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Gastroduodenitis caused by H. pylori, often acquired in early childhood, is found in about

50% of the adult population. Although H. pylori infections can remain asymptomatic,

its virulence factors usually trigger epithelial vacuolization and degeneration, loss of

microvilli, disintegration of cytoplasm, and leukocyte accumulation. It is believed that

leukocyte infiltration is driven by cytokines produced locally in infected tissue. However,

so far little is known about changes in serum cytokines in juvenile patients infected with

H. pylori. Serum cytokine profiles were analyzed in 62 juvenile patients diagnosed with

gastroduodenitis using the Bio-Plex multiplex assay. H. pylori infection was confirmed

in 32 patients, while 30 patients were H. pylori-free. Cytokines CXCL5 and CXCL6,

potent neutrophil chemoattractants, were upregulated in all patients diagnosed with

gastroduodenitis. Serum levels of IL8, a prototype neutrophil attractant, remained

unchanged in subjects with gastroduodenitis relative to controls. Therefore, our data

suggest that CXCL5 and CXCL6 play a role in directing neutrophil trafficking into inflamed

gastroduodenal tissue. In addition, the CCL25/GM-CSF ratio differed significantly

between H. pylori-positive and -negative juveniles. Further, study is needed to evaluate

the role of CCL25 and GM-CSF in the pathogenesis of the different etiologies of

gastroduodenitis.
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INTRODUCTION

Helicobacter pylori (H. pylori) was identified in 1982 and suggested to be a causative agent
for gastritis and stomach ulcers (Marshall and Warren, 1984). This helix-shaped gram-negative
bacterium colonizes gastric mucosa and persists as a chronic infection (Marshall et al., 1985a;
Morris and Nicholson, 1987). H. pylori is one of the most common gastrointestinal infections,
being found in about 50% of the adult population (Sipponen et al., 1996; Kosunen et al., 1997).
The majority of H. pylori infections remain asymptomatic, with only 15% of carriers developing
symptoms (Atherton, 1998; Ernst and Gold, 2000). Infection, often acquired in early childhood,
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has been shown to be associated with poor hygiene and
impoverished living conditions (Malaty and Graham, 1994; Kivi
et al., 2003; Konno et al., 2005; Dattoli et al., 2010). It is believed
thatH. pylori is transmitted via fecal-oral or oral-oral routes (Goh
et al., 2011).

During gastric epithelium colonization, H. pylori establishes a
persistent infection within the mucus layer without crossing the
epithelial barrier (Noach et al., 1994). Infection is histologically
characterized by surface epithelial degeneration, inflammation,
and leukocyte infiltration into the gastric mucosa (Bodger and
Crabtree, 1998; Peek et al., 2010).

H. pylori virulence factors are themain cause of tissue damage,
and include vacuolating cytotoxin (vacA), cytotoxin associated
gene A (cagA), and neutrophil-activating protein (HP-NAP;
Atherton, 1998; Cellini and Donelli, 2000; Fu, 2014). Binding
of VacA to gastric cells triggers epithelial vacuolization and
degeneration, loss of microvilli, and cytoplasmic disintegration
(Goodwin et al., 1986; Papini et al., 1994; Garner and Cover,
1996; Smoot et al., 1996). Animal studies have demonstrated
that purified vacA toxin causes gastric epithelial damage with
little effect on inflammatory leukocyte infiltration (Telford et al.,
1994; Ghiara et al., 1995). In addition, cagA has been shown to
be strongly associated with development of local inflammation
and expression of pro-inflammatory cytokines (Peek et al.,
1995). Moreover, it has been suggested that the cagA gene
and nearby sequences code for proteins that act synergistically
and promote production and secretion of pro-inflammatory
cytokines (Tummuru et al., 1995; Censini et al., 1996), and
that the virulence factor HP-NAP promotes neutrophil adhesion,
chemotaxis, and activation (Satin et al., 2000). The combined
effects of these virulence factors is inflammation of local tissue
caused by damage to gastric epithelial cells, and activation of
pro-inflammatory cytokine production.

Histologically, infiltration of gastric tissue by leukocytes is
a hallmark of H. pylori infection. In tissue biopsies collected
from patients infected with H. pylori both neutrophil infiltration
(Kamada et al., 2006; Jaramillo-Rodríguez et al., 2011; Xu et al.,
2012) and increased infiltration of CD4+ T helper lymphocytes
in the lamina propria (D’Elios et al., 1997a) have been reported.
Further, in gastric mucosa, it has been demonstrated that
H. pylori infection activates predominantly Th1-type immune
responses (D’Elios et al., 1997a), and immunohistochemically
analyses of gastric biopsies have revealed an increased presence
of CD8+ lymphocytes and macrophages (Bedoya et al., 2003).
Animal models established that the early stage of infection is
marked by neutrophil infiltration (Rossi et al., 2000). As infection
progresses, a drop in neutrophil counts is followed by increased
tissue infiltration with mononuclear leukocytes, mostly CD3+
lymphocytes. Initially scattered, lymphocyte infiltrates organize
into small patches in the corpus and antrum of stomach (Rossi
et al., 2000; Sepulveda and Patil, 2008). Later, the appearance of
CD4+ and CD8+ lymphocytes in the periglandular area and
beneath the basal lamina correlates with histological signs of
gastric epithelial damage. Eventually, leukocyte infiltrates became
organized in follicles containing CD21+, CD4+, and CD3+
lymphocytes (Rossi et al., 2000). Furthermore, the appearance
of neutrophils at late stage leukocyte infiltration suggests active

chronic gastritis. Together, these data indicate that initially
H. pylori infection causes neutrophil infiltration of gastric
mucosa, then as infection progresses neutrophils are replaced
by lymphocytes. This leukocyte infiltration is the main cause of
gastric epithelial damage in H. pylori infected tissue.

Exposure of gastric epithelium to H. pylori results in
the production of a number of cytokines that stimulate
migration of immune effector cells into inflamed tissue, including
upregulation of IL8, CCL5, CCL3, IFN, IL10, IL12p40, and
IL18 (Crabtree et al., 1994, 1995a,b; Yamaoka et al., 1996, 1998;
Karttunen et al., 1997; Park et al., 2001; Dzierzanowska-Fangrat
et al., 2008). Studies using animal models have demonstrated
that the early stage of H. pylori infection is characterized by
increased expression of IL1, IL8, IL6, and TNF-α in gastric
mucosa (Harris et al., 2000; Rossi et al., 2000). Then, as the disease
progresses, IL8 expression declines, while IL1, IL6, and TNF-α
remain elevated (Rossi et al., 2000; Harris et al., 2000). It has
been suggested that at late stages of the disease, there is a shift
toward Th1 immunity, involving cytokines such as IFNγ and
IL12 (D’Elios et al., 1997a; Haeberle et al., 1997; Pellicanò et al.,
2007), and that persistent activation of the Th1 immune response
is a cause of tissue damage in H. pylori infection (D’Elios et al.,
1997b; Smythies et al., 2000). A combination of transcriptional
analysis of tissue biopsies and histological findings has provided
most of the information about cytokine activation of H. pylori
infection. However, there is limited knowledge of serum cytokine
expression in children infected with H. pylori, since the majority
of data is from adult populations (Bayraktaroğlu et al., 2004;
Mehmet et al., 2004; Abdollahi et al., 2011; Eskandari-Nasab et al.,
2013). To date, for the most part, cytokines studies have been
limited to the Th1 or pro-inflammatory class. This is unfortunate,
as H. pylori infection often occurs during early childhood
establishing a lifelong chronic infection. Understanding cytokine
expression at the initial stages of infection will identify early
markers, and improve disease diagnosis.

Here, we present data on cytokine activation in serum
of children with gastroduodenitis. Sixty-two juveniles with
gastroduodenitis were included in this study, with 30 having
a diagnosis of H. pylori infection. Regardless of the presence
or absence of H. pylori pathogenicity markers, there was
upregulation of the potent neutrophil chemoattractants, CXCL5,
and CXCL6. However, serum levels of IL8, a prototype
neutrophil attractant, were not statistically different between
diagnoses. Therefore, our data suggest that a novel set of
chemokines, CXCL5, and CXCL6, play a role in neutrophil
trafficking into inflamed gastroduodenal tissue. Further, an
intriguing observation was that the CCL25/GM-CSF ratio
differed significantly between H. pylori positive and negative
children with gastroduodenitis.

MATERIALS AND METHODS

Subjects
Sixty-two patients (24 boys, 38 girls; age 14.0 ± 2.1) hospitalized
in the Children’s Republican Clinical Hospital (Kazan, Russia)
with a diagnosis of gastritis and duodenitis were recruited for this
study. Initial diagnosis of H. pylori infection in 30 of the patients
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was based on clinical presentation and upper GI endoscopy. The
presence ofH. pylori was confirmed by urea breath test and PCR.

Biopsies were collected from each patient during upper GI
tract endoscopy: two from antral part of the stomach along the
major and minor curvatures, and 2–3 from the body of the
stomach, along the major and minor curvatures. In addition,
stomach biopsies were collected from three controls, who were
found to be negative for any gastroduodenal pathology by
diagnostic upper GI tract endoscopy. Biopsies were used for both
PCR analyses and histological studies.

Serum samples were collected from all 62 juveniles with
gastritis and duodenitis, as well as from 20 age- and sex-matched
controls. All controls were negative for symptoms of upper
GI tract infection or gastritis. Serum samples were stored at
−80◦C. The Ethics Committee of Kazan State Medical University
approved this study (N6, 06.25.2012) and informed consent
was obtained from the legal guardian of each study subject, in
accordance with the Declaration of Helsinki and the article 20,
Federal Law “Protection of Health Right of Citizens of Russian
Federation” (N323-83, 11.21.2011).

Urea Breath Test
Breath ID Hp (Exalenz, USA) was used to confirm H. pylori
infection. This breath test measures the presence of 13C labeled
CO2 in the patient’s breath after ingestion of a solution containing
13C labeled urea. After 10 min, exhaled air is collected and tested
for the presence of 13CO2, which indicates H. pylori infection.

PCR Detection of H. pylori
DNA was extracted from biopsy tissue using the Helicopol Kit
(Lytech, Moscow). H. pylori positive biopsies were analyzed by
PCR for a pathogenicity marker profile using the Helicopol II
Kit (Lytech, Moscow). Briefly, 2 µl total DNA was mixed with
4 µl 10x PCR buffer, 2 µl 25 mM MgCl2, 0.5 µl (100 pmol) each
of primers, 40.7 µl distilled water, and 0.3 µl (2.5U) Taq DNA
polymerase. The reactionmixture was then subjected to 35 cycles,
each consisting of 30 s at 94◦C, 30 s at 50◦C, and 2 min at 72◦C.
PCR products were analyzed on a 1% agarose gel.

Cytokine Analysis
Serum cytokine levels were analyzed using a Bio-Plex ProHuman
Chemokine Panel (40-Plex; Bio-Rad, Hercules, CA), a multiplex
magnetic bead-based antibody detection kit.

Immunohistochemical Analysis
After initial analysis, there were surplus clinical diagnostic
biopsy specimens from 21 H. pylori positive and 13 negative
cases. These were used for immmunohistochemical analysis.
Punch biopsies were fixed in 4% paraformaldehyde for 4 h
at 4◦C, and then cryoprotected with 30% sucrose in PBS.
Immunohistochemical staining was performed on 5 µm thick
sections. Slides were deparaffinized with xylene and rehydrated
through a graded alcohol series. Tissue morphology was
evaluated by light microscopy using hematoxylin-eosin staining.
Additionally, Alcian blue (pH 2.5) and periodic acid Schiff (PAS)
staining were performed to detect the presence of sialomucins.

Statistical Analysis
Statistical analysis was performed using the STATISTICA 7.0
Software Package (StatSoft, Tulsa, OK) and the IBM SPSS
Statistics 20 Software Package (IBM Corp, Armonk, NY, U.S.).
Data are presented as the median (5–95% range) for continuous
variables. Differences between independent study groups were
tested by non-parametric methods. To address type 1 error,
Kruskal–Wallis ANOVA by Ranks test for multiple independent
samples was followed by the multiple comparison (all pairs) non-
parametric post-hoc Steel-Dwass test Nonparametric multiple
comparisons were made [recalculated and confirmed] by the
Steel-Dwass all pairs test using JMP R© 13.0.0 Software (SAS
Institute Inc, USA). Differences were considered significant
at P < 0.05. Jonckheere’s non-parametric trend test was
performed to compare three group medians when they were
arranged in order. Cytokine profiles between subject groups
were differentiated using forward stepwise discriminant function
analysis.

