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Two Japanese quail strains, respectively atherosclerosis-susceptible (SUS) and –resistant

(RES), have been shown to be good models to study cholesterol metabolism and

transportation associated with atherosclerosis. Our objective was to examine possible

difference in cecal microbiota between these strains when fed a control diet and

a cholesterol enriched diet, to determine how host genotype and diet could affect

the cecal microbiome that may play a part in cholesterol metabolism. A factorial

study with both strains and two diets (control, cholesterol) was carried out. Cecal

content was collected from 12 week old quail that have been on their respective diets

for 6 weeks. DNA was extracted from the samples and the variable region 3–5 of

the bacterial 16S rRNA gene was amplified. The amplicon libraries were subjected

to pyrosequencing. Principal Component Analysis (PCA) of β-diversity showed four

distinct microbiota communities that can be assigned to the 4 treatment groups

(RES/control, RES/cholesterol, SUS/control, SUS/cholesterol). At the Phylum level, the

4 treatment groups has distinct Firmicutes community characteristics but no significant

difference in Bacteroidetes. Eubacterium dolichum was rare in RES/control but became

overabundant in RES/cholesterol. An unclassified species of Lactobacillaceaewas found

in abundance in SUS/control but the same species was rare in RES/cholesterol. On

the other hand, two Lactobacillus species were only found in RES/control and an

unclassified Lachnospiraceae species was abundant in RES/cholesterol but rare in

SUS/control. The abundance of four species of Lachnospiraceae, three species of

Ruminococcaceae and one species of Coprobacillaceae was positively correlated with

plasma Total Cholesterol, plasma LDL, and LDL/HDL ratio. Our study of cecal microbiota

in these quail has demonstrated that selection for susceptibility/resistance to diet induced

atherosclerosis has also affected the quail’s cecal environment to host distinctly different

cecal microbiome.
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Introduction

Despite many measures are available for the management of
cardiovascular disorders, this common disease is still associated
with high incidence of mortality and morbidity (Go et al., 2014).
This is a reflection that atherosclerosis is a complex pathological
process, affected by both genetic and environmental factors that
we still do not fully understand. Over the past several years,
researchers have turned their attention to the effects of gastro-
intestinal microbiota on the development of metabolic diseases
(Cani and Delzenne, 2009; Caesar et al., 2010; Sekirov et al., 2010;
Karlsson et al., 2012; Strowig et al., 2012). In particular, Wang
et al. (2011) found that in mice, intestinal microbiota metabolism
of dietary choline produced trimethylamine (TMA). TMA is
further converted to trimethylamine N-oxide (TMAO) by liver
enzymes Flavin monooxygenases, and TMAO has been found
to promote endogenous cholesterol-laden macrophage foam cell
formation, one of the earliest hallmarks of the atherosclerotic
process. Koeth et al. (2013) found that L-carnitine, a TMA
abundantly found in red meat, could also be converted to
TMAO by intestinal microbiota. They also found that TMAO
significantly reduced reverse cholesterol transport in mice.
Never-the-less, most of the studies carried out so far lacked
defined host genotypes and defined diets at the same time to
examine their interaction effect on gut flora diversity.

The Japanese quail was introduced as a laboratory animal
in the 1960s (Padgett and Ivey, 1959) and proved to be useful
in many areas of biomedical studies (Minvielle et al., 2007;
Cheng et al., 2010). At the University of British Columbia
(UBC) Avian Research Centre, we have been maintaining two
related strains of Japanese quail for research in atherosclerosis.
The two strains were developed by divergent selection from a
common foundation population (Shih et al., 1983). One strain is
susceptible to diet-induced atherosclerosis (SUS), and the other
is resistant (RES). When challenged with a high cholesterol
diet, about 80% of the SUS males will develop atherosclerosis
whereas only about 4% of the RES males will. Li et al. (2012)
examined differential mRNA expression of seven genes involved
in cholesterol metabolism and transport in the liver of the SUS
and RES and concluded that these quail are good models for
studying cholesterol metabolism and transport in relationship
to atherosclerosis development. We therefore think that this
quail model would be useful for studying the interaction of host
genotype and diet in affecting the gut flora diversity in association
with the development of atherosclerosis.

