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Local field potentials (LFP) reflect the properties of neuronal circuits or columns recorded
in a volume around a microelectrode (Buzsáki et al., 2012). The extent of this integration
volume has been a subject of some debate, with estimates ranging from a few hundred
microns (Katzner et al., 2009; Xing et al., 2009) to several millimeters (Kreiman et al.,
2006). We estimated receptive fields (RFs) of multi-unit activity (MUA) and LFPs at an
intermediate level of visual processing, in area V4 of two macaques. The spatial structure
of LFP receptive fields varied greatly as a function of time lag following stimulus onset,
with the retinotopy of LFPs matching that of MUAs at a restricted set of time lags.
A model-based analysis of the LFPs allowed us to recover two distinct stimulus-triggered
components: an MUA-like retinotopic component that originated in a small volume around
the microelectrodes (∼350 μm), and a second component that was shared across the
entire V4 region; this second component had tuning properties unrelated to those of
the MUAs. Our results suggest that the LFP reflects neural activity across multiple
spatial scales, which both complicates its interpretation and offers new opportunities for
investigating the large-scale structure of network processing.
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INTRODUCTION
Local field potentials (LFP) are low-frequency oscillations in the
extracellular electric potential detectable through microelectrode
recordings. Although they reflect a variety of electrical phenom-
ena, the total synaptic current in a volume around the microelec-
trode is the major contributor to LFPs (Buzsáki et al., 2012). They
thus offer a complementary signal to spikes, reflecting subthresh-
old network activity at larger spatial and longer temporal scales
than are accessible through single unit recording.

The nature of the relationship between spikes and LFPs is a
controversial issue that has attracted much interest (Bauer et al.,
1995; Henrie and Shapley, 2005; Mukamel et al., 2005; Kreiman
et al., 2006; Liu and Newsome, 2006; Nir et al., 2007; Belitski et al.,
2008; Gieselmann and Thiele, 2008; Rasch et al., 2008; Katzner
et al., 2009; Khawaja et al., 2009; Xing et al., 2009; Eggermont
et al., 2011; Hwang and Andersen, 2011; Jia et al., 2011; Liebe
et al., 2011; Lindén et al., 2011; Tsui and Pack, 2011; Zanos et al.,
2011b; Lashgari et al., 2012). In a typical experimental scenario,
a well-understood property of multi-unit activity (MUA) is com-
pared and contrasted with that of the LFP. For instance, it has been
established, by comparing the orientation tuning of V1 MUA and
LFP activity, that the LFP activity in V1 could result from the
spiking activity in a small volume around the electrode, on the
order of 250 μm (Katzner et al., 2009). Xing et al. (2009) came
to a similar estimate by comparing the size of MUA and LFP
receptive fields (RFs) in V1. On the other hand, Kreiman et al.
(2006) found that selectivity of LFPs for objects is best explained
by hypothesizing an integration radius of a few millimeters.

The difference in the estimated integration radii across exper-
iments may reflect the selection of different components of the
LFP for analysis. For instance, the power in the high-frequency
gamma band tends to be correlated with spiking activity

(Ray and Maunsell, 2011) while the amplitude of the signal at
lower frequencies has distinct tuning (Belitski et al., 2008);
distinct components may have distinct integration properties
(Berens et al., 2008). In addition, the physical size of the area
under study, the regularity of its organization, and the correlation
structure of its input (Lindén et al., 2011) can influence the prop-
erties of the LFP, and this may explain some of the discrepancies
in the literature.

Many studies of the LFP have focused on V1 in particular,
which is an unusual cortical area in that it is quite large, and it
is known to have extremely precise columnar organization based
on orientation selectivity (Ohki et al., 2005, 2006) and retinal
position (Hubel and Wiesel, 1977; Blasdel and Fitzpatrick, 1984).
Thus, LFPs in V1 may be unrepresentative of visual or sensory
cortex as a whole. As a step toward understanding the LFP in cor-
tex at large, we have recorded LFPs and MUAs in cortical area
V4, a region that occupies an intermediate position in the visual
hierarchy.

V4 recordings were carried out in two macaque monkeys,
both of whom were implanted chronically with 96-electrode
Utah arrays, which allowed us to relate the properties of the
receptive fields to their physical location on the cortical sur-
face. Using a sparse-noise stimulation procedure, we found that
LFPs in V4 exhibit well-defined receptive fields whose positions
change smoothly as a function of position on the cortical surface.
However, a detailed analysis of the temporal properties of these
signals revealed striking changes in RF position and size as a func-
tion of time following stimulus onset, such that the retinotopy of
MUAs matched that of LFPs only at a restricted set of time lags.

These results could be explained by a model in which the LFP
reflects multiple sources of input: a local, retinotopic input and
a distant, shared input that had a similar effect across all of V4.
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By fitting such a model to our data, we found that the local
input exhibited consistent retinotopy that approximated that of
the simultaneously recorded MUAs. The shared input arrived at
latencies that differed from those of the retinotopic input and
that differed substantially between the two animals. These results
suggest that the LFP reflects neural activity across multiple spa-
tial scales, which both complicates its interpretation and offers
new opportunities for investigating the large-scale structure of
network processing.

RESULTS
PRELIMINARY ANALYSIS
We used a sparse noise presentation paradigm to estimate the
receptive fields of LFPs and multi-units (MUA). Sparse bar stim-
uli were flashed on a screen while the animal was rewarded for
fixating a static red target (Figure 1A). The stimuli were located
on a log-polar grid and scaled in length and width proportion-
ally to eccentricity to account for the scaling of neuronal RFs with
eccentricity (Motter, 2009).

We first removed the remnants of individual spikes on each
electrode, using a Bayesian spike removal algorithm (Zanos et al.,
2011b). We then determined whether the amplitude of the LFP
or its power in different frequency bands were modulated by
the stimulus. We filtered the signal in narrow frequency bands
and applied the Hilbert transform to get an estimate of the

instantaneous power of the signal as a function of time (Freeman,
2007). In this preliminary analysis, we estimated the receptive
fields (RFs) of LFPs using reverse correlation (De Boer and
Kuyper, 1968; Marmarelis and Marmarelis, 1978). We used these
RFs to predict the signal in a separate validation dataset (see sec-
tion “Methods” for details). We obtained poor predictions (mean
r = 0.03 for array 1, r = 0 for array 2) for all examined frequency
bands (Figures 1B,C, red lines). This is likely due to the short
duration of each stimulus; generally, power modulations tend to
be visible after sustained stimulation (Khawaja et al., 2009).

We repeated the analysis using the amplitude of the LFP in
different frequency bands. This yielded considerably better pre-
dictions (Figures 1B,C, blue lines) across the 5 lowest frequency
bands examined, encompassing the range from 0.5 to 30 Hz
(mean r = 0.24 for array 1, r = 0.14 for array 2). Note that
shaded error bars represent ±2 s.d.; the lack of overlap in the low-
est 5 frequency bands indicates that the worst fits to the amplitude
of the LFPs are nevertheless better than the best fits to the power
of the LFP. Thus for the following analyses, we focused on the
amplitude of the LFP filtered between 0.5 and 40 Hz.

RECEPTIVE FIELD PROFILES
Figure 1D shows a slice of a typical LFP RF, capturing the
selectivity for space and orientation at a lag of 70 ms following
stimulus onset. Casual inspection reveals little modulation of the

FIGURE 1 | Sample stimulus and receptive field. (A) Sample stimulus
frame. The stimulus was composed of sparse bars arranged on a log-polar
grid to account for the magnification of the visual field with eccentricity.
(B) Quality of reverse correlation fits to the amplitude of the LFPs (blue lines)
and power (red lines) in different frequency bands for the first array. Delta:
0.5–4 Hz, theta: 4–8 Hz, alpha: 8–12 Hz, low beta: 12–20 Hz, high beta:
20–30 Hz, low gamma: 30–50 Hz, high gamma: 50–80 Hz. Quality of fit was
evaluated by the correlation (r) of the predicted and measured responses
in a validation dataset. Shaded error bars represent ±1 s.d. Power is not
modulated by the stimulus; rather, the stimulus influences the low-frequency

components of the amplitude of the LFPs. (C) Same as in (B), for the second
array. (D) Sample LFP RF estimate. The RF of the LFP is measured at a 70 ms
time lag relative to stimulus onset. Each square represents the spatial RF for
a given orientation. The shape of the spatial RF varies little with orientation.
The color bar indicates peak z-values estimated through bootstrapping.
Here, as in all subsequent RF illustrations, a Gaussian smoothing kernel with
σ = 0.7 is applied. (E) Separable RF estimate. The RF shown in (D) is
approximated as separable in space (left) and orientation (right). Little
information is lost in the process, and z-values for the spatial envelope of the
RF are markedly increased (see legend of color bar).
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spatial structure of the RF with orientation, aside from a scale fac-
tor. As this pattern of results was typical of both our LFP and
MUA recordings, we assumed for the rest of the analyses that
orientation tuning could be treated separately from space-time
selectivity. As shown in Figure 1E, the consequent reduction in
free parameters led to more reliable receptive field estimates (peak
z-values shown next to color bars).

LFP spatial RFs were, however, strongly modulated as a func-
tion of time following stimulus onset. Figure 2A (top) illustrates
the spatial RF of an LFP measured on one array at three different
time lags. The LFP was responsive to a large area of the visual field
at early time lags (80–100 ms) and a smaller area at later time lags
(140 ms). This pattern of changes was typical of LFPs measured
on this array, as shown below in more detail. By contrast, the
MUA RF measured on the same electrode (Figure 2A, bottom)
showed little evidence of such a change in size.

In addition to changes in size, LFP RFs frequently appeared
to shift their preferred positions as a function of time. Figure 2C
illustrates the receptive field of an LFP typical of the second array.
Between 70 and 90 ms time lags, the RF shifted its preference
toward high eccentricities. At 120 ms, the LFP responded to stim-
uli at a foveal location, far from the initial RF peak (peak z-value:
9.2; |z| = 4.5 corresponds to p = 0.001, corrected for multiple
comparisons). Note that the polarity of the response reversed with

time; while eccentric stimuli caused a low-latency negative deflec-
tion in the LFP signal, foveal stimuli caused a positive deflection at
longer time lags. Again, the MUA RF (Figure 2C, bottom) showed
no evidence of such a change.

To quantify these effects, we fit each RF time slice with a
Gaussian, which captured the selectivity of the RF with four
parameters: preferred eccentricity, preferred angle, radial size, and
angular size. We estimated the uncertainty in these parameters
through bootstrapping. Figures 2B,D show the changes in RF
position (top) and size (bottom) for the example LFPs (blue)
and MUAs (red). LFP RF parameter changes were highly signif-
icant across time lag (blue lines; shaded error bars correspond
to 95% confidence intervals). By contrast, parameters for MUAs
were comparatively stable across time lag (red lines), partly as a
consequence of their shorter duration.

Hence, while the LFPs in the examples were well tuned for
space, their spatial RFs were not static over time. As a result, the
position and size of LFP receptive fields diverged substantially
from those of corresponding MUAs at some time lags.

ARRAY ANALYSIS
Given the stability of MUA receptive fields across time lags
(Figure 2), we refit the data on the assumption that their RFs were
separable in time and space (see section “Methods”). We then

A B

C D

FIGURE 2 | LFP receptive fields change with time lag. (A) Spatial envelope
of an LFP RF (top) and MUA RF measured on the same electrode (bottom).
The measured spatial envelope of the LFP RF (top) becomes markedly
smaller at longer time lags, while the spatial envelope of the MUA RF
(bottom) is stable. This pattern was typical for electrodes on the first array.
(B) RF position and size as a function of time. LFP RF parameters (blue lines)
corresponding to preferred eccentricity, polar angle, radial size, and angular

size change markedly as a function of time. MUA RF parameters, illustrated
in red, are comparatively stable. Parameters were estimated by fitting a
Gaussian to the spatial RFs at different time lags and shaded error bars
represent 95% confidence intervals for the parameters estimated through
bootstrapping. (C) and (D): as in (A) and (B) for an example electrode on the
second array. Here, the LFP RF shows a late, foveal excitatory region
(120 ms) far from the initial, peripheral preference (70 ms).
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plotted the estimated preferred eccentricity and polar angle of
each MUA according to their location on the array. Figure 3A
shows the result for a single MUA; here the RF was found at
roughly 15◦ eccentricity along the vertical meridian in the lower
visual field (bottom plot). These values were color-coded sepa-
rately and displayed at the location of the recording electrode
within the array (cross-shaped outlines). For eccentricity (left),
blue colors corresponded to small values (foveal locations), while
red corresponded to high values (eccentric locations). The same
color similarly mapped the range of polar angle (right) from 270◦
(lower visual field) to 360◦ (right visual field), which spanned the
ensemble of RFs we recovered for this array.

Repeating this process for every electrode revealed the retino-
topy of MUAs across 4 × 4 mms of cortex (Figure 3B). Here
eccentricity and angle for each electrode are coded as described
above, with electrodes that did not yield significant RFs repre-
sented in white. As expected, preferred eccentricity and polar
angle changed smoothly as a function of position on the array,
and the direction of the eccentricity gradient, illustrated by a
green arrow, was roughly orthogonal to that of polar angle.

LFP RFs exhibited a similar retinotopic organization, as illus-
trated in Figure 3C for the same array. As expected from the
examples shown in the previous section, LFP retinotopy changed
as a function of time lag. These changes were coherent across
the array: at later time lags (140 ms), a greater proportion of the
array responded to foveal locations (as shown by the increased
representation of dark blue colors, left plot) and angles near
270◦ (again shown in dark blue, right plot). Figure 3D shows
that the preferred angle and eccentricity of LFPs best matched
those of MUAs at a time lag of 140 ms, as measured by the
root-mean-squared (RMS) discrepancy.

As suggested by the example shown in Figure 2A, the mean
LFP receptive field size changed dramatically as a function of time
lag (Figure 3E). LFP RFs appeared larger at earlier lags, shrinking
in size to a value close to that of the mean MUA receptive field size
at longer time lags (dashed line).

Corresponding results for the second array are shown in
Figure 4. In this case LFP RFs formed a retinotopic map at early
time lags (Figure 4B, top), consistent with that of MUAs, with the
best match occurring at 80 ms (Figure 4C). Strikingly, however,
a foveal component appeared at later time lags, overtaking the
retinotopy of the LFPs completely by 170 ms (Figure 4B, bottom).
Thus, the majority of LFPs measured in the second array showed
biphasic receptive fields similar to that illustrated in Figure 2C.
The changes in retinotopy were accompanied by modest changes
in mean RF size (Figure 4D).

These results show that the LFP retinotopy changes with time
lag in a concerted fashion across the cortical surface. While at
some time lags the LFP retinotopy matched that of the MUAs, at
others it considerably diverged. Thus, LFP RFs reflect more than
the underlying retinotopy of MUAs.

Furthermore, the relationship between LFPs and MUAs was
qualitatively different between the two arrays. For the first array,
the retinotopy of the LFPs best matched those of MUAs at late
time lags (140 ms); in the second array, LFP RFs were aligned with
MUAs at early time lags (80 ms). In addition, our second array
showed an array-wide foveal component unseen in the first array.

B

A

C

D

E

FIGURE 3 | MUA and LFP retinotopy—Array 1. (A) Construction of
retinotopies based on measured RFs. The preferred angle and eccentricity
of a RF (bottom) is measured by fitting a Gaussian. These measurements are

(Continued)

Frontiers in Computational Neuroscience www.frontiersin.org March 2013 | Volume 7 | Article 21 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Mineault et al. LFP retinotopy in V4

FIGURE 3 | Continued

shown using a color code (top) at the location of the electrode on the array
(cross-shaped outline). By repeating this process for all electrodes, the
underlying retinotopy of the cortical sheet is revealed. (B) Measured
retinotopy of MUAs. Electrodes yielding non-significant fits are left in white.
The preferred eccentricity and polar angle change smoothly across the
cortical sheet in a linear gradient (green arrows). (C) Measured retinotopy
of LFPs as a function of time lag. The retinotopy evolves in a concerted
fashion across time lag; at 140 ms, the array appears to represent more
foveal locations and more locations around 270◦ polar angle. (D) Root
mean square (RMS) discrepancy between MUA and LFP retinotopies as a
function of time lag. MUA and LFP retinotopies are best matched at 140 ms
time lag. Shaded error bars represent ±2 s.d. (E) Mean receptive field size
as a function of time lag. The dashed line represent the mean MUA size
measured on this array. The angular size of the RFs (not shown) showed a
similar effect. Receptive fields are 3–4 times larger in linear dimensions at
100 ms compared to late time lags. Shaded error bars represent 95%
confidence intervals for the mean.

ROBUSTNESS OF RETINOTOPY
The striking differences between MUA and LFP receptive fields
within an array and in the results between arrays could conceiv-
ably be a signature of a transient electrical artifact; that is, a source
of noise that contaminated recordings on a particular recording
day, such as line noise, reward artifact, cross-talk between elec-
trodes, etc. To examine this, we repeated the analyses for data
recorded on another day in each array. LFP RFs estimated on
other recording days exhibited the same qualitative pattern of
shift in retinotopy across time lag characteristic of each array.
The day 1 LFP-day 2 LFP RMS discrepancy, averaged across time
lags, was 0.8 for both arrays. By contrast, at the optimal tem-
poral lag, the within-day LFP-MUA RMS discrepancy was ∼2
(Figures 3D, 4C). The tuning of the LFP is thus consistent across
days.

It is also possible that signal processing exaggerated the differ-
ences between the two signals. The results presented in Figures 3B
and 4A reflect MUA obtained by full-wave rectifying a band-
pass filtered (750–3500 Hz) signal; we refer to this as the rMUA
(cf. Xing et al., 2009). The MUA is also commonly defined by
the density of threshold crossings in band-pass filtered voltage
traces (Katzner et al., 2009); we term this the tMUA. These dif-
ferent definitions could potentially isolate different components
of the signal (Supèr and Roelfsema, 2005). We thus repeated our
analyses for the tMUA (see section “Methods” for details).

We found similar retinotopies with both measures of mul-
tiunit activity, with rMUA-tMUA RMS discrepancies of 0.4 and
0.9 for arrays 1 and 2, respectively. We found fewer signifi-
cantly tuned electrodes with the threshold method, however,
especially in the second array (tMUA: N = 57 in array 1, N = 23
in array 2; rMUA: N = 65 in array 1, N = 69 in array 2). We
found that tMUA RFs were slightly (7%), but significantly smaller
than rMUA receptive fields (p < 0.05 for each array, two-sided
Wilcoxon rank sum test). These results are consistent with the
rMUA having similar properties to the tMUA, while integrating
over a slightly larger cortical area.

Thus, the changing retinotopy across time lags and the qualita-
tively dissimilar properties of the MUA and LFPs are unlikely due
to transient noise sources or to the choice of data preprocessing
for the MUA (above) or the LFP (Figures 1B,C).

 

A

 

B

 

C

D

FIGURE 4 | MUA and LFP retinotopy—Array 2. (A–D) as in Figures 3(B–E),
now for the second array. The second array shows qualitatively different
changes in retinotopy as a function of time. In particular, while at early time
lags (80 ms) the array forms a smooth retinotopy, at later time lags
(170 ms) the entire array represents a foveal location.
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TEMPORAL MIXTURE MODEL
The previous section showed that at some time lags, LFP RFs are
organized in a retinotopic fashion similar to MUAs. Yet, this close
correspondence between LFP and MUA retinotopy is broken at
other time points. In the second array, in particular, the appear-
ance of a foveal component at late time points (Figure 4B) hints
at the interplay between an MUA-like retinotopic component,
which changes from electrode to electrode, and a component
tuned for foveal locations, shared by all electrodes.

Figure 5 illustrates how the interplay between these two mech-
anisms might account for the data. LFP RF time slices measured
on two electrodes on the same array are plotted in Figure 5A.
While at early time lags (left and center), the RFs are markedly
different, they have similar shapes at later time points (right).
These results are explained in Figure 5B by the interplay of
electrode-specific components (green lines) and a second com-
ponent (black lines) shared by all electrodes on the same array.
Here the changing receptive field positions result from electrode-
specific response components that are stronger at early time lags
and a shared component that is stronger at later time lags.

More formally, we assumed that the RFs f e
τ,r,θ,o as a function

of electrode number e, time lag τ, eccentricity r, angle θ and
orientation o were given by:

f e
τ,r,θ,o = ae

τ pr,θ,o + be
τqe

r,θ,o (1)

Here pr,θ,o is a component shared by all electrodes on a given array
and qe

r,θ,o is specific to each electrode; they are weighted differ-
entially depending on electrode number and time lag by factors
ae
τ and be

τ. The shared component pr,θ,o could take on any spatial

configuration. The electrode-specific component qe
r,θ,o was con-

strained to have a Gaussian spatial RF profile and a separable
orientation tuning curve.

We fit the temporal mixture model for each array by minimiz-
ing the squared error between the model and the data (see section
“Methods” for details). The resulting model yielded a highly sig-
nificant improvement over a baseline model without the constant
component (0.57 vs. 0.45 R2, p � 0.001 for array 1; 0.37 vs. 0.30
R2, p � 0.001 for array 2; F-test).

Based on the model fits, we reconstructed composite LFP RFs
that were then fit with Gaussians at every time point to recon-
struct retinotopies. These are illustrated in Figure 6 for array 1.
The simulations replicated the pattern of increased representa-
tion of low eccentricity and 270◦ locations at longer time lags
(Figure 6A) and the apparent decrease in receptive field size in
time (Figure 6B).

The underlying mechanism for this switch is illustrated in
Figure 7. The shared component was triggered by stimuli of any
orientation across a fairly broad region of space (Figure 7A), with
peak selectivity at central locations (∼10◦ eccentricity, 315◦ polar
angle). In absolute terms, both the shared and retinotopic com-
ponents were strongest at early time lags (Figure 7B). However,
because the retinotopic component decayed more slowly, it was
relatively stronger at late time points (Figure 7B, bottom). It fol-
lows that at early lags, the observed RFs were both more broadly
spatially tuned and biased toward representing central locations
than at later lags.

Similar results are shown for the second array in Figure 8. The
model captured the gradual overtaking of the array by a constant
component at later time lags (Figure 8A), along with the decrease

A B

FIGURE 5 | Temporal mixture model. (A) Two LFP RFs measured on the
same array are illustrated. At early time lags, the RFs are quite different,
with the first RF representing high eccentricity locations and the second
representing intermediate eccentricities. At late time lags, however, both RFs
show a secondary excitatory lobe in a foveal location. (B) These results
are explained by positing that each RF is a mixture of two components: a

retinotopic component, specific to each electrode, constrained to take the
shape of a Gaussian, and a shared component, which can take an arbitrary
shape but is shared across electrodes. Each RF time slice is obtained by a
weighted sum of the electrode-specific retinotopic component (green lines)
and the shared component (black line). The relative strength of the two
components as a function of time determines the shape of the RFs.

Frontiers in Computational Neuroscience www.frontiersin.org March 2013 | Volume 7 | Article 21 | 6

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Mineault et al. LFP retinotopy in V4

A

B

FIGURE 6 | Reconstructed retinotopies based on temporal mixture

model—Array 1. (A) Reconstructed retinotopy of the array as a function of
time. These retinotopic maps were obtained by fitting the temporal mixture
model to the array 1 data, creating simulated RFs based on the measured
parameters, and fitting the simulated RFs with Gaussians. The mixture
model captures the greater representation of low eccentricity and 270◦
locations at late time lags (140 ms). (B) Reconstructed mean RF size as a
function of time. The model captures the dramatic change in measured RF
size as a function of time. Shaded error bars represent 95% confidence
intervals for the mean.

in receptive field size with increasing lag (Figure 8B). Figure 9A
shows that this shared component was strongly tuned for a foveal
portion of the visual field. As with the first array, the retinotopic
component peaked at early time lags (Figure 9B, middle); unlike
the other array, however, the shared component manifested itself
mostly at later time lags (Figure 9B, top).

Together, these results explain the observed changes in
retinotopic organization in terms of a gradual switch in the
importance of two distinctly tuned components. The first, retino-
topic component was strongest in both arrays at early time

A

B

FIGURE 7 | Temporal mixture model parameters—Array 1. (A) Shared
receptive field estimated from the data. The RF is broadly tuned for space
and orientation. (B) Gains of each component as a function of time. Both
the median shared gain (top) and the retinotopic gain (middle) peak at early
time lags. However, the retinotopic gain decays more slowly as a function
of time. Therefore, the retinotopic gain is relatively larger at late time lags
(bottom). This creates a shift in the representation from broadly tuned
(shared component) to more tightly tuned (retinotopic component). Shaded
error bars represent 95% confidence intervals for the median.

lags, while the second, shared component differed qualita-
tively between the two arrays. Thus, shared components may
represent idiosyncratic, large-scale biases in visual representa-
tion (Jia et al., 2011), a matter we explore in more detail in
the discussion.

RETINOTOPIC COMPONENT
The extracted retinotopic components are illustrated in
Figures 10A,B; they were retinotopically arranged in a manner
similar to MUAs (Figures 3B and 4A). This link is shown in
more detail in Figures 10C,D, which compares the positions
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A

B

FIGURE 8 | Reconstructed retinotopies based on temporal mixture

model—Array 2. (A) and (B) as in Figure 6. The model captures the
change in the representation from retinotopic at early time lags to
exclusively representing foveal locations at late time lags.

(top row) and sizes (bottom row) of LFP and MUA RFs measured
on the same electrodes. The eccentricity and polar angle of the
extracted RFs were similar to those of MUAs measured at the
same location, save for a cluster of observations at the bottom
right of the second array (Figure 10B). These electrodes had a
retinotopic component that was foveal and thus overlapped with
the shared component; this made precise estimation of their
location and size problematic.

Consistent with previous literature, retinotopic LFP RFs were
larger than corresponding MUA receptive fields (Figures 10C,D);
mean and median sizes are documented in Table 1. We estimated
the integration radius of the LFP using the method introduced
in (Xing et al., 2009). This involves first estimating the inte-
gration radius in visual coordinates, then translating this into

A

B

FIGURE 9 | Temporal mixture model parameters—Array 2. (A) and (B)

as in Figure 7. The shared RF is tightly tuned for foveal locations. The gain
of the shared RF grows larger at late time lags. Therefore, the RFs switch
from an early retinotopic to a purely foveal late representation.

cortical coordinates σcLFP using the estimated cortical magnifi-
cation factor (m), according to the formula:

σcLFP = [m2(σ2
vLFP − σ2

vMUA) + σ2
cMUA]1/2 (2)

Here σvLFP and σvMUA correspond to the mean size of LFP and
MUA RFs in visual coordinates, respectively, and σcMUA is the
integration radius of the MUA in cortical coordinates. Because
the retinotopy of V4 is less regular than in V1, magnification can
change depending on the position on the cortical surface. We
therefore estimated m by averaging the magnitude of the gradi-
ents of eccentricity and polar angle across the array (see section
“Methods” for details). This yielded an integration radius of 300
microns [95% CI: (100,500)] for the retinotopic component of
the LFP in array 1 and 400 microns [95% CI: (150,650)] in array 2.
Thus, the retinotopic component of the V4 LFP arises from the
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FIGURE 10 | Retinotopic components. (A) Measured retinotopy of
retinotopic component for Array 1 and (B) for Array 2. These can be
compared to the corresponding MUA-based estimates in Figures 3B and 4A.

(C) Receptive field parameters of LFPs and MUAs measured on the same
electrode compared for Array 1 and (D) Array 2. Eccentricity and angle match
between MUAs and LFPs, while LFPs display larger receptive fields on average.

Table 1 | Summary statistics of measured RF sizes (in parentheses: 95% confidence intervals estimated through bootstrapping).

Radial size—Median Radial size—Mean Angular size—Median Angular size—Mean

LFP 0.50 (0.50, 0.51) 0.54 (0.51, 0.57) 16.6 (16.2, 16.8) 18.0 (17.2, 19.0)

MUA 0.44 (0.42, 0.45) 0.46 (0.44, 0.48) 14.0 (14.4, 15.7) 15.0 (14.4, 15.7)

integration of activity proximal to the electrode, consistent with
previous results in V1 (Katzner et al., 2009; Xing et al., 2009).

ORIENTATION AND TEMPORAL TUNING
Additional information about the relationship between the MUA
and the LFP may be gained by comparing the orientation and
temporal tuning of the two signals. We found that the LFPs
were essentially untuned for orientation, with a mean circular
variance (CV; Ringach et al., 2002) of 0.95 for the retinotopic
component (minimum CV: 0.88) and 0.94 for the shared com-
ponent across both arrays. On the other hand, some MUAs
were tuned for orientation (min CV: 0.65), with a mean CV
of 0.87 for significantly tuned MUAs across both arrays. This
data is consistent with the idea that the LFP integrates over
a larger area than the MUA, although the poor tuning pre-
vents further analysis of the integration radius in the manner of
Katzner et al. (2009).

More interesting is the temporal tuning of both signals.
Figure 11A illustrates the temporal filters of significantly tuned

MUAs (blue lines; 50–240 ms) as a function of their position
on the first array. Temporal filters are stereotyped through the
array, with a rapid rise followed by a slower decay. There is some
indication of suppression at late time lags (segments below the
gray line). The majority of filters have a peak latency of 70 ms
(Figure 11C), with a minority having a peak around 120 ms.
These results are mirrored in array 2 (Figure 11B), where the fil-
ters are also highly stereotyped, although here the decay appears
faster. The peak latency is also centered around 70 ms (mean:
73 ms; Figure 11D).

These results contrast strongly with the time filters of the
retinotopic component of the LFP in array 1 (Figure 11E), in
which the temporal filters differed dramatically across the array.
Moreover, the filters are of considerably longer duration than the
corresponding MUA filters, reflecting the fact that the signal is
modulated at low frequencies (Figure 1B). While the dominant
polarity is negative, some filters have roughly equal positive and
negative polarity phases (bottom center) or have mostly positive
polarity (right middle). The peak latency occurs late compared to
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FIGURE 11 | Temporal filters. (A) Estimated temporal filters for the MUAs
measured on the first array and (B) On the second array. Filters span
50–240 ms time lags. Gray lines correspond to a coefficient of 0. Filters are
highly stereotyped across each array. (C) Distribution of peak latency for the
MUAs for the first array and (D) The second array. Peak latency is centered

around 70 ms. (E,F) Same as in (A) and (B), but for the retinotopic
component of the LFPs. LFP temporal filters vary much more than
corresponding MUA temporal filters, Their duration is generally longer, and
they are smoother. (G) and (H) LFP peak latencies. These are more widely
distributed than corresponding MUA peak latencies, and generally longer.
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the MUA, and varies widely (mean: 118 ms; Figure 11G). Similar
trends are visible for array 2 (Figure 11F), with filters show-
ing large variation in shape and polarity. Peak latency is also
more broadly distributed than the corresponding MUA data, and
longer, with a mean of 90 ms (Figure 11H).

Thus, while MUAs and the retinotopic component of LFPs
have similar retinotopy (Figure 10), the two signals diverge
strongly in terms of temporal selectivity. LFPs have more slug-
gish dynamics, longer duration, and longer peak latencies; they
are also more variable in shape and polarity than MUAs. One
must therefore be careful in interpreting the LFP as a spatially
smoothed version of the MUA, since the LFP does not reflect
the MUA per say, but rather subthreshold activity (Buzsáki et al.,
2012). While in some instances, like retinotopy, the relationship
between subthreshold activity and the MUA is sufficiently well
understood to make the relationship between LFP and MUA
transparent (Carandini and Ferster, 2000), in the case of temporal
tuning the relationship is complex, and the LFP and MUA reveal
themselves as highly distinct.

DISCUSSION
GENERAL DISCUSSION
The local field potential is a complex signal which offers a win-
dow into cortical processing at larger spatial and longer temporal
scales than those associated with single units. Components of this
signal have been shown to correlate with attention (Fries et al.,
2001, 2008; Gregoriou et al., 2009), cortical inhibition (Henrie
and Shapley, 2005; Atallah and Scanziani, 2009), arousal (Van
Swinderen et al., 2004; Andretic et al., 2005), synchronicity (Gray
and Singer, 1989; Mukamel et al., 2005; Nir et al., 2007), and other
network phenomena.

While the LFP has proven a highly interesting signal, its inter-
pretation has been marred by our lack of understanding of its
biophysical sources and its relationship to spikes. Action potential
generation and passive propagation have been well understood
for several years (Hodgkin and Huxley, 1952; Koch, 1999). By
contrast, LFPs have only recently been modeled in a biophysically
detailed fashion (Bedard et al., 2006; Milstein et al., 2009; Lindén
et al., 2011; Buzsáki et al., 2012). Modeling studies have unequiv-
ocally concluded that the LFP is an intrinsically more complex
signal than spikes, reflecting a variety of distinct electrical phe-
nomena (Buzsáki et al., 2012). Lindén et al. (2011) show that the
integration radius of the LFP depends both on cortical layer and
the correlation structure of the input.

It follows that the structure of the LFP and its relationship to
spikes may well vary from area to area in idiosyncratic and unpre-
dictable ways. We thus set out to estimate the receptive fields of
LFPs in area V4 of two macaques and compared their properties
to those of MUAs. Our results show that, in the context of a sparse
noise presentation paradigm (reverse correlation), where the LFP
signal is dominated by transient as opposed to sustained activity,
the LFP reflects multiple sources of inputs.

In both our subjects, one component of the LFP reflected
the underlying retinotopic organization of the cortical sheet
(Figure 10). This component was strongest at 80–90 ms following
stimulus onset (Figures 7B and 9B), and decayed slowly to base-
line at 200–250 ms. It arose from the integration of activity within

a patch of cortex of ∼350 um. Retinotopic signals were mixed
with components shared by all electrodes on a given array. In the
case of our first array, the shared component was broadly tuned
for space and peaked at early time lags (Figure 7). For the second
array, the shared component was tuned for foveal locations and
peaked at late time lags (Figure 9).

What is the source of the shared component? We used state-of-
the-art signal processing to eliminate potential signal distortion
by analog filters and spike remnants (Nelson et al., 2008; Zanos
et al., 2011b; see section “Methods” for details). While it remains
possible that the shared component is artifactual, its tuning prop-
erties are inconsistent with distortion caused by faulty grounding,
for example. In the second array, in particular, we see that the
shared component has temporal tuning properties which are very
different from MUAs or early LFPs recorded on the array. Careful
inspection of the shared component measured at late time lags
(Figure 4B, 170 ms) shows that there is a small but visible gradi-
ent in angular selectivity from the left to the right of the array;
this gradient is not captured by the temporal mixture model
(Figure 8A).

Hence, the shared components actually change across the
array, albeit more modestly than the retinotopic components.
We thus hypothesize that the shared components reflect large-
scale biases in the input to area V4. Jia et al. (2011) found
that one component of low-gamma LFPs in V1 have similar
orientation tuning across 4 mm of cortex, independent of the
preference of local MUAs. It has been hypothesized that this
reflects large scale biases in orientation representation in striate
cortex, where orientations aligned with the preferred polar angle
of neurons are slightly overrepresented (Freeman et al., 2011).
Such large-scale biases in representation, which have no func-
tional role per say, could vary idiosyncratically from animal to
animal. We conjecture that this could explain the sharp differ-
ence between the arrays in the tuning of the shared common
component.

Another potential source of discrepancy in the tuning of
the shared component lies in the sampling of cortical layers.
Different layers could be targeted as a function of position due
to the curvature of cortex. The changing polarity of the tem-
poral filters in Figures 11E,F is consistent with this idea. The
second animal was much smaller (5–6 kg) than the first animal
(9–10 kg). Consequently, the distance between the lunate and
superior temporal sulci at the level of the implant was smaller
in the second animal (4–5 mm vs. 6–7 mm) and the cortical sur-
face was more curved. Thus, it is unlikely that the sample of
layers is exactly the same in both animals, although this could
not be verified histologically. These factors highlight that as an
epiphenomenal signal (although see Anastassiou et al., 2011),
the LFP is complex and noisy, and care must be taken in its
interpretation.

THE INTEGRATION RADIUS OF THE LFP
These results may bear on the continuing debate regarding the
integration radius of the LFP. We and others have demonstrated
that different components of the LFP have tuning properties
which are consistent with either local (∼300 um) or global (sev-
eral mms) integration of MUA activity (Kreiman et al., 2006; Liu
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and Newsome, 2006; Katzner et al., 2009; Xing et al., 2009; Jia
et al., 2011). We thus conclude that it is not meaningful to speak
of the integration radius of the LFP, for the simple reason that the
LFP reflects multiple sources of inputs with different integration
scales.

We conjecture that the discrepancies in previous studies are
due to signal processing and analysis choices which enhance the
relative strength of one component of the LFP over another. An
important distinction is that some studies (Katzner et al., 2009;
Xing et al., 2009) have examined the amplitude of the LFP, simi-
lar to what is done here, while others (Kreiman et al., 2006; Liu
and Newsome, 2006; Jia et al., 2011) have examined power at
a selected frequency. The amplitude of the LFP is sensitive to
transients in the local field potential, while power is sensitive to
sustained oscillatory activity. Lashgari et al. (2012) have found
that transient and sustained LFPs in V1 have markedly differ-
ent tuning properties; this translates into changing relationships
with MUA activity. It will be interesting to compare the retino-
topy of amplitude and power components of the LFP directly in a
paradigm which triggers both stereotyped deflections and oscilla-
tory activity; natural movies may be able to evoke both phase and
power modulations (cf. Figure 6, Rasch et al., 2008).

Another potential source of variability in the properties of the
LFP may result from the treatment of the dimension of time.
Katzner et al. (2009), for instance, analyzed the first component
of the Singular Value Decomposition of the temporal-orientation
tuning curve. Xing et al. (2009) instead analyzed responses at
a latency corresponding to the peak deviation of the LFP. Such
choices would not permit analysis of the multi-component tem-
poral responses of the kind we have reported here (Figure 2).

It may well be the case that in V1 the major contribution to the
LFP is separable with respect to time lag and highly local. In this
respect, V1 may be a special case, as its retinotopy is remarkably
precise (Hubel and Wiesel, 1977; Blasdel and Fitzpatrick, 1984;
Ohki et al., 2005, 2006); by contrast, higher-level areas have less
precise retinotopy. Tonotopy in primary auditory cortex is sig-
nificantly less precise than retinotopy in V1, at least in rodents
(Castro and Kandler, 2010). Interestingly, LFP spectrotremporal
receptive fields are much more broadly tuned than those of MUAs
in both cat (Eggermont et al., 2011) and monkey (Kajikawa and
Schroeder, 2011).

Given that the integration radius of the LFP varies with the
correlation structure of the input (Lindén et al., 2011), part of
the disagreement may reflect genuine inter-areal differences in the
LFP. While this complicates the interpretation of the LFP, it may
afford an opportunity to study how input correlation structures
are forwarded and modified in a hierarchy, with wide implications
for our understanding of encoding and decoding neural activity
(Averbeck et al., 2006).

METHODS
TASK
The recording methods have been described in detail previously
(Zanos et al., 2011a). Briefly, we implanted chronic microelec-
trode Utah arrays in area V4 of two macaques (Macaca mulatta).
Area V4 was identified based on stereotactic coordinates and
anatomical landmarks (Ghose and Ts’O, 1997). After recovery,

the monkey was seated comfortably in a primate chair (Crist
Instruments) and trained to fixate for liquid reward. Eye position
was monitored at 200 Hz with an infrared camera (SR Research).
All aspects of the experiments were approved by the Animal
Care Committee of the Montreal Neurological Institute and were
conducted in compliance with regulations established by the
Canadian Council of Animal Care.

SIGNAL ACQUISITION AND PROCESSING
We recorded wideband signals at 10 kHz (bandpass filtered in
hardware between 0.07 and 2500 Hz) over the 96 channels of each
Utah array. We monitored the power spectrum of recorded wide-
band signals on a daily basis to minimize line noise and other
artifacts. Recordings were referenced against a ground located
on the skull 2–3 cm away from the array. The same recording
equipment was kept in place for both animals.

The wideband signal was band-pass filtered between 750 and
3500 Hz, rectified, band-passed between 2 and 40 Hz, and down-
sampled to 100 Hz to form the MUA signal (Xing et al., 2009).
For comparison with previous literature, we also computed an
alternative MUA based on applying a low threshold (3σ) to the
wideband signal bandpassed between 750 and 3500 Hz (Katzner
et al., 2009). We used a detection deadtime of 1 ms, a two-sided
threshold, and binned the events at 100 Hz (10 ms time bins); this
gave similar results to the rectification-based method (see section
“Results,” Robustness of retinotopy). Action potential artifacts
were removed from the wideband signal using a Bayesian method
(Zanos et al., 2011b); the despiked wideband signal was then
downsampled and band-pass filtered to produce the LFP (see
Preliminary Analysis and Receptive Field Estimation section for
filters specific to each analysis).

STIMULUS
Each animal was trained to fixate a red spot (2◦ fixation win-
dow) while sparse dark bar stimuli were flashed on a uniform
gray screen. The monitor was refreshed at a rate of 75 Hz; stimuli
changed every odd frame (37.5 Hz); and each bar stimulus lasted
for 6 monitor frames (12.5 Hz; 80 ms). Stimuli were presented in
a single continuous trial, which lasted 25 min for the data pre-
sented for the first array and 30 min for the data presented for
the second array. We repeated the experiment on other recording
days for each array, with similar results (data not shown). The bar
stimuli were placed along a 12 × 12 polar grid (Figure 1A), such
that stimuli at the periphery were longer and wider than those
near the fovea; bars scaled linearly with eccentricity. The length
of the bars was chosen so that no bars touched when presented
simultaneously; bar width was set to 0.25 times the eccentricity.
Four different orientations were used. The grid was confined to
the lower right corner of the screen. It spanned 120◦ of polar angle
and 5–40◦ of eccentricity for array 1 and 3–50◦ of eccentricity for
array 2. On average, 7 bar stimuli were on the screen at any given
time.

PRELIMINARY ANALYSIS
In a preliminary analysis (Figures 1B,C), we first downsam-
pled the despiked wideband signal to 200 Hz, then filtered it in
seven bands (Freeman, 2007): delta (0.5–4 Hz), theta (4–8 Hz),
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alpha (8–12 Hz), low beta (12–20 Hz), high beta (20–30 Hz), low
gamma (30–50 Hz), and high gamma (50–80 Hz). We also took
the absolute value of the Hilbert transform of each band-passed
filtered LFP to obtain estimates of the instantaneous power in
each frequency band.

We split the data into a fit dataset and a validation dataset:
for each 5 s block of the data, the first 4 s were assigned to the fit
dataset and the last second to the validation dataset. We estimated
orientation-spatial-temporal receptive fields for both band-pass
filtered LFPs and their power using standard reverse correlation
on the fit dataset (De Boer and Kuyper, 1968; Marmarelis and
Marmarelis, 1978; Figures 1B–E). We applied a Gaussian spatial
kernel (σ = 0.8) to the estimated receptive fields and predicted
the signal in the validation dataset, assuming a linear model with
the estimated filter.

RECEPTIVE FIELD ESTIMATION
The results of the preliminary analysis (previous section,
Figures 1B,C) showed that the stimulus modulated the ampli-
tude of the LFP but not its power, and that the modulation
was concentrated at low frequencies. For the remaining analy-
ses, we thus band-pass filtered the despiked wideband signal in
the range (0.5–40 Hz) and downsampled to 100 Hz to produce
the LFP signal. Inspection of the reverse correlation filters led us
to a low-dimensional parameterization for each temporal slice of
the LFP receptive fields: the selectivity of the RF is given by the
product of an orientation filter and a Gaussian spatial envelope.
Specifically, we assumed that the contribution of the stimulus pre-
sented τ epochs ago to the internal response in the kth time bin
was given by:

ηk =
∑

r,θ,o

sk−τ,r,θ,ovoGr(r0, σr)Gθ(θ0, σθ) + d (3)

sk−τ,r,θ,o is the stimulus presented τ epochs ago. d is a bias.
Ga(b, c) is a Gaussian curve evaluated at a, centered around b,
with width (standard deviation) c. vo is the orientation filter. We
fit the model for each time slice τ = 1 to 24 by least-squares.
We initialized the parameters by fitting a Gaussian to the spatial
envelope of the reverse correlation estimate of the filter through
least-squares; this envelope was determined by taking the first
singular vector of the SVD of the reverse correlation estimate
(Ahrens et al., 2008).

The model for MUAs was similar, but this time we assumed
that the receptive fields did not change in shape across time slices,
but were simply scaled by a time-dependent gain:

ηk =
∑

τ,r,θ,o

sk−τ,r,θ,ouτvoGr(r0, σr)Gθ(θ0, σθ) + d (4)

Here u corresponds to the weights of a separable time filter. We fit
the model through least-squares.

An MUA RF was deemed significantly tuned if the fit was sig-
nificant at the p < 0.0001 level according to a χ2 test (Wood,
2006). We found this criterion too lenient for LFP RFs, presum-
ably because the correlation structure of the LFP did not follow
the assumptions of the test. Instead, an LFP RF fit was deemed

significant if its R2 value was greater than the observed R2 values
on any electrode on the same array for time slices from 10 ms to
40 ms. Importantly, this simulation-based method preserves the
correlation structure of both data and input, while eliminating
the relationship between the two signals (Goldfine et al., 2013),
and the resulting threshold corresponds to an effective p ∼ 0.01.

TEMPORAL MIXTURE FIT
The temporal mixture model illustrated in Figure 5 was as fol-
lows. The LFP RF ge

τ,r,θ,o measured on electrode e was assumed
to be a noisy version of the underlying RF f e

τ,r,θ,o. The underly-
ing RF was given by a mixture of a shared component pr,θ,o and a
component specific to the electrode qe

r,θ,o:

f e
τ,r,θ,o = ae

τ pr,θ,o + be
τqe

r,θ,o (5)

The shared component was unconstrained while the specific
component was a Gaussian in space modulated by orientation:

qe
r,θ,o = ve

oGe
r(r0, σr)Ge

θ(θ0, σθ) (6)

The temporal mixture model was fit using an iterative least-
squares algorithm to minimize the mismatch between f e

τ,r,θ,o and
ge
τ,r,θ,o, which was estimated by reverse correlation. The shared

component was initialized to the mean of all RFs at t = 90 ms
for array 1 and t = 200 ms for array 2. ae

τ was then set by least-
squares on the assumption that be

τ = 0. Then the following steps
were alternatively repeated until convergence:

1. The residual ge
τ,r,θ,o − ae

τpr,θ,o was reshaped into a matrix with
{e,τ} in one dimension and {r,θ,o} along the second dimen-
sion. The first singular values of this matrix were used to
determine be

τ and qe
r,θ,o. qe

r,θ,o was then fit to Equation (6).
2. The first singular values of ge

τ,r,θ,o − be
τqe

r,θ,o were used to deter-
mine ae

τ and pr,θ,o.

Once the temporal mixture model was fit, we extracted f e
τ,r,θ,o

for each electrode and time lag and fit the reconstructed RF as
an orientation filter multiplied by a Gaussian spatial envelope.
The parameters determined through this process are plotted in
Figures 6 and 8.

ESTIMATION OF THE INTEGRATION RADIUS OF THE LFP
We applied the method of Xing et al. (2009) to estimate the
integration radius of the LFP on the cortical surface σcLFP:

σcLFP = [m2(σ2
vLFP − σ2

vMUA) + σ2
cMUA]2 (7)

σvLFP and σvMUA correspond to the size of LFP and MUA RFs
in visual coordinates, respectively, and σcMUA is the integration
radius of the MUA in cortical coordinates. We used σcMUA =
100 μm (Xing et al., 2009) and estimated (σ2

vLFP − σ2
vMUA) by

taking the 20% trimmed mean of this quantity for electrodes
where we could measure both LFP and MUA receptive fields.

The cortical magnification factor m, measured in millimeters
per unit of visual space, captures the change in visual coordi-
nates that corresponds to a unit change in position on the cortical
surface. Thus, the local cortical magnification factor corresponds
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to the inverse of the magnitude of the gradient of the visual
quantity measured (log eccentricity or polar angle in our case).

Unfortunately, estimating the magnitude of the gradient
of the retinotopies of the MUAs directly is infeasible due to
missing measurements. The measured retinotopies were too
irregular to be fit reliably with a simple surface such as
a plane. Instead, we obtained a smoothed estimate of log
eccentricity and polar angle using Gaussian Process Regression
(Rasmussen and Williams, 2006). We used the parameters sug-
gested by the GPML for Matlab toolbox manual (Rasmussen
and Williams, 2006; Gaussian likelihood, isometric squared
exponential covariance, linear + constant mean function,
marginal likelihood optimization for hyperparameters, exact
inference).

We then computed the magnitude of the gradients of the
smoothed surfaces, took their average across the surfaces, and
inverted them to obtain the cortical magnification factor for log
eccentricity and polar angle for each array.

ORIENTATION AND TEMPORAL SELECTIVITY
We evaluated the orientation selectivity of the retinotopic compo-
nent of the LFP and the MUA by computing the circular variance
of the orientation selectivity coefficients [vo in Equations (4)
and (6)] as follows (Ringach et al., 2002):

CV = 1 −

∣∣∣∣
∑
θ

vθ exp(2iθ)

∣∣∣∣
∑
θ

|vθ| (8)

For the non-retinotopic component of the LFP, the same formula
was used, with vo being estimated from the first singular vector of
the SVD of the spatial-orientation filter.

We used the time mixture parameters bτ (Equation 5) as an
estimate of the temporal selectivity of the retinotopic component
of the LFP (Figures 11E,F). For the MUA, we opted to take the
first singular vector of (spatial-orientation)-temporal filters esti-
mated by reverse correlation as an estimate of the temporal filters.
These are more directly comparable to bτ than uτ in Equation (4),
since uτ corrects for the slight auto-correlation in the stimulus
while bτ, being ultimately based on a reverse correlation estimate,
does not.
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