RESULTS

Patients
Sixty-two patients (24 boys and 38 girls) were admitted to the
Children’s Republican Clinical Hospital (Kazan, Russia) with a
diagnosis of gastritis and duodenitis. The main symptoms were
pain in the epigastric area, vomiting, nausea, headache, and
fatigue. Biopsy samples collected from the antrum of the stomach
were analyzed for the presence of H. pylori antigens. Thirty
samples were positive for H. pylori and 32 samples negative. The
surplus biopsy tissue from 21 positive and 13 negative juveniles
(of the 62 enrolled in the study) was used for histological studies.

Three H. pylori positive biopsies had massive leukocyte
infiltration of the lamina propria (Figure 1) with moderate
incomplete metaplasia of the epithelium (Figure 2). Moderate
lymphocyte infiltration of the lamina propria was found in
11 positive biopsies, with four having moderate epithelial
metaplasia. Finally, four had moderate lymphocyte infiltration
of the lamina propria with no sign of metaplasia. Based on
histological evaluation, diagnosis of chronic atrophic gastritis was
established in 9 (42.9%) of the H. pylori positive biopsies.

Histological analysis of the 13 H. pylori negative biopsies
revealed epithelial metaplasia in eight biopsies, with lymphocyte
infiltration in five cases. Two biopsies had lymphocyte infiltration
and metaplasia. The remaining two biopsies had no sign of
lymphocyte infiltration or metaplasia. Diagnosis of chronic
atrophic gastritis was established in 6 (46.2%) of the H. pylori
negative biopsies. The gastritis activity was graded in all
biopsies according to the Histological Division of the Sydney
System and “Up-Dated Sydney System” (Tytgat, 1991; Dixon
et al., 1997; Table 1). This classification determines the activity
grade based on the presence of polymorphonuclear leucocytes
in combination with mononuclear inflammatory infiltrate,
intestinal metaplasia, atrophy, and detection of H. pylori
organisms. H. pylori positive biopsies were characterized by a
higher grade of chronic inflammation compared toH. pylori-free
biopsies (Table 1).

All patients were examined by gastroduodenoscopy.
Hyperemia and edema were detected in the gastric mucosa
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FIGURE 1 | Histological sections of three representative biopsies. Gastric biopsy sections (3–5 µm) of control (A), and H. pylori positive (B) and H. pylori

negative (C) gastroduodenitis cases were deparaffinized and stained with hematoxylin and eosin (H&E). The gastric epithelium phenotype of the H. pylori positive

juvenile (B) resembles the phenotype of colonic epithelium, characterized by multiple intracytoplasmic mucin droplets of varying sizes and shapes (solid arrow), and

the absence of a brush border (dashed arrow). H&E; x100; Bar represents 20 µm.

FIGURE 2 | Histochemistry of gastric epithelium metaplasia in a

H. pylori positive biopsy. Gastric biopsy sections (3–5 µm) were

deparaffinized and stained with Alcian blue (pH 2.5) and PAS followed by H&E

staining. Presence of sialomucins (stained blue, solid arrow) demonstrates

incomplete metaplasia (Filipe et al., 1994). (A) H. pylori positive gastric biopsy;

(B) H. pylori negative gastric biopsy (Bar represents 20 µm).

of some, but not all, subjects. No visible changes were observed
in the esophagus. Erosion with fibrin deposits, hyperemia, and
edemawere detected in 3 (14%) ofH. pylori positive subjects. Five
(16.1%) H. pylori positive cases were characterized by duodenal
bulbar deformity with multiple scars, hyperemia and edema,
with no deformation, or scarring observed in H. pylori negative
stomachs. Two (6.4%) H. pylori positive stomachs had multiple
ulcers, while all H. pylori negative patients were all ulcer-free.
Overall, H. pylori positive stomachs were characterized by
pronounced histological abnormalities compared to H. pylori
negative stomachs.

Cytokine Profile
A total of 40 cytokines were analyzed in the serum of all subjects
(Table 2). Children with gastroduodenitis had similar profiles,
with the cytokine activation profile in H. pylori positive serum
closely resembling H. pylori negative. For example, significant
upregulation of CXCL2, CCL1, IL2, CCL7, CCL22, CXCL16,
and CXCL12 was detected in both groups. Interestingly, the
serum level of a major chemoattractant for neutrophils, IL8, did
not differ significantly between patients with gastroduodenitis

and controls. However, serum levels of CXCL5 and CXCL6,
chemoattractant factors for neutrophils, were significantly
upregulated in sera from all H. pylori positive juveniles, and
not linked to the presence of neutrophil infiltration in biopsied
tissue. Although serum levels of TNF-α were significantly higher
in both H. pylori positive and negative sera compared to controls
(Table 2), concentrations of this cytokine were within the normal
range for this age (Mózes et al., 2011).

Significantly increased levels of CCL15, CCL20, andMIF were
detected in both H. pylori positive and negative serum compared
controls. However, only MIF levels differed significantly between
the two groups. In contrast, no changes in serum levels of
CCL2, CCL3, CCL8, CCL11, CCL17, CCL19, CCL21, CCL23,
CCL24, CCL26, CCL27, CXCL9, CX3CL1, IL6, IL8, IL10, and
IFN-γ were found either between the two groups of patients with
gastroduodenitis, or between juveniles with gastroduodenitis and
the control group.

We compared cytokine activation inH. pylori positive patients
with different histological presentations. The histological data
was used to divide the patients into four groups; group one was
characterized by severe lymphocyte and neutrophil infiltration
of the lamina propria with moderate epithelial metaplasia,
group two had moderate lymphocyte infiltration of the lamina
propria and moderate epithelial metaplasia, group three had
mild infiltration of lamina propria andmild epithelial metaplasia,
and group four had no lymphocyte infiltration and no epithelial
metaplasia. The pattern of cytokine upregulation was similar in
all groups and was characterized by increased serum levels of
chemoattractants for lymphocytes, monocytes, natural killer cells
and dendritic cells such as CCL1, CCL22, CCL15, CXCL16, and
CXCL12.

Next, forward stepwise discriminant function analysis was
utilized to identify cytokines that differed between control and
H. pylori positive and negative sera. Fourteen cytokines were
selected to generate a classification matrix [model summary:
Wilks’ lambda = 0.15498; F(28, 102) = 5.6106, p < 0.0001,
IL4, IL8, CCL3, CCL1, CCL7, IFNγ, CXCL12, CCL2, CXCL10,
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TABLE 1 | Histological examination of the gastric biopsies from H. pylori positive and negative gastroduodenitis cases.

Histological findings H. pylori positive, abs.

(%), n = 21

H. pylori negative, abs.

(%), n = 13

Control abs. (%) n = 3

No visible lymphocyte infiltration or few inflammatory cells 9 (42.9%) 12 (92.3%) 3 (100%)

Moderate leukocyte infiltration of the lamina propria (Grade I) 9 (42.9%) 1 (7.7%) –

Severe leukocyte infiltration of the lamina propria (Grade II) 3 (14.2%) 0 –

Metaplasia (+) 12 (57.1%) 8 (61.5%) –

Metaplasia (−) 9 (42.9%) 5 (38.5%) 3 (100%)

CCL23, MIF, TNF-α, CXCL1, and CXCL9]. Discriminant
analysis revealed greater differences between patients with
gastroduodenitis (both H. pylori positive and negative) and
controls (Squared Mahalanobis distances 34.32) than between
H. pylori positive and negative patients (Squared Mahalanobis
distances 2.56). Furthermore, the 14 cytokine-based classification
matrix yielded 100% correct predictions for controls (predicted
classifications vs. observed classifications in the classification
matrix), with lower percentages of correct predictions for cases
that were H. pylori positive (80%) and H. pylori negative
(76.66%).

In Crohn’s disease altered expression of GM-CSF and
CCL25 has been suggested to play a role in the pathogenesis
of inflammatory gastrointestinal disease (Samson et al.,
2011). Therefore, we sought to determine whether these two
cytokines were involved in the pathogenesis of H. pylori-related
gastroduodenitis. Serum levels of GM-CSF were significantly
upregulated in H. pylori negative subjects, while in H. pylori
positive subjects, GM-CSF levels were similar to controls
(Table 2), and significantly lower (∗P < 0.05; Table 2) than
H. pylori-free serum. In addition to increased GM-CSF levels,
H. pylori negative serum was characterized by significantly
lower levels of CCL25 (Table 2), suggesting bidirectional
activation of these cytokines in negative serum. To further
analyze the activation pattern of these cytokines in H. pylori
negative and positive serum, we compared the CCL25/GM-CSF
ratio in three independent study groups using Kruskal–Wallis
ANOVA by Ranks test (P-level = 0.0083), followed by post-hoc
Jonckheere’s non-parametric trend test for multiple comparisons
(P-level = 0.006; Figure 3). The CCL25/GM-CSF ratio differed
significantly between each group. H. pylori positive and negative
juveniles were positioned on either side of controls (Figure 3),
suggesting that the CCL25/GM-CSFratio reflects an essential
difference in gastroduodenitis pathogenesis with H. pylori
positive and negative stomach having distinct forms.

DISCUSSION

H. pylori infection is often acquired early in childhood
(McCallion et al., 1996; Suerbaum and Michetti, 2002;
Tkachenko et al., 2007). This bacterium colonizes gastric
mucosal epithelium, establishes a chronic infection (Marshall
et al., 1985b; Morris and Nicholson, 1987), and once established,
releases numerous virulence factors causing apoptosis and
vacuolization of the gastric epithelium, and functional disruption

of the gastric epithelial barrier (Goodwin et al., 1986; Papini
et al., 1994; Garner and Cover, 1996; Smoot et al., 1996).

Currently, little is known about systemic activation of
cytokines in children infected withH. pylori. The serum cytokine
profile of infected children suggests a strong activation of
chemoattractants for mononuclear leukocytes (Table 2). For
example, in H. pylori positive gastroduodenitis we demonstrate
increased serum levels of chemoattractants for mononuclear
lymphocytes, such as CXCL10, CCL22, and CXCL16 (Taub
et al., 1996; Andrew et al., 1998; Huang et al., 2008). This
observation is supported by histological examination of biopsies,
where increased leukocyte infiltration was detected (Table 1
and Figure 1). Interestingly, there were no differences in the
serum cytokine profiles of patients with distinct histological
presentations suggesting that tissue pathology is determined
by in situ cytokine activation, which is not reflected in
circulating cytokine levels. Serum levels of the prototype
neutrophil chemoattractant IL8 (Gessler et al., 2004), remained
unchanged in juveniles with gastroduodenitis. Bayraktaroglu et
al described the same phenomenon in adults where IL-8 serum
levels in H. pylori positive cases did not differ from controls
(Bayraktaroğlu et al., 2004). However, increased levels of IL8
transcripts in tissue have been documented in H. pylori patients
(Yamada et al., 2013; Nagashima et al., 2015), suggesting that
upregulation of IL-8may be a local characteristic of inflammation
of gastrointestinal tissue. The molecular mechanisms regulating
systemic neutrophil migration into inflamed tissue remains to
be determined. Here, we demonstrate upregulation of CXCL5
and CXCL6, potent chemoattractants for neutrophils (Territo
et al., 1989; Chertov et al., 1996; Mei et al., 2012) in serum from
juveniles with gastroduodenitis. CXCL5, constitutively expressed
by enterocytes, coordinates with CXCR2 the transmigration
of neutrophils (Mei et al., 2012). Increased numbers of
CXCL6 positive mucosal cells have been observed in Crohn’s
disease biopsies (Yamada et al., 2013), where, upon activation,
upregulation of CXCL6 is more sustained than IL8 (Wuyts et al.,
2003). It has been suggested that CXCL6 could play a role
in supporting chronic inflammation by facilitating neutrophil
migration at a late stage of infection (Wuyts et al., 2003). In this
study, we present novel data on the upregulation of CXCL5 and
CXL6 in serum during gastroduodenitis. Serum levels of these
cytokines did not differ between H. pylori positive and negative
children with gastroduodenitis, suggesting that upregulation of
CXCL5 and CXCL6 is a tissue-specific response to inflammation,
and not driven by a specific pathogen.
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TABLE 2 | Serum cytokine profile of children diagnosed with H. pylori positive and negative gastroduodenitis.

Analyte H. pylori positive H. pylori negative control

Median (pg/ml; 5–95% range) Median (pg/ml; 5–95% range) Median (pg/ml; 5–95% range)

IL-1β 11.10 (3.61–22.30); P < 0.05 8.93 (1.57–20.82); P < 0.05 2.50 (1.45–4.93)

IL2 38.24 (18.35–60.99); P < 0.05 32.13 (6.30–55.06) 17.98 (4.67–34.56)

IL4 64.28 (19.01–87.12); P < 0.05 58.32 (30.52–116.86); P < 0.05 8.40 (3.30–18.00)

IL6 28.30 (11.60–51.29) 25.84 (6.30–64.58) 16.22 (10.25–76.07)

IL8 29.00 (9.17–48.30) 25.59 (8.90–54.76) 8.32 (3.81–56.00)

IL10 142.41 (12.51–250.46) 119.02 (43.21–214.17) 77.95 (57.01–210.31)

IL16 2835.29 (91.60–11326.32); P < 0.05 2762.31 (381.46–6959.23); P < 0.05 678.23 (402.53–2713.07)

CCL1 203.26 (55.32–276.00); P < 0.05 178.84 (86.83–261.92); P < 0.05 46.00 (24.62–120.80)

CCL2 68.41 (3.23–164.97) 67.02 (12.29–100.79) 43.23 (34.30–345.63)

CCL3 24.12 (5.40–36.22) 21.51 (10.66–65.00) 28.99 (2.06–87.70)

CCL7 347.20 (21.11–595.61); P < 0.05 309.99 (95.47–550.32); P < 0.05 118.14 (61.00–448.84)

CCL8 87.86 (11.20–333.22) 115.22 (17.55–284.38) 78.49 (6.51–141.19)

CCL11 95.50 (47.20–156.00) 89.40 (63.60–135.80) 99.36 (57.30–167.20)

CCL13 210.14 (13.51–499.87); P < 0.05 251.50 (19.57–733.77); P < 0.05 34.27 (3.05–210.04)

CCL15 1654.79 (34.23–41566.08); P < 0.05 13334.57 (211.26–43075.98); P < 0.05 72.94 (23.65–242.02)

CCL17 518.65 (29.93–2962.22) 476.64 (95.91–1426.65) 243.07 (23.54–1341.02)

CCL19 1270.66 (47.13–4730.73) 1075.69 (194.00–2762.13) 642.28 (120.30–3283.56)

CCL20 35.41 (3.56–181.76); P < 0.05 45.20 (2.33–135.31); P < 0.05 4.34 (2.33–8.02)

CCL21 153.20 (134.20–195.40) 198.30 (156.20–225.30) 167.30 (136.20–201.20)

CCL22 3337.42 (116.17–8142.66); P < 0.05 3532.51 (515.56–5486.09); P < 0.05 378.38 (5.78–1858.06)

CCL23 570.75 (23.60–1450.51) 763.31 (46.20–1901.47) 252.75 (66.61–731.94)

CCL24 236.20 (156.50–328.80) 296.40 (178.30–301.69) 294.00 (166.00–315.00)

CCL25 1094.47 (60.90–2606.17) 351.70 (95.91–1426.65); P < 0.05 501.52 (29.40–2019.70)

CCL26 36.37 (26.20–78.67) 46.37 (29.30–66.29) 27.20 (21.27–78.40)

CCL27 96.67 (84.50–126.30) 113.34 (82.50–146.20) 85.60 (76.45–124.30)

CXCL1 877.52 (106.00–1495.04); P < 0.05 813.00 (340.69–2495.34); P < 0.05 327.00 (216.83–694.48)

CXCL2 924.71 (34.76–6357.27); P < 0.05 1506.60 (149.96–4479.89); P < 0.05 26.52 (5.36–55.10)

CXCL5 548.17 (126.00–2913.34); P < 0.05 758.31 (154.00–3379.31); P < 0.05 167.00 (123.00–209.00)

CXCL6 151.67 (34.00–479.22); P < 0.05 134.32 (64.54–711.35); P < 0.05 34.00 (34.00–108.23)

CXCL9 973.81 (58.21–2921.36) 876.86 (148.47–5175.09) 313.88 (114.60–1303.63)

CXCL10 568.92 (85.11–2082.65); P < 0.05 686.86 (89.18–3958.80); P < 0.05 87.00 (50.01–99.84)

CXCL11 135.81 (6.18–457.00); P < 0.05 126.97 (19.55–949.43); P = 0.000004 3.70 (1.78–12.26)

CXCL12 4423.42 (163.20–7225.97); P < 0.05 3659.66 (875.50–6827.47); P < 0.05 107.70 (89.40–1365.15)

CXCL16 1103.74 (9.53–2096.30); P < 0.05 1291.65 (128.47–1931.20); P < 0.05 171.11 (8.88–442.83)

CXCL13 86.49 (10.00–218.93) 97.56 (7.02–177.21) 11.05 (3.79–208.33)

CX3CL1 120.30 (67.10–176.50) 127.90 (66.80–150.30) 100.70 (68.30–167.20)

GM-CSF 8.30 (2.80–456.83) 33.59 (12.88–230.11); P < 0.05, *P < 0.05 13.3 (10.20–15.30)

INF-γ 145.72 (15.26–243.31) 132.90 (36.60–245.16) 83.00 (40.25–164.07)

MIF 375.98 (78.00–46690.84); P < 0.05 6641.92 (525.81–89114.28); P < 0.05, *P < 0.05 23.67 (9.28–207.56)

TNF-α 74.57 (2.56–131.86); P < 0.05 62.12 (24.66–104.25); P < 0.05 10.23 (3.45–36.97)

P—significance between gastroduodenitis group and healthy control, Steel-Dwass test.
*P—significance gastroduodenitis groups, Steel-Dwass test.

CXCL6 is a neutrophil chemoattracting factor produced
by endothelial cells and macrophages exposed to IL1β or LPS
(Wuyts et al., 2003). Additionally, transcriptional activation
of both CXCL6 and CXCL5 has been demonstrated in
cells stimulated with IL17 (Ruddy et al., 2004; Numasaki
et al., 2005). Here, we show upregulation of IL17 in
H. pylori positive juveniles suggesting that IL17 activation

of epithelial cells and local macrophages causes upregulation
of CXCL5 and CXCL6, which in turn promotes neutrophil
chemotaxis into gastric tissue. It should be noted
that CXCL6 synergy with MCP1 facilitates neutrophil
chemotaxis (Gijsbers et al., 2005). Therefore, neutrophil
chemotaxis may result from a combined action of several of
cytokines.
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FIGURE 3 | Analysis of CCL25/GMCSF ratio in H. pylori positive and negative subjects, and healthy controls. CCL25/GMCSF ratio in serum of H. pylori

positive, H. pylori negative, and healthy controls was analyzed using using Kruskal–Wallis ANOVA by Ranks test, followed by the post-hoc non-parametric

Jonckheere’s-test for ordered medians. CCL25/GM-CSF ratio differed significantly between H. pylori positive and H. pylori negative subjects, and healthy controls

(P = 0.006).

The most intriguing observation made in this study was
that GM-CSF and CCL25 may play a role in the pathogenesis
of gastroduodenitis, and that changes in serum levels of
GM-CSF and CCL25 may reflect the host’s reaction to
disease. Analysis of the CCL25/GM-CSF ratio indicates
that H. pylori positive and negative gastroduodenitis are
unrelated clinical entities. Our data support the observation
made by Samson et al. suggesting a role for GM-CSF and
CCL25 in the pathogenesis of inflammatory gastrointestinal
disease (Samson et al., 2011). These authors demonstrated that
CD patients with high serum level of GM-CSF neutralizing
antibodies had increased number of iliac epithelial cells
expressing CCL25. Local upregulation of CCL25 has been shown
to facilitate iliac inflammation by stimulating CCR9-driven
T lymphocyte migration. Our data provide further evidence
for a role of both CCL25 and GM-CSF in the pathogenesis
of inflammatory gastrointestinal diseases. Although our
analysis revealed no correlation between the CCL25/GM-
CSF ratio, histological presentation, and localization of
gastrointestinal inflammation, we believe further study should
be conducted to fully understand the function of CCL5 and
GM-CSF in the pathogenesis of inflammatory gastrointestinal
disease.

We have demonstrated upregulation of serum CXCL5 and
CXCL6 in subjects diagnosed with gastroduodenitis, whereas

serum levels of the neutrophil attractant, IL8, did not differ from
controls. Therefore, we suggest that neutrophil accumulation
in tissue in children with gastroduodenitis is directed by
a distinct set of chemokines including CXCL5 and CXCL6.
Additionally, we present the first evidence for a potential role
for CCL25 and GM-CSF in the pathogenesis of gastroduodenitis,
and that the CCL25/GM-CSF ratio can be utilized to for the
discrimination of gastroduodenitis caused by H. pylori from
gastroduodenitis due to other causes. Further study, using animal
model for H. pylori gastroduodenitis is needed to determine
the roles of CCL25 and GM-CSF in the pathogenesis of
gastroduodenitis.
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Bayraktaroğlu, T., Aras, A. S., Aydemir, S., Davutoğlu, C., Ustündağ, Y.,
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