The objectives of our study were (1) to characterize the
phylogenetic diversity of the cecal microbiota of the SUS and
RES males fed a regular (control) diet, using 454 pyrosequencing
after amplification for V3–V5 region of bacterial 16S rRNA

Abbreviations: FMO3, Flavin monooxygenase 3; LPS, lipopolysaccharide;

OUTs, operational taxonomic units; PCA, Principal Components Analysis;

RC, atherosclerosis-resistant quail on control diet; RCT, reverse cholesterol

transport; RE, atherosclerosis-resistant quail on cholesterol diet; RES,

atherosclerosis-resistant quail; SC, atherosclerosis-susceptible quail on

control diet; SE, atherosclerosis-susceptible quail on cholesterol diet; SUS,

atherosclerosis-susceptible quail; TG, triglycerides; TLR4, toll-like receptor 4;

TMA, trimethylamine; TMAO, trimethylamine N-oxide.

gene, (2) to characterize the cecal microbiota diversity of the
SUS and RES males fed the control diet dosed with cholesterol
(0.5% w/w) using the same pyrosequencing procedure, and (3)
to identify gut bacteria that are key to each of the four treatment
groups (SUS/control diet, RES/control diet, SUS/cholesterol diet,
RES/cholesterol diet) and to examine the association of these
bacteria with the development of atherosclerosis.

Materials and Methods

Experimental Birds
The two strains of Japanese quail, SUS and RES, have been
acquired by the UBC Quail Genetic Resource Centre from
North Carolina State University in 1989. The history of their
selective breeding has been described by Shih et al. (1983). Since
their transfer to UBC, they have undergone further divergent
selection for susceptibility and resistance to atherosclerotic
plaque formation induced by dietary cholesterol (0.5%w/w)
(Cheng et al., 1997).

Experimental Design
After hatching, both SUS (N = 80) and RES (N = 80) males
were fed a semi-synthetic diet (Li et al., 2012) (Table 1) prepared
by the feed mill at the Agriculture and Agri-Food Canada
Poultry Research Station at Agassiz, British Columbia, according
to the NRC nutrient requirements standards recommended
for Japanese quail (http://www.nap.edu/catalog/2114.html). At
6 weeks of age, they were divided into two dietary treatment
groups and fed either a regular synthetic diet (control) or a
synthetic diet with added cholesterol (0.5%w/w) for another 6
weeks (Li et al., 2012). Individually marked birds (both RES
and SUS) fed the same diet were kept in the same pen. Birds
on the alternative diet were kept in a neighboring pen. At
12 weeks of age, 6 birds from each of the treatment groups
with body weight closest to the mean of the population were
euthanized by decapitation and trunk blood was collected into
Vacutainer tubes (Becton–Dickinson, Mississauga, ON, Canada),
containing lithium heparin, and centrifuged at 4◦C for 10min at
3000 × g. Plasma was stored at −20◦C until it was later used
for lipid analysis. Sections of ceca, including gut content were
collected from each bird. All samples were quick frozen on dry ice
immediately after collection and stored at−70◦C until processed
for DNA extraction. The aortic tree (the brachycephalic arteries
to their bifurcations and the aorta to the iliac branching)
of each bird was dissected out, opened longitudinally and
examined under a 10–30X dissecting microscope for a semi-
quantitative scoring of the seriousness of the atherosclerotic
lesions on the interior wall. The scoring system was adopted
from Godin et al. (1995). A score of 0 (normal) to 4 (presence of
severe atherosclerotic lesions) was assigned by two independent
scorers who were blind to the genetic and diet status of the
bird. Four quail from each treatment group were selected,
based on their atherosclerotic lesion scores, for examination of
their cecal microbiota. This research was carried out with the
approval of the UBC Animal Care Committee (Certificate #
A12-0087).
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TABLE 1 | Semi-synthetic diets.

Ingredients (g/kg) Control diet Cholesterol diet

Soy protein flour (50% protein) 340.0 340.0

Corn starch 400.0 390.0

Limestone 50.0 50.0

Mineral premix 5.0 5.0

Monofos 30.0 30.0

Sucrose 20.0 20.0

Alphacel 70.0 70.0

Vitamin premix 5.0 5.0

D-L methionine 4.0 4.0

Choline chloride 3.8 3.8

Tallow 50.0 50.0

Vegetable oil 30.0 30.0

Cholesterol 0.0 5.0

Cholic acid 0.0 2.5

Plasma Lipid Analysis
Plasma samples were sent to the Department of Pathology and
Laboratory Medicine at St. Paul’s Hospital (Vancouver, BC)
and assayed for total cholesterol, HDL, and triglycerides using
enzymatic methods on an ADVIA 1650 Chemistry System. Any
sample with 3+ lipemia or greater (as measured by the analyzer),
was cleared by Airfuge R© Air-Driven ultracentrifugation
(Beckman Coulter). Lipemia at that level can cause interference
with the HDL assay. HDL was assessed by the direct method
without precipitation of apolipoprotein B (Warnick and Albers,
1978; Warnick et al., 2001; Gootjes et al., 2009). LDL values were
calculated by Friedewald’s formula, using measured values for
total cholesterol, HDL and triglycerides (Friedewald et al., 1972;
Okada et al., 1998).

DNA Extraction and Pyrosequencing
The intestinal segments were thawed and the contents were
gently scraped from the intestinal wall. The surgical tools
and vials were autoclaved and the bench area was wiped
clean with 70% ethanol to minimize contamination. Genomic
DNA was isolated using the PowerMax Soil DNA Isolation
Kit (Mo. Bio laboratories. Inc., Carlsbad, CA) according
to the instructions of the manufacturer with 200mg as
starting material. PCR amplifications were performed using the
FastStart high fidelity PCR system (RocheMolecular Diagnostics,
Branchburg, NJ, USA). The variable region 3–5 (V3–V5) of the
bacterial 16S rRNA gene was amplified with a primer set of
341F (5′- ACTCCTACGG GAGGCAGCAG-3′) and 926R (5′-
CCGTCAATTCMTTTGAGTTT-3′) with the sample specific
forward primer bearing a multiplex identifier (MID) sequences.
All 341F and 926R primers modified with adaptor A and B
sequences respectively for pyrotag sequencing. The amplification
program consisted of an initial denaturation step at 94◦C for
2min; 32 cycles of denaturation at 94◦C for 30 s, annealing at
60◦C for 30 s, and elongation at 72◦C for 30 s; and a final
extension step at 72◦C for 7min. The size of the PCR products
was confirmed by gel electrophoresis. The PCR products was then

purified using Gel extraction kit (Invitrogen) and were quantified
using the NanoDrop 2000 (Thermo Scientific, Wilmington,
DE, USA). The Amplicon libraries were subjected to pyrotag
sequencing using a bench-top 454 GS Junior (454 Life Sciences-
a Roche Company, Branford, CT, USA) with the GS Junior
Titanium Sequencing Kit (https://lifescience.roche.com/shop/
en/us/products/gs-junior-titanium-sequencing-kit).

Sequence Analysis
Sequences obtained from pyrosequencing were processed using
the QIIME (quantitative insights into microbial ecology)
software package (Caporaso et al., 2010b). Quality trimming
of dataset removed sequences if a mean quality score was
≤25; lengths were <150 or >900 bp; sequences were without
primer, uncorrectable, or contained ambiguous characters; or
homopolymer run exceeding 8 nt. De-noising of dataset was
performed using DENOISER v. 0.9.1 (Quince et al., 2011) as
implemented in QIIME platform. Chimeric sequences were
removed using Chimera Slayer. The sequences were assigned
to groups basing on their respective barcode sequences.
Similar sequences were assigned into operational taxonomic
units (OTUs) at a pairwise identify of 97% using UCLUST
(http://www.drive5.com/usearch/). Representative sequence was
the most abundant sequence in each OTU. Representative
sequences (at 97% similarity) were then classified taxonomically
using Ribosomal Database Project (RDP) classifier 2.0.1 (Cole
et al., 2009). The OTUs were aligned using PyNAST with a
minimum alignment length of 150 bp and a minimum percent
identity of 75% (Caporaso et al., 2010a). After alignment, PH
LANEmask (http://greengenes.lbl.gov/) was conducted to screen
out the hypervariable regions.

Statistical Analysis
Richness and Diversity Indices
Rarefaction plots were constructed and diversity indices (Chao1
richness, Simpson’s Diversity) were estimated as implemented
in QIIME (Caporaso et al., 2010b). For the comparison of
β-diversity among microbial communities, we used principal
component analysis (PCA) to visualize all OTUs and OTUs
in phylum level (Firmicutes) differences. Results of the PCA
were then statistically tested by permutational multivariate
analysis (PERMANOVA) of variance (Anderson et al., 2008) for
ceca microbiota compositions differences among four treatment
groups. Mahalanobis distance (de Maesschalck et al., 2000) was
calculated to confirm the difference between every two cluster.

Comparison of Microbial Communities
Bacterial abundance difference on phylum-, family-, and species-
levels were examined using multivariate analysis, and further
using Tukey’s HSD for mean separation (SPSS 13.0; SPSS
Institute, 2001) and expressed as means± SE.

Least squares analysis of variance was performed to compare
the diversity and richness parameters using JMP 8.0 (SAS
Institute, North Carolina, 2008). The statistical model as follow:

Yijk = µ + Si + Dj + (SD)ij + Eijk
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Where Yijk represents the measure for the kth individual of the
ith strain from jth diet; Si = RES or SUS bird; Dj = control or
a cholesterol diet; (SDij) = the two-way interaction term and
Eijk = the error term. The results were reported as the least square
mean ± standard error of means (SEM). Tukey’s HSD was used
for mean separation and statistical significance was defined at
P < 0.05.

Key Microbiota in Each Treatment Group
We used Venn Diagram (Oliveros, 2007) and a “Nearest-
shrunken Centroid” (NSC) classification approach (Tibshirani
et al., 2002; Koren et al., 2011) to detect core microbiota
community which best characterize each group. The amount
of shrinkage was determined by cross-validation and test error
was minimized. We selected the OTUs from all 6 Phyla that
are common in at least 3 of 4 samples examined per treatment,
and with a minimum sequence count of 100 sequences per OTU
to generate a filtered OTU table for the Venn diagram and
NSC analyses. NSC analysis was performed on normalized Z-
score profiles of OTUs. The misclassification error was 0.25 and
threshold was 1.13.

Correlation of Abundance of OTUs with Blood Lipid

Parameters
A correlation heatmap was generated to examine the correlation
between the abundance of particular OTUs with the levels of
blood lipid parameters—plasma Total Cholesterol, plasma LDL,
plasma HDL, plasma Triglycerides, and LDL/HDL ratio. Because
the levels of blood lipid parameters were not independent
of dietary cholesterol, only RE and SE were included in the
analysis. Because of small sample size, correlation plots of
significant correlations were examined for data point distribution
to eliminate correlations due to outliers.

Results

Atherosclerotic Lesions on the Intimal Surface of
the Aortae
All SUS and RES fed the control diet scored 0. All four SUS on
cholesterol diet scored 4, while two RES on the same diet score 0
and two scored 1.

Richness of Ceca Microbiota
After trimming, assembly and quality filtering, a total of 257,860
sequence reads were obtained with a mean reading length of 545
bp and 16,116 ± 4269 reads/sample. There was no significant
difference among the four treatment groups in the number of
sequence reads.

Rarefaction curves (Figure 1A) of the quality filtered
sequences showed that our sequencing was deep enough to
recover almost all of the OTUs in the sampled population
[RES/control diet (RC) 150.0 ± 25.1 OTUs/sample, SUS/control
diet (SC) 125.8 ± 14.4 OTUs /sample, RES/cholesterol diet (RE)
94.0 ± 8.5 OTUs /sample, SUS/cholesterol diet (SE) 122.2 ± 6.9
OTUs /sample]. Rarefaction curves (Figure 1B) also indicated
that four samples per treatment group was a big enough sample

A B

FIGURE 1 | Rarefaction analysis, calculated at 97% dissimilarity, for

the assessment of operational taxonomic unit (OTU) coverage within

the16S rRNA gene-based cecal bacterial communities in the RES and

SUS quail fed the control (RC, blue open square; SC, green open

square) or cholesterol (RE, orange closed square; SE, red closed

square) diets. (A) The number of OTUs as a function of the number of

sequence reads. (B) The number of OTUs as a function of the number of

individual quail sampled.

size to detect most of the core OTUs in the population (Hughes
and Hellmann, 2005).

The sequences were classifiable into 366 species-level
operational taxonomic units (OTUs) (123 ± 24.7 OTUs/sample)
belonging to 6 bacterial phyla. The vast majority (98%) of the
sequences belonged to two bacterial phyla: Firmicutes (77%) and
Bacteroidetes (21%).

The remaining sequences were identified as Spirochaetes,
Tenericutes, Proteobacteria, and Actinobacteria. Because of very
low number of sequences, we did not compare bacterial
abundance differences in these phyla. The sequences have been
submitted to Sequence Read Archive (SRE) with accession
number SRR2537231.

A Comparison of Ceca Microbiota Diversity
Community Level Variations
Chao1 estimator indicated that there was a significant (P =

0.002) diet× genotype interaction affecting richness. RES on the
control diet (RC) had significantly higher OTU richness (164 ±

11.7) than RES on the cholesterol diet (RE: 104 ± 2.5), whereas
there was no significant difference in richness between the two
SUS dietary groups (SC: 138 ± 7.2, SE; 133 ± 2.1). There was
no significant difference (P > 0.05) in diversity among the 4
treatment groups according to the Simpson estimate of diversity.

Principal components Analysis (PCA) of β-diversity showed
four distinct microbiota communities that can be assigned
to the four treatment groups (Figures 2, 3). There was
a significant (PERMANOVA; P = 0.02) diet × genotype
interaction indicating these four treatment groups had distinct
microbial community characteristics.

Phylum Level Variations
PCA was also conducted for OTUs within a Phylum. Figure 4
showed the PCA of Firmicutes OTUs. There was a significant
(PERMANOVA; P = 0.02) diet × genotype interaction
indicating these four treatment groups had distinct Firmicutes
community characteristics. Figure 5 showed the Mahalanobis
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distance between the groups to confirm their clustering. All
Bacteroidetes belonged to the family Rikenellaceae. There was no
significant difference among the treatment groups when OTUs
within Bacteroidetes were analyzed.

Family Level Variations
We used Joint Plot of PCA (PC-ORD) to examine the
correlation of microbiota families (within Firmicutes) with the
four treatment groups (indicated by the arrows in Figure 4).
In general, birds on control diet were characterized by

FIGURE 2 | Three-dimensional projection of PCA of whole cecal

microbial community. The variance explained by the PCs is indicated in

parentheses on the axes. Each symbol represents a single sample.

the abundance of Lactobacillaceae and Streptococcaceae. Birds
on cholesterol diet were characterized by the abundance
of Erysipelotrichaceae and Clostridiaceae. Specifically, cecal
microbiota in RC was characterized by the relative abundance
of unclassified Clostridiales, Bacilli and Clostridia, and SC was
characterized by Coprobacillaceae. SE was characterized by
Lachnospiraceae, while RE by Erysipelotrichaceae.

Using multivariate analysis, we found a significant (P <

0.012) diet × genotype interaction in affecting the abundance
of Ruminococcaceae (Table 2). RC had significantly more than
RE, but there was no significant difference for SUS on the two
different diets. The abundance of Erysipelotrichaceae, unclassified
family of Bacilli (UB), and unclassified family of Clostridia (UC)
was significantly affected by diet. Compared to birds (SUS and
RES) on control diet, birds on cholesterol diet had significantly
more Erysipelotrichaceae, significantly less UB (P < 0.04) and
UC (P < 0.03).

Genus Level Variations
Using multivariate analysis, we found a significant (P < 0.0001)
diet effect in the abundance of Ruminococcus (Table 3) (Control
diet: 125.63 ± 17.88, Cholesterol diet: 16.13 ± 15.36). We have
also found a significant (P < 0.002) diet effect in the abundance
of Cc_115 (belonging to Family Erysipelotrichaceae). There was
also a significant (P < 0.05) diet × genotype interaction in
Unclassified Ruminococcaceae (Table 3).

Venn diagram showed the distribution of 66 filtered OTUs
(Figure 6). With much overlap, birds on the control diet
harbored 54 OTUs while birds on the cholesterol diet harbored
44 OTUs. Twelve OTUs were unique to birds on the cholesterol
diet, while 22 OTUs were unique to birds on the control diet
(Table 4). Twelve OTUs were unique to RES birds and 13 were

FIGURE 3 | Clustering of gut microbiota based on distances between different groups calculated with multivariate analysis of variance test of the first

six PCs of OTUs data. The Mahalanobis distances between group means are shown. **P < 0.01.
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FIGURE 4 | Joint Plot of PCA of Phylum Firmicutes in cecal content. The variance explained by the PCs is indicated in parentheses on the axes. Each symbol

represents a single sample. The vector projections showed the relationship between family-level variables in Firmicutes and four treatment groups. The angle and

length of the arrows indicated the direction and strength of the relationship. f1, Bacilli Lactobacillales Lactobacillaceae; f2, Bacilli Lactobacillales Streptococcaceae; f3,

Unclassified Bacilli; f4, Clostridia Clostridiales Clostridiaceae; f5, Clostridia Clostridiales Lachnospiraceae; f6, Clostridia Clostridiales; f7, Unclassified Clostridia

Clostridiales; f8, Unclassified Clostridia; f9, Erysipelotrichi Erysipelotrichales Coprobacillaceae; f10, Erysipelotrichi Erysipelotrichales Erysipelotrichaceae.

FIGURE 5 | Clustering of Firmicutes based on distances between different groups calculated with multivariate analysis of variance test of the first six

PCs of OTUs data. The Mahalanobis distances between group means are shown. **P < 0.01.
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TABLE 2 | Family level differences in abundance among treatment groups.

Microbiota Treatment group

RC SC RE SE

Ruminococcaceae§ 1722.0 ± 742.6a 932.0 ± 269.1ab 585.75 ± 242.3b 1179.2 ± 429.4ab

Erysipelotrichaceae* 110.4± 52.30a 291.6±189.6b

Uncl. Clostridia* 246.2± 213.0a 74.4±38.1b

Uncl. Bacilli* 48.5± 54.6a 7.7±10.0b

Uncl. Streptococcaceae** 90.5± 34.6 14.3±8.1

§Significant diet × host genotype interaction; *Significant diet effect; **Effect of diet tends to be significant (P < 0.055).

In each row, means followed by different letter superscripts are significantly different by Tukey’s HSD.

TABLE 3 | Genus level differences in abundance among treatment groups.

Microbiota‡ Treatment group

RC SC RE SE

Uncl. Ruminococcaceae§ 1202.75 ± 195.43a 710 ± 76.25ab 543.25 ± 113.60b 1123.25 ± 197.10ab

Uncl. Cc_115* 14.88±2.29a 71.50±12.69b

Ruminococcus* 125.63±17.88a 16.13±5.43b

‡ See Table 2 for Uncl. Clostridia, Uncl. Bacilli, and Uncl. Streptococcaceae.
§Significant diet × host genotype interaction; * Significant diet effect.

In each row, means followed by different letter superscripts are significantly different by Tukey’s HSD.

FIGURE 6 | Venn diagram indication of 66 OTUs identified in the four

treatment groups.

unique to SUS birds. Ten OTUs (7.36%) were unique to RC, 6
(1.57%) unique to SC, 2 (0.71%) to RE, and 7 (2.36%) to SE.

NSC shown rarity of an unclassified species of Ruminococcus
(ID 182245) and overabundance of two unclassified species
of Rikenellaceae (ID 4336943, 157573, respectively) in RC;
Overabundance of ID 182245 in RE; Rarity of ID 182245 and
overabundance of a different unclassified species ofRuminococcus
(ID 185972) in SC; Overabundance of ID 182245 and a third
species of unclassified Ruminococcus (ID 548503) in SE.

Table 5 summarized the results of the Venn Diagram/NSC
analyses. Eubacterium dolichum was rare in RC but became
overabundant when RES was fed the cholesterol diet (RE). An

unclassified species of Lactobacillaceae was found in abundance
in SC but the same species was rare in RE. On the other hand, two
Lactobacillus species (also in the Lactobacillaceae Family) were
only found in RC, and an unidentified Lachnospiraceae species
was abundant in RE but rare in SC.

Association of Key Bacteria Species with Plasma
Lipid Parameters
There was a significant diet × genotype interaction in plasma
Total Cholesterol (TC) (P < 0.006; Table 6), LDL (P < 0.004;
Table 7) levels, and LDL/HDL ratio (P < 0.004 Table 8). SE
was significantly higher in these parameters than the other three
treatment groups.

The abundance of four species of ceca bacteria in
Lachnospiraceae, three species in Ruminococcaceae, and
one species in Coprobacillaceae were positively correlated with
the plasma TC, plasma LDL, and LDL/HDL ratio (Figure 7 and
Table 9). The abundance of one species of Lachnospiraceae was
positively correlated with plasma HDL while the abundance of
two species of Lachnospiraceae and Eubacterium dolichum was
negatively correlated with plasma HDL level. The abundance of
four species (Unclassified Rikenellaceae (157573), Unclassified
Oscillospira (366143), Unclassified Ruminococcaceae (295861),
and Unclassified Cloacamonaceae (NCUR 160)) were found to be
significantly and positively correlated with plasma triglycerides
level due to a single outlier point and were eliminated.

Discussion

We examined the cecal microbiota of 12 week old quail that
had been fed their respective diets for at least 6 weeks. The
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TABLE 4 | Unique OTUs generated by Venn diagram.

ID Phylum Class Order Family Genus Species

RC 1028036 Firmicutes Bacilli Unclassified

137580 Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus Unclassified

137043 Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus reuteri

195728 Firmicutes Clostridia Unclassified

NCUR 2 Firmicutes Clostridia Clostridiales Unclassified

157479 Firmicutes Clostridia Clostridiales Unclassified

40164 Firmicutes Clostridia Clostridiales Unclassified

214684 Firmicutes Clostridia Clostridiales Unclassified

1983368 Firmicutes Clostridia Clostridiales Anaerotruncus Unclassified

519763 Firmicutes Clostridia Clostridiales Oscillospira Unclassified

SC 188057 Firmicutes Clostridia Unclassified

194417 Firmicutes Clostridia Clostridiales Lachnospiraceae Unclassified

186881 Firmicutes Clostridia Clostridiales Unclassified

158217 Firmicutes Clostridia Clostridiales Unclassified

366143 Firmicutes Clostridia Clostridiales Oscillospira Unclassified

174654 Firmicutes Clostridia Clostridiales Ruminococcus bromii

RE 183867 Firmicutes Clostridia Clostridiales Lachnospiraceae Unclassified

2182669 Firmicutes Clostridia Clostridiales Lachnospiraceae Unclassified

SE 146086 Firmicutes Clostridia Clostridiales Lachnospiraceae Unclassified

583089 Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia

174695 Firmicutes Clostridia Clostridiales Lachnospiraceae Ruminococcus Unclassified

229097 Firmicutes Clostridia Clostridiales Lachnospiraceae Ruminococcus Unclassified

228232 Firmicutes Clostridia Clostridiales Unclassified

189309 Firmicutes Clostridia Clostridiales Unclassified

566391 Firmicutes Clostridia Clostridiales Unclassified

OTUs common to RC and SC 255359 Firmicutes Bacilli Lactobacillales Streptococcaceae Unclassified

4435400 Firmicutes Clostridia Clostridiales Lachnospiraceae Unclassified

326936 Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia Unclassified

185972 Firmicutes Clostridia Clostridiales Lachnospiraceae Ruminococcus Unclassified

187272 Firmicutes Clostridia Clostridiales Unclassified

1132942 Firmicutes Clostridia Clostridiales Ruminococcus Unclassified

OTUs in RE and SE 4458700 Firmicutes Clostridia Clostridiales Lachnospiraceae Ruminococcus Unclassified

313037 Firmicutes Clostridia Clostridiales Unclassified

181074 Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae cc_115 Unclassified

cecal microbiota should be mature and stable by that time
(Lu et al., 2003). Taxonomic analysis showed that composition
of the quail’s cecal microbiota at various levels is similar to
that of human, mice, hamsters, chickens, emu, and Bobwhite
quail (Eckburg et al., 2005; Ley et al., 2005; Turnbaugh et al.,
2008; Karlsson et al., 2012; Bennett et al., 2013; Su et al., 2014;
Videnska et al., 2014). At the Phylum level, Bacteroidetes and
Firmicutes dominated the cecal microbiota, representing over
98% of all the sequences detected. An unusual feature of the
quail cecal microbiota was that all (>99.9%) Bacteroidetes were
of the Family Rikenellaceae. At the Family level, the predominant
taxons were Rikenellaceae, Lactobacillaceae, Streptococcaceae,

Lachnospiraceae, Coprobacillaceae, and Erysipelotrichaceae.
At the Genus level, Ruminococcus, Blautia, Coprococcus,
Eubacterium were abundant. While in most cases, it was not
possible to identify the OTUs down to the species level because
of high similarity of the 16S sequences among different bacterial
species, we were able to identify a few OTUs down to the species
level (e.g., see Table 4) because of their unique 16S sequences.
We have BLAST searched these OTU sequences and found
100% sequence similarity with the species identified. Since even
the closest species members of those bacteria have at least 5%
sequence dissimilarity, we are confident that we have correct
taxonomic identification for these OTUs.
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TABLE 5 | Summary of key OTUs characteristics generated by Venn

diagram and NSC analysis.

RC SC

Abundant+ Uncl. Clostridia

(178304)

Blautia producta (158211)

Uncl. Coprococcus (186319)

Uncl. Lachnospiraceae (NCUR3)

Uncl. Ruminococcus (185972)

Uncl. Lactobacillaceae (292057)

Uncl. