotransmitter path-
ways such as cholinergic,adrenergic,and serotonergic systems with
pharmacological agents and neuroimaging techniques will further
our understanding of the pathophysiology of BG and M1 synaptic
plasticity in PD. This will help to develop new modes of investi-
gations to further understand the disease and identify therapeutic
targets for effective management of PD.
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