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Most models for ethylene signaling involve a linear pathway. However, measurements of

seedling growth kinetics when ethylene is applied and removed have resulted in more

complex network models that include coherent feedforward, negative feedback, and

positive feedback motifs. The dynamical responses of the proposed networks have

not been explored in a quantitative manner. Here, we explore (i) whether any of the

proposed models are capable of producing growth-response behaviors consistent with

experimental observations and (ii) what mechanistic roles various parts of the network

topologies play in ethylene signaling. To address this, we used computational methods

to explore two general network topologies: The first contains a coherent feedforward

loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In

the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage

inhibiting growth and promoting the production of EIN2 through a positive feedback loop

(PFB). Since few network parameters for ethylene signaling are known in detail, we used

an evolutionary algorithm to explore sets of parameters that produce behaviors similar

to experimental growth response kinetics of both wildtype and mutant seedlings. We

generated a library of parameter sets by independently running the evolutionary algorithm

many times. Both network topologies produce behavior consistent with experimental

observations, and analysis of the parameter sets allows us to identify important network

interactions and parameter constraints. We additionally screened these parameter sets

for growth recovery in the presence of sub-saturating ethylene doses, which is an

experimentally-observed property that emerges in some of the evolved parameter sets.

Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB

topologies. From this, we verified observations drawn from the larger networks about

mechanisms underlying ethylene signaling. Analysis of each network topology results in

predictions about changes that occur in network components that can be experimentally

tested to give insights into which, if either, network underlies ethylene responses.
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1. INTRODUCTION

Ethylene is the simplest of olefin gases and functions as a plant
hormone, affecting many processes throughout the lifetime of
a plant including seed germination, growth, formation of the
apical hook, senescence, fruit ripening, abscission, and responses
to various stresses (Mattoo and Suttle, 1991; Abeles et al., 1992).
Ethylene inhibits the growth of dark-grown eudicot seedlings
(Abeles et al., 1992), and sustained exposure to ethylene leads
to a growth-inhibition response that has been used to screen
for mutants and to provide information about the ethylene
signaling network (Bleecker et al., 1988; Guzman and Ecker,
1990). Most proposed models of ethylene signaling consist of
a linear pathway (Figure 1), where in air, ethylene receptors
signal to the CONSTITUTIVE RESPONSE1 (CTR1) protein
kinase which functions as a negative regulator of ethylene
signaling (Kieber et al., 1993). CTR1 prevents ethylene signaling
by phosphorylating the ETHYLENE INSENSITIVE2 (EIN2)
protein, leading to its ubiquitination and proteolysis (Chen et al.,
2011; Ju et al., 2012; Qiao et al., 2012). The binding of ethylene to
ethylene receptors reduces the activity of the receptors, leading to
reduced activity of CTR1 kinase and reduced phosphorylation of
EIN2 protein (Chen et al., 2011; Ju et al., 2012; Qiao et al., 2012).
The reduction in EIN2 phosphorylation leads to a decrease in
ubiquitination of EIN2, causing a rise in EIN2 protein levels and
allowing for proteolytic release of the C-terminal portion (EIN2-
C) of the protein (Qiao et al., 2009; Ju et al., 2012; Qiao et al., 2012;
Wen et al., 2012). EIN2-C affects the levels of two transcription
factors, EIN3 and EIN3-Like1 (EIL1), in part by regulating their
ubiquitination via S-PHASE KINASE-ASSOCIATED1-CULLIN-
F-BOX (SCF) ubiquitin ligase complexes containing EIN3-
BINDING F-BOX1 and 2 (EBF1 and 2) F-box proteins (Guo
and Ecker, 2003; Potuschak et al., 2003; Yanagisawa et al., 2003;
Gagne et al., 2004; Binder et al., 2007; An et al., 2010). In the
presence of ethylene, ubiquitination of EIN3 and EIL1 is reduced,
leading to accumulation of these transcription factors causing
most ethylene responses (Guo and Ecker, 2003; Potuschak et al.,
2003; Yanagisawa et al., 2003; Binder et al., 2004a, 2007; Gagne
et al., 2004; An et al., 2010).

The above model was developed based on end-point analyses.
Even though end-point analysis of ethylene responses continues
to be an instructive bioassay, it is limited because transient events
are overlooked. Time-lapse imaging has provided information
about the kinetics of ethylene growth responses. The kinetics of
ethylene responses have been studied for several plant species
(Laan, 1934; Warner and Leopold, 1971; Burg, 1973; Goeschl
and Kays, 1975; Rauser and Horton, 1975; Jackson, 1983)
and most extensively studied in the model flowering plant,
Arabidopsis thaliana (Binder et al., 2004a,b; Potuschak et al.,
2006; Binder et al., 2007; Gao et al., 2008; Christians et al., 2009;

FIGURE 1 | Basic linear ethylene signaling network.

Vandenbussche et al., 2010; van Zanten et al., 2010; Žádníková
et al., 2010; Kim et al., 2011, 2012; McDaniel and Binder, 2012;
Bakshi et al., 2015; Merchante et al., 2015; Rai et al., 2015).

Studies of ethylene growth kinetics in Arabidopsis have
revealed two phases of growth inhibition at saturating ethylene
levels (1 ppm or above, see Figure 2A) (Binder et al., 2004b).
The first phase is rapid, with a decrease in growth rate beginning
approximately 10min after the application of ethylene and lasting
approximately 10 min, at which point the growth rate reaches a
plateau. This plateau lasts approximately 30 min when a second,
slower phase of growth inhibition is observed. Approximately 90
min after the application of ethylene, the growth rate reaches a
minimum that lasts for as long as saturating levels of ethylene
are present. If ethylene is removed after 2 h, seedlings recover to
pre-treatment growth rates in approximately 90min (Figure 2A).

The two phases of growth inhibition are genetically separable
(Binder et al., 2004a). Mutants lacking EIN3 and EIL1 (ein3;eil1)
have a normal first phase of growth inhibition but fail to have
a second phase response and over time return to pre-treatment
growth rates in the continued presence of ethylene (Figure 2B).
This demonstrates that the first phase of growth inhibition is
EIN3/EIL1-independent. Mutants lacking EIN2 (ein2) have no
response to ethylene. Additionally, in wild type plants, adaptation
is observed at sub-saturating levels of ethylene. At intermediate to
high sub-saturating levels (e.g., 100 ppb), seedlings initially show
both phases of growth inhibition but then have a partial recovery
to an intermediate growth rate. At lower levels of ethylene (e.g., 2
and 10 ppb), only the first phase of growth inhibition occurs and
is followed by recovery of the growth rate (Figure 2C) (Binder
et al., 2004a).

The experiments described above and other observations
that indicate possible alternative pathways and feedback control
(Kieber et al., 1993; Roman et al., 1995; Larsen and Chang, 2001;
Hall and Bleecker, 2003; Qiu et al., 2012; Rai et al., 2015) suggest
that ethylene signal transduction is not simply a linear pathway.
Several network models have been proposed that involve more
complicated topologies (Binder et al., 2004a; Gao et al., 2008;
Kim et al., 2012). These and related networks are the focus of
this paper.

A study comparing the time-dependent growth responses of
several plant species led to a proposed network that included
both coherent feedforward and negative feedback (CFF/NFB)
signaling motifs (Figure 3A; Kim et al., 2012). In the CFF/NFB
model, in air (i.e., without ethylene) the receptors signal to CTR1,
which in turn inhibits downstream signaling. This leads to fast
growth with feedback on growth occurring via the modulation
of gibberellin (GA), a hormone known to stimulate growth.
Application of ethylene inhibits the receptors, leading to a
reduction of CTR1 activity and hence an increase in EIN2 levels.
EIN2 is predicted to cause an initial growth inhibition response
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FIGURE 2 | Growth response kinetics of dark-grown Arabidopsis

seedling hypocotyls. (A) The normalized growth rate of wildtype

Arabidopsis. Seedlings were grown in air for 1 h at which time 10ppm ethylene

was applied for 2 h at which time ethylene-free air was used to replace the

ethylene. (B) The normalized growth rate of wildtype Arabidopsis compared to

ein3;eil1 and ein2 mutants. Seedlings were grown in air for 1 h at which time

10 ppm ethylene was applied. (C) The normalized growth rate of wildtype

Arabidopsis treated with varying concentrations of ethylene as indicated.

Seedlings were grown in air for 1 h prior to application of ethylene. In all

panels, the growth rate was normalized to the growth rate in air prior to

treatment with ethylene. Based on data from Binder et al. (2004a,b).

independently of EIN3 and EIL1. EIN2 also inhibits the EBF1
and EBF2 F-box proteins, leading to increases in EIN3 and
EIL1. In the CFF/NFB network model, EIN3 and EIL1 inhibit
growth via a GA-dependent and GA-independent pathway. The
indirect inhibition of growth from EIN2 through EIN3 and
EIL1 is hypothesized to be responsible for the second phase of
growth inhibition. Qualitatively, this network topology provides
a framework to understand the molecular basis for phase 1 and

phase 2 growth inhibition and its regulation by the coherent
feedforward signal. It also provides a mechanism for transient
growth inhibition in the absence of EIN3 and EIL1 that is
regulated by negative feedback components.

We were curious to determine whether other network
topologies would yield response kinetics similar to experiments.
We previously proposed a model where one function of EIN3
and EIL1 is to provide feedback to regulate growth (Binder
et al., 2004a). More recent data has shown that ethylene signaling
requires the accumulation of EIN2 followed by the proteolytic
cleavage of the EIN2 C-terminal tail (Alonso et al., 1999; Ju et al.,
2012; Qiao et al., 2012; Wen et al., 2012). This accumulation
of EIN2 protein is reduced in ein3;eil1 double mutants (Qiao
et al., 2009) suggesting a mechanism for feedback by EIN3 and
EIL1. We therefore developed a network topology where the
function of EIN3 and EIL1 is to provide feedback stimulation
in the form of increased synthesis of EIN2 (Figure 3B). EIN2-C
feeds back through EBF1/2 and EIN3 to promote EIN2. Without
accumulation of EIN2, the prediction is that the levels of EIN2-
C would decrease, resulting in growth reversal. We refer to this
network as the cleavage with positive feedback (PFB) network.

Few computational models of ethylene signaling have been
published (Díaz and Álvarez-Buylla, 2006; Díaz and Alvarez-
Buylla, 2009), and none take into account the dynamical
information obtained from kinetic studies of ethylene response.
Considering experimental results of this nature provides an
opportunity to identify network features underlying the observed
growth responses. Therefore, we developed computational
models that account for proposed interactions within the
CFF/NFB and PFB networks described above. These networks
are modeled as sets of coupled ordinary differential equations
(ODEs) describing the time evolution of network components.
We are interested in (i) whether the proposed networks
are capable of producing dynamical growth-response behavior
consistent with experiments, and (ii) mechanisms underlying the
network response when it does recapitulate experimental results.
The CFF/NFB and PFB networks we consider have relatively
high-dimensional parameter spaces (35 and 26 parameters,
respectively). The parameters regulate numerous coupled,
nonlinear ODEs describing the dynamics of the network, and
changing the value of one parameter can have unexpected effects
on network responses. Few in vivo measurements of network
parameters are available. As such, we used an evolutionary
algorithm (EA) to search for sets of parameters that produce
network behavior consistent with experimental growth response
kinetics. EAs are a class of numerical optimization techniques
and have been used to investigate networks in a variety of
biochemical applications (Bäck and Schwefel, 1993; Bray and Lay,
1994; François and Hakim, 2004; Patil et al., 2005; Auliac et al.,
2008; Sun et al., 2012; Spirov and Holloway, 2013; Feng et al.,
2015). For example, time-course data has been used to determine
parameters of small genetic networks (Kikuchi et al., 2003) and
parameters associated with signal transduction in neurons (Arisi
et al., 2006).

We used an EA to evolve parameter sets that produce ethylene
growth responses similar to those observed in experiments.
In particular, we focused on evolving two-phase growth
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FIGURE 3 | Diagrams illustrating proposed network topologies.

inhibition (2-PGI) and ein3;eil1 mutant partial growth recovery
(MPGR). By repeatedly performing independent runs of our
EA, we created libraries of evolved parameter sets. We gain
insight into mechanisms underlying network responses by
analyzing the dynamics of individual network components and
the distributions of parameters governing the network. We
additionally screen the parameter sets for partial growth recovery
in the presence of sub-saturating ethylene doses, which is a
property that emerges in some of the evolved parameter sets. We
further explore each network by identifying simplified networks
producing both 2-PGI and MPGR.

2. METHODS

2.1. Kinetics of the Ethylene Response
Network
We model the ethylene growth-response networks proposed
above using systems of coupled ordinary differential equations
(ODEs). Ethylene concentration is treated as an input variable
that is varied to mimic experimental conditions. We treat
the growth rate, denoted by [Growth], as a concentration-
like variable that measures the fraction of maximal growth
rate. The unbound ethylene receptor concentration is described
by a production term and a mass-action binding term
representing ethylene binding. The time-dependence of all
other components is described by production and degradation
terms. As an example, the ODE describing CTR1 dynamics is
written

d[CTR1]

dt
=

(

kprod
[R]N

KN
prod + [R]N

)

R

(1− [CTR1])

−kCTR1degr [CTR1]

Concentrations are denoted by square brackets, k denotes
a reaction rate, K denotes an activation coefficient in a

Hill equation, and N is the associated Hill coefficient. All
concentrations are restricted to the range of 0 to 1 and can
be interpreted as the fraction of the maximum concentration
for each species. The concentration range is constrained by
describing the production as a logistic production term, with
production vanishing when the concentration approaches 1.
Interactions between network components are described with
Hill-like kinetics. For example, in the above equation, CTR1 is
promoted by receptors (R), which is captured by theHill equation
in the production term on the right-hand side. Inhibitory
interactions promote the rate of degradation (e.g., EBF increases
the degradation rate of EIN3 and EIL1). Stimulatory interactions
promote the rate of production. The complete sets of ODEs for
the networks studied are included in the SupplementaryMaterial.
We initially equilibrate the system with no ethylene present,
allowing it to reach steady state. We then introduce a step-change
in ethylene to mimic experimental conditions. We treat EIN3
and EIL1 as a single entity, and therefore, to model the ein3;eil1
mutant, the production rate for EIN3 is set equal to zero.

2.2. Evolutionary Algorithm
Given the system of ODEs describing network dynamics, we use
an evolutionary algorithm (EA) to identify sets of parameters
that produce growth-response behavior similar to that observed
experimentally. EAs are a class of optimization techniques that
utilize the principle of inherited fitness to optimize parameters.
A population of parameter sets is evolved over multiple
generations. At each generation, each parameter set is evaluated
by a fitness function and ranked by its fitness. Parameter sets
with better rankings are modified in order to produce a new
population of parameter sets for evaluation. The modifications
consist of mutation and crossover operations. Mutations change
a parameter value within a set to a new, randomly sampled
value. Crossovers are events in which subsets from two high-
performing parameter sets are recombined to form a new
parameter set. Details of the mutations and crossovers depend on
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the specific implementation of the EA. Each iteration in which the
population of parameter sets is updated is termed a generation.

We used the following fitness function for all proposed
ethylene signaling networks:

fitness =
Nwt
∑

i=1

αi

(

[Growth]calc(ti)− [Growth]targ(ti)
)2
wt

+

Nmt
∑

i=1

βi

(

[Growth]calc(ti)− [Growth]targ(ti)
)2
mt

Calculated growth values ([Growth]calc(ti)]) are determined by
numerically solving the system of ODEs in MATLAB using
the ode45 numerical solver. Target values ([Growth]targ(ti)])
were obtained using experimentally-determined growth rates
at select times (Figures 2A,B). Target values were selected
from wildtype (wt) and ein3;eil1 mutant (mt) experiments,
with the index i in each sum indexing the target values
(there are Nwt target values for the wildtype response and
Nmt target values for the mutant response). For each time
point, the squared deviation of the calculated growth rate from
the target value is multiplied by a weighting factor (αi, βi)
that emphasizes important regimes of the growth response.
Specifically, we emphasize pre-ethylene steady state values,
the wildtype two-phase growth inhibition response, minimal
growth rate following ethylene introduction, and maximum
growth recovery levels. Target values and weighting factors are
provided in Supplemental Tables 2.1.1, 2.1.2. Target growth rates
were scaled by dividing all experimental growth rates by the
maximum observed growth rate under both wildtype andmutant
conditions. This gives a pre-ethylene growth rate target value
that is less than one, in contrast with Figure 2 in which growth
rates were scaled so that pre-ethylene growth rates were unity.
The evolutionary algorithm was designed to minimize the fitness
function.

In our EA, we use a population size of 200 parameters sets
at each generation. The initial parameter sets are generated
by selecting uniformly distributed random values for each
parameter from allowed parameter ranges (see Supplemental
Table 2.1.3). Hill coefficients (N) are restricted to integer values.
After evaluating each parameter set, the 50 parameter sets
with the lowest fitness scores are selected as source parameter
sets. These source sets are used to generate the population of
parameter sets for the next generation. New parameter sets
are produced by performing a two-point crossover followed by
mutations. The crossover events and mutations allow a balance
of global and local exploration of parameter space, and the
algorithm converged to local minima of the fitness function
for the signaling networks studied. Two-point crossovers are
performed by randomly selecting two source parameter sets
with replacement (i.e., the same set can be chosen twice).
Two crossover points are chosen at random from the list of
parameters. Two blocks of parameters are taken from the first
source and the other block is taken from the second source,
leading to a newly constructed set of parameters. Additionally,
the probability of mutation for each parameter is chosen
such that on average three parameters within the crossover
product are mutated (the probability is 3/35 for the CFF/NFB

network and 3/26 for the PFB network). When a parameter is
selected for mutation, the decision to increase or decrease the
value is made with equal probability. The parameter is then
multiplied or divided, respectively, by a uniformly distributed
value between 1 and 2. When this decision would result in
a parameter exceeding its upper bound, a uniform random
value between the current parameter value and its upper limit
is used instead. The source parameter sets are updated each
generation by replacing 25 randomly selected source sets with
parameter sets having the lowest fitness scores from the current
population.

We ran the EA for 400 generations and recorded the
parameter set with the lowest fitness score for additional analysis.
This evolutionary process was repeated independently 500–4000
times depending on the network topology. Each parameter set
was screened for the targeted network behavior and the resulting
data was used to characterize ethylene response kinetics and
identify features of the evolved parameters.

2.3. Screening for Targeted Responses
After running the EA, we check whether the resulting growth
responses exhibit wildtype two-phase growth inhibition and/or
ein3;eil1 mutant partial growth recovery. Specifically, network
responses are checked to ensure that the wildtype response meets
the following conditions:

1. With no ethylene, steady state growth is sufficiently high.
2. After applying ethylene, theminimal growth rate is sufficiently

low.
3. A plateau-like region separates the first and second phases of

growth inhibition.
4. Following removal of ethylene, growth recovers to a

sufficiently high level.

Logic diagrams for discriminant functions are included in
Supplemental Figures S1, S2. For mutant behavior, traits 1 and
2 were used to check for proper behavior. The discriminant
functions were designed to make the inclusion of false positives
unlikely.

2.4. Ethylene Dose Response
We additionally screen evolved parameters sets to identify
whether they exhibit sub-saturating ethylene dose response
kinetics similar to experimental observations (see Figure 2C).
The level of ethylene that leads to a sub-saturating response
depends on the parameters of the network. Thus, we first identify
the range of ethylene concentrations over which the network
is responsive to concentration variations. For each evolved
parameter set, we use a binary search method to identify the
ethylene concentration range in which (i) the maximum dose
produces long-time growth rate between 0.5 and 1.0% above
minimum growth observed in the saturated response and (ii) the
minimum dose produces a minimum growth rate between 0.5
and 1.0% below pre-ethylene steady state growth. We consider
20 evenly distributed ethylene concentrations between these
bounds to test for partial growth recovery in the presence of
sustained ethylene exposure. A parameter set is considered to
exhibit sub-saturating growth recovery if there exists at least
one ethylene concentration at which the growth maximum
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that occurs 1 h or longer after the introduction of ethylene
exceeds the minimum growth observed within the first hour of
ethylene exposure by at least 0.1 (maximum possible growth is
unity).

3. RESULTS

3.1. Coherent Feedforward/Negative
Feedback Network
The CFF/NFB network (Figure 3A) was proposed by Kim et al.
(2012) based on growth kinetics in response to the addition and
removal of ethylene. It can be broken down into three distinct
regions: (i) the initial linear signaling cascade consisting of
ethylene receptors, CTR1, and EIN2; (ii) a coherent feedforward
loop with EIN2 as the initial node that inhibits growth both
directly and indirectly (via EBF and EIN3); (iii) a negative
feedback loop consisting of growth and GA. The coherent
feedforward cascade interacts with the negative feedback loop
as a result of the inhibitory effect of EIN3 on GA. As indicated
in Figure 3A, we treat EBF1 and EBF2 as well as EIN3 and
EIL1 as single entities. We refer to these nodes as EBF and
EIN3, respectively. This reduces the complexity of the model
and the dimensionality of the parameter space while keeping key
topological features of the network. Additionally, with existing
experimental data, it is difficult to elucidate differences between
these individual components, which could be included in a more
detailed computational model.

We conducted multiple independent trials of the EA,
obtaining 3774 sets of optimized parameters. Using the
discriminant functions described previously, each evolved
parameter set was screened for wildtype two-phase growth
inhibition (2-PGI) and ein3;eil1 mutant partial growth recovery

(MPGR). Figure 4 shows examples of results that exhibit both
2-PGI and MPGR, as well as those that exhibit only one of
the responses. Approximately 36% of the evolved parameter sets
exhibit both 2-PGI and MPGR, 20% exhibit only 2-PGI, and 23%
exhibit only MPGR. The large number of parameter sets yielding
one or both of the targeted growth responses provides a large data
set for analysis.

3.1.1. Dynamical Response of Network Components
In Figure 5, we plot the time dependence of each network
component. This provides insight into how the feedforward
and feedback loops shape growth response dynamics. For each
component, we plot the mean response of the 1344 parameter
sets exhibiting both 2-PGI and MPGR behavior. We also display
the standard deviation about the mean (shaded regions) to
characterize the heterogeneity of the response. Analogous results
for parameter sets exhibiting only 2-PGI or MPGR behavior are
provided in Supplemental Figures S3, S4.

The response of the linear portion of the signaling cascade
is identical for the wildtype (shown in Figure 5A) and ein3;eil1
mutant (not shown) topologies upon addition of ethylene. In
response to the addition of ethylene at 1 h, the concentration
of unbound receptors rapidly declines to levels near zero. This
results in a decrease of CTR1 from a relatively high pre-
ethylene concentration to amuch lower concentration. Following
this, EIN2 is no longer inhibited by active CTR1 and rapidly
increases in concentration. There is a slight delay in the EIN2
response to ethylene due to the time required for the signal
to propagate through the upstream components of the linear
signaling cascade. Upon removal of ethylene at 3 h in the wildtype
response, components return to their pre-ethylene levels.

FIGURE 4 | Characteristic growth responses at saturating ethylene doses. Columns show examples of time-dependent growth responses passing different

combinations of screening criteria. Each column corresponds to a single set of evolved parameters. Rows show different simulated conditions (wildtype and ein3;eil1

mutant). Targeted growth rates are denoted by x and the evolved response is shown by solid lines. Dashed vertical lines indicate time points at which ethylene was

introduced (green) and removed (red).
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FIGURE 5 | Time evolution of CFF/NFB network components. Figures show the mean ±1 SD for each component of the CFF/NFB network for cases exhibiting

both wildtype and ein3;eil1 mutant growth responses (1344 parameters sets). Components include: (A) early signaling components (wildtype conditions), (B)

components downstream of EIN2 (wildtype conditions), and (C) negative feedback components affecting growth response (ein3;eil1 mutant conditions). Black regions

in (B,C) indicate the mean ±1 standard deviation of growth. Dashed vertical lines indicate time points at which ethylene was introduced (green) and removed (red).

The remaining network connections differentiate the wildtype
response from the ein3;eil1 mutant response. Components of
the wildtype network are shown in Figure 5B. Increasing EIN2
concentration acts to inhibit both growth and EBF, which is
part of the indirect feedforward loop. The direct inhibitory effect
of EIN2 on growth is responsible for the first phase of growth
inhibition. In response to decreasing EBF concentration, EIN3
concentration increases from an initially low value approximately
30 min after ethylene is introduced. Once EIN3 reaches a
sufficiently high concentration, a pronounced second phase of
growth inhibition begins. Thus, the coherent feedforward loop
leads to the desired 2-PGI.

The effect of the negative feedback loop can be understood
by examining the dynamics of growth and GA. For the
wildtype topology, GA is inhibited by both EIN3 and growth.
A limited increase in GA levels accompanies the first phase of
growth inhibition, and is driven by decreasing growth rates.
During the second phase of growth inhibition, increasing EIN3
concentration inhibits GA, with EIN3 inhibition outcompeting
the effect of decreasing growth rate. This drives GA to a low
concentration, minimizing the effect of the negative feedback
loop on growth. Thus, in the presence of increased EIN3, the
effects of the negative feedback loop are suppressed. In the
ein3;eil1 mutant, however, the inhibitory action of EIN3 on the
negative feedback loop is lost. Thus, the negative feedback loop
plays a more prominent role since GA is not inhibited by EIN3
(Figure 5C). Additionally, the indirect path of growth inhibition
is removed, eliminating the second phase of growth inhibition.
Figure 5C shows the response of key network components under
these conditions. When increasing EIN2 levels cause a decrease
in growth, GA levels increase in response, promoting growth and
leading to partial growth recovery. This illustrates the importance
of the negative feedback loop for partial growth recovery in the
ein3;eil1mutant.

After the removal of ethylene at 3 h, it is interesting to note
that the average growth rate does not exhibit a large overshoot
compared with pre-ethylene levels (Figure 5B). When analyzing
individual parameter sets, none of the responses exhibit an
overshoot that exceeds pre-ethylene levels by more than 10%,
only 5 of 1344 exhibit >5% overshoot, and only 44 of 1344
exhibit >1% overshoot. This is in contrast with experimental

results and suggests that modifications of the network or
additional components might be needed to adequately capture
the overshoot behavior. However, as discussed above, our results
show that the core CFF/NFB topology generates key features of
the 2-PGI and MPGR responses.

3.1.2. Analysis of Parameter Sets
The roles of the feedforward and feedback loops can be further
understood by examining evolved parameters. In particular, it is
instructive to characterize the distributions of evolved parameter
values for the CFF/NFB network, as certain parameters are
constrained to small ranges or excluded from certain parameter
regimes. In Figure 6, we compare the distributions of select
parameters when the evolved parameter sets are categorized
by their behavior (both 2-PGI and MPGR, only 2-PGI, or
only MPGR). The distributions of all parameters are shown
in Supplemental Figure S5. Parameter values are scaled by
normalizing the maximum value to one, and the width of each
distribution is scaled such that the maximum width is equal
in each distribution. Comparing the distributions for specific
parameters highlights key network features leading to each
response.

The parameter distributions in Figure 6 provide additional
evidence that the feedforward loop plays a key role in generating
2-PGI. The activation coefficient for EIN2-regulated growth
degradation of EBF (KEIN2

degr ) is excluded from low values in

evolved parameter sets exhibiting 2-PGI. As a consequence,
EIN2 concentration must reach high levels to significantly
inhibit EBF, which contributes to a delay before the second
phase of growth inhibition. Interestingly, this parameter is most
significantly constrained in evolved parameter sets exhibiting
both 2-PGI and MPGR. This is in contrast with the broader
distributions seen for the cases exhibiting only one of the targeted
responses. Additionally, in parameter sets exhibiting 2-PGI, the
rate constant associated with basal production of EIN3 (kbasalprod )

occurs at low values. This also contributes to a time delay in the
feedforward loop, which is needed for a second phase of growth
inhibition.

It is also informative to consider the parameters governing
the negative feedback loop (Figure 6). Parameter sets exhibiting
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FIGURE 6 | Distributions of parameters from evolved sets of CFF/NFB network parameters. Parameter sets exhibiting different combinations of responses

are shown. Parameter labels K and k indicate activation coefficients and rate constants, respectively, that are associated with the ODEs governing the species labeled

above each figure. Subscripts indicate if the parameter regulates degradation (degr) or production (prod) and superscripts indicate the network component regulating

the reaction. Basal rates indicate that the parameter is not regulated by another network component. All parameters were unit normalized using range rescaling.

MPGR have highly restricted ranges associated with the rate
constant for basal production of GA and the parameters for
GA inhibition by growth. These restrictions lead to low pre-
ethylene levels of GA and a reasonable response of GA as growth
declines following ethylene exposure. In cases exhibiting MPGR,
the rate constant governing promotion of growth by GA is also
restricted to high values and the activation coefficient for the
promotion of growth by GA is excluded from the lowest values.
Thus, a moderate increase in GA concentration will result in a
significant increase in growth. However, excluding the activation
coefficient from low values prevents increases from occurring
with small changes in GA. Thus, tight regulation of parameters of
the negative feedback loop is most readily apparent in parameter
sets exhibiting MPGR. This further suggests the importance of
the negative feedback loop for MPGR.

3.1.3. Ethylene Dose Response
Given that our network parameters were evolved to target only
2-PGI and MPGR behavior, we were interested in whether other
experimentally observed behavior emerged as well. As such, we
examined the sub-saturating ethylene dose-response behavior
of evolved parameter sets exhibiting both 2-PGI and MPGR.
Figure 7A shows an example of sub-saturating ethylene growth
recovery (SSGR) that passes our screening criteria. Figure 7B
shows an example of a typical growth response failing to exhibit
SSGR behavior. Here, there is no growth recovery observed
at any ethylene concentration. Of the evolved parameter sets
exhibiting both 2-PGI andMPGR, 26% also exhibit SSGR. Partial
growth recovery at large sub-saturating ethylene concentrations
was observed experimentally (e.g., at 100 ppb in Figure 2C) but
was not observed in the CFF/NFB network model. However,
the observed adaptive behavior occurring at lower ethylene

FIGURE 7 | Characteristic growth responses at sub-saturating

ethylene doses. Parameter sets exhibiting both 2-PGI and MPGR were

screened for partial growth recovery to sustained sub-saturating ethylene

doses (SSGR). Figures show typical growth responses for parameter sets: (A)

passing SSGR screening and (B) failing SSGR screening.

concentrations is qualitatively consistent with experiments. This
emergent property provides additional support for the proposed
CFF/NFB network topology.

To gain insight into features that lead to SSGR, we compared
the parameter distributions that passed SSGR screening to
those that failed SSGR screening. Surprisingly, this revealed
nearly identical parameter distributions except for the activation
coefficient for GA inhibition by EIN3 and the rate constant
associated with inhibition of growth by EIN3 (Figure 8 and
Supplemental Figure S6). The activation coefficient regulating
GA inhibition by EIN3 occurs at higher values in sets producing
SSGR. The rate constant for growth inhibition by EIN3 occurs
at lower values more frequently in cases giving SSGR. The
distributions of these parameters across all evolved sets exhibiting
2-PGI and/or MPGR are shown in Figure 6. Higher values of
the activation coefficient for GA inhibition by EIN3 are found
primarily in parameter sets exhibiting 2-PGI, while lower values
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FIGURE 8 | Distributions of parameters from the CFF/NFB network

screened for SSGR behavior. A comparison of parameter distributions

passing and failing SSGR screening (screened parameter sets exhibit both

2-PGI and MPGR).

of the rate constants for inhibition of growth by EIN3 occur
primarily in parameter sets exhibiting MPGR. These restrictions
apply to the regulation of EIN3 on components of the negative
feedback loop. This again suggests that inhibition of the negative
feedback loop by the coherent feedforward loop may play a key
role in ethylene signaling.

3.1.4. Simplified CFF/NFB Networks
We have shown that the CFF/NFB network can produce
multiple experimentally-observed features of Arabidopsis growth
responses to ethylene. Using this network topology as a guide,
we probed simplified networks containing coherent feedforward
and negative feedback motifs. The networks explored are shown
in Figure 9. Ethylene (E) acts as either the first node of the
coherent feedforward loop (Figures 9A–C) or as a direct input
into the first node of the loop (Figures 9D,E). Additionally,
EBF and EIN3 are combined into a single node (Y) which
acts to inhibit growth. In the simplest network (Figure 9A), we
remove the GA node and allow growth to directly inhibit its
own production. For the remaining networks, the role of GA in
the negative feedback loop is performed by node Z. To probe
the inhibition of the negative feedback loop by the coherent
feedforward loop, we tested network topologies with and without
the inhibition of Z by Y. Approximately 500 independent
optimization runs were performed for each simplified network
topology. Ein3;eil1 mutants were simulated by eliminating node
Y. Evolved parameter sets were screened for 2-PGI and MPGR
responses and a summary of results are shown in Table 1.

The simplest network (Figure 9A) failed to produce any
parameter sets passing 2-PGI or MPGR screening procedures.
Examining the dynamical response of evolved parameter sets
revealed two phases of growth inhibition that occurred too early
and above the desired growth range. Additionally, no growth
recovery was observed upon removal of Y. The addition of
node Z to the negative feedback loop (Figure 9B) produced two
parameter sets exhibiting 2-PGI but none showingMPGR.When
the inhibition of Z by Y is included (Figure 9C), we begin to
observe substantial numbers of parameter sets exhibiting either
2-PGI or MPGR. However, no parameter sets simultaneously
produced both responses. 2-PGI and MPGR were observed
together only when ethylene promoted the first node of the

FIGURE 9 | Simplified CFF/NFB networks. Simplified networks tested.

(A–E) Only networks (D,E) exhibit both 2-PGI and MPGR.

TABLE 1 | Screening results for ethylene growth responses of simplified

CFF/NFB networks.

Network Total 2-PGI & MPGR 2-PGI only MPGR only

A 504 0 0 0

B 500 0 2 0

C 500 0 80 18

D 499 5 1 3

E 500 92 73 37

coherent feedforward cascade, which more closely mimics the
initial linear signaling cascade. In networks in which Z is not
directly inhibited by Y (Figure 9D), 1.0% of parameter sets
exhibit both 2-PGI and MPGR responses. When Y regulates Z
(Figure 9E), 18.4% of parameter sets exhibit both targeted growth
responses. These results suggest the importance of (i) the initial
linear cascade in achieving proper timing of growth inhibition
and (ii) the inhibition of negative feedback by the coherent
feedforward loop in expanding the parameter space in which
2-PGI and MPGR are observed.

3.2. EIN2 Cleavage with Positive Feedback
In this section, we consider the second proposed network
topology with EIN2 cleavage and a positive feedback loop (PFB
network, Figure 3B). The network was evolved with the same
target responses as before. We obtained evolved parameter
sets that produced both 2-PGI and MPGR behavior, but the
number was substantially lower than in the CFF/NFB network.
Out of 1247 independent runs of the EA, only 5 evolved
parameter sets produce both 2-PGI and MPGR. Parameter sets
exhibiting only 2-PGI were also uncommon (3 sets). However,
a significant proportion of parameter sets exhibited only MPGR
(726 sets). Two of the 5 parameter sets exhibiting both 2-PGI
and MPGR also display sub-saturating ethylene growth response
(SSGR). The limited number of parameter sets exhibiting both
targeted responses precludes analysis of parameter distributions.
However, studying the dynamic response of the best-performing
parameter set exhibiting 2-PGI, MPGR, and SSGR provides
valuable insight (Figure 10). Results are representative of the
other parameter sets exhibiting 2-PGI and MPGR. Complete
results of evolved sets exhibiting 2-PGI, MPGR, and SSGR are
presented in the Supplemental Figure S7.
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FIGURE 10 | Time evolution of PFB network components. Figures show the behavior of the best-performing evolved parameter set that passed 2-PGI, MPGR,

and SSGR screening. (A) Response of growth, EIN2, and EIN2-C (wildtype conditions). (B) Response of components in the positive feedback loop (wildtype

conditions). (C) Response of growth, EIN2, and EIN2-C (ein3;eil1 mutant conditions).

3.2.1. Dynamical Response of Network Components
As in the CFF/NFB network, the introduction of ethylene
decreases CTR1 levels (Figure 10A). In the PFB network, the
cleavage of EIN2 is no longer inhibited and EIN2-C is produced
(Figure 10A). As EIN2-C increases in concentration it inhibits
both growth and EBF (Figures 10A,B). EIN2 levels drop during
this phase of network response as basal production of EIN2
cannot compensate for the rapid conversion of EIN2 to EIN2-C.
EIN2 reaches low concentrations, limiting the resources available
for production of EIN2-C. This leads to a transient decline
in EIN2-C, which causes the plateau-like region of growth
inhibition. Within the feedback loop, lower EBF levels decrease
the inhibition of EIN3, which rises and promotes production of
EIN2. The rapid rise of EIN2 providesmore resources for EIN2-C
production. This leads to the second phase of growth inhibition.

Within the ein3;eil1 mutant, the positive feedback loop
is absent. The addition of ethylene leads to EIN2 being
converted to EIN2-C, resulting in a decline of EIN2. Without
the positive feedback loop, there is no mechanism to further
increase EIN2 production and its concentration monotonically
decreases. EIN2-C initially increases but then declines as basal
degradation eventually dominates the low rates of EIN2-C
production associated with low levels of EIN2. As EIN2-C
concentration decreases, partial growth recovery is observed
(Figure 10C).

3.2.2. Simplified PFB Network
We again explored a simplified network topology that keeps key
features of the PFB network. We found that a four component
network in which ethylene directly promotes the conversion of
X (EIN2) to Y (EIN2-C) can produce both 2-PGI and MPGR
(Figure 11). In the network, Y directly inhibits growth and
promotes the production of X. We performed 500 optimizations
of this network and obtained 142 evolved parameter sets
exhibiting both 2-PGI and MPGR. The marked increase in the
fraction of parameter sets exhibiting both 2-PGI and MPGR
suggests parameter evolution in the full PFB network is hindered
by interactions in the positive feedback loop. Three parameters
regulate the positive feedback from Y to X in the simplified
network, while 9 parameters govern the positive feedback loop in
the full network (associated with interactions between EIN2-C,
EBF, EIN3, and EIN2). This apparently makes it difficult for our

FIGURE 11 | Simplified PFB network. Network diagram of the minimal PFB

network. The table enumerates results of growth-response screening for

evolved parameter sets.

EA to evolve large numbers of parameter sets producing both 2-
PGI and MPGR. The large fraction of simplified PFB networks
exhibiting both 2-PGI and MPGR again provides support for
EIN2 cleavage with positive feedback as a viable network
topology.

4. CONCLUSIONS

We used computational methods to explore hypothesized
network topologies underlying ethylene signaling responses
in Arabidopsis. We focused on two core networks that
are topologically distinct. Using an evolutionary algorithm
to explore parameter space, we showed that both network
topologies can produce dynamical responses consistent with
experimental time-dependent growth data. The core topologies
are (i) a coherent feedforward loop that inhibits growth and
a negative feedback from growth onto itself (CFF/NFB), and
(ii) a network in which ethylene promotes the cleavage of
EIN2, with the product of the cleavage inhibiting growth and
promoting the production of EIN2 through a positive feedback
loop (PFB).
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For the CFF/NFB network, high-throughput use of the
evolutionary algorithm led to a large number of parameter
sets producing responses consistent with experimental growth
kinetics under various conditions and genotypes. The results
emphasize the importance of various network features for
regulating dynamic responses. For example, the two branches
of the coherent feedforward loop collectively produce two-phase
growth inhibition (2-PGI), and the negative feedback loop is
critical for mutant partial growth recovery (MPGR). Our study
additionally suggests that 2-PGI and MPGR coexist in a broader
parameter regime when the negative feedback loop is suppressed
by an intermediate component of the coherent feedforward
cascade. The large number of parameter sets producing 2-PGI
and MPGR behavior provide insight into important regimes of
parameter space. Additionally, a large fraction of these parameter
sets also exhibit sub-saturating ethylene growth response (SSGR),
even though this was not a targeted response by the evolutionary
algorithm. Taken together, these results provide support for
the CFF/NFB network as a viable network topology underlying
ethylene signaling.

For the PFB network, the evolutionary algorithm led to
far fewer parameter sets producing both 2-PGI and MPGR
behavior, yet the dynamics of their responses provided insight
into the mechanisms underlying the network topology. A key
feature of the network is that EIN2 is converted to EIN2-C
and its transient depletion upon the addition of ethylene is
responsible for the plateau phase of growth inhibition. Two of
the evolved parameter sets also exhibited SSGR, indicating that
this emergent behavior is also possible in the PFB network.
Although we generated far more parameter sets producing 2-PGI
and MPGR for the CFF/NFB network, this does not necessarily
imply that it is biologically more likely. For example, the region
of parameter space for the PFB network that gives the desired
behavior may be smaller or more difficult to identify with our
EA, but this does not exclude the PFB network as biologically
feasible.

It is interesting to note that different plant species have
qualitatively different ethylene response kinetics (Kim et al.,
2012). For example, some plant species (millet) have only
a transient first phase response and some (rice) have only
a prolonged second phase response. The paper by Kim
et al. first proposed the CFF/NFB network studied here. For
millet, Kim et al. proposed that the circuit controlled by
EIN3/EIL1 was missing to give the transient response; for
rice, it was proposed that the rapid, EIN3/EIL1-independent
output of EIN2 is missing. The first case was analyzed
in this paper when we analyzed the MPGR response. An
interesting feature of the CFF/NFB model is that there is
a simple conceptual way to modify the network to generate
responses consistent with other species. It is less clear how
the PFB network could be modified in an analogous manner
to generate growth response kinetics consistent with the
rice and millet studies. Further exploration of the network
topology across species is an interesting area for future
exploration.

Even though both models exhibited SSGR behavior that
was similar to what has been observed experimentally, the

kinetics of the computational responses are subtly different from
experimental observations. In particular, there was no long-
time recovery at high sub-saturating ethylene concentrations and
incomplete recovery at low concentrations. It has been suggested
that responses to low levels of ethylene are in large part a result
of receptor clustering, where ligand occupancy of one receptor
affects the signaling state of surrounding receptors through
direct interactions and results in signal amplification at low
ethylene levels (Gamble et al., 2002; Binder and Bleecker, 2003;
Binder et al., 2004b). Computational models invoking receptor
clustering indicate this element can affect both sensitivity and
adaptation (Bray et al., 1998). Our models did not incorporate
this feature, which would likely affect features of the SSGR.
Additionally, our models do not incorporate spatial information.
For instance, it is now known that EIN2-C translocates to the
nucleus to affect ethylene signaling (Ju et al., 2012; Qiao et al.,
2012; Wen et al., 2012). Cleavage of EIN2 was not incorporated
into the CFF/NFB network and translocation of EIN2-C was
not explicitly incorporated into either model. This translocation
also may have diverse functions since it has recently been found
that EIN2-C in the cytosol also has a role in ethylene signaling
(Li et al., 2015; Merchante et al., 2015). It is likely that spatial
changes in important components such as EIN2-C have a role
in adaptation.

Despite these differences, our calculations show that
several simple networks can recapitulate the ethylene growth
responses observed experimentally. The dynamic responses
observed provide opportunities for experimental exploration. A
comparison of the dynamical response of individual components
for each network is shown in Supplemental Figure S7. For
example, the PFB network shows that when ethylene is
added there is a transient decrease in EIN2 levels followed by
accumulation of EIN2. By contrast, the CFF/NFB model predicts
qualitatively different accumulation kinetics for EIN2, with no
transient decrease. Thus, one avenue of experimentation can
be to obtain more detailed spatio-temporal information about
the accumulation of EIN2 (and EIN2-C) to determine if the
details predicted by the calculations in either model occur when
saturating levels of ethylene are added. For example, a detailed
time-course of EIN2-C accumulation or EIN2 full-length protein
is lacking. Such information would help determine which, if
either, model correctly predicts the accumulation pattern for
EIN2. Additionally, removing EIN3 from the CFF/NFB model
has minimal effect on the time-course of EIN2 accumulation
when ethylene is added, but has a profound effect on both
EIN2 and EIN2-C levels in the PFB model. Thus, experiments
examining EIN2 and EIN2-C levels in ein3;eil1 double mutants
would also be informative. Another example is the involvement
of GA in the CFF/NFB network where it plays a larger role in
the growth kinetics observed in the ein3;eil1 mutants. Detailed
information about changes in GA levels would provide a test of
this model and whether the negative feedback loop needs to be
incorporated into the PFB network. Such experimental details
will help determine which network topology, if either, could serve
as the ethylene signaling transduction network of Arabidopsis. It
is also possible that a combination of the two models or different
network topologies will yield emergent properties that are closer
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to experimental observations. Additional experimental details
about the spatio-temporal changes that occur in each component
of the pathway will allow us to refine the above models or develop
additional network topologies.

In summary, these calculations show that a basic mechanistic
understanding of ethylene growth response and recovery
kinetics is possible without detailed knowledge of the molecular
mechanisms or enzymatic kinetic parameters. Given that
ethylene signal transduction has been highly studied for several
decades, we anticipate that major advances in our understanding
about this pathway will be to provide details about network
interactions, reaction kinetics, and changes in the spatial
distribution of proteins in the pathway. Our hope is that with
more refined experimental input, we can refine the network
models to provide insights into how plants respond to ethylene.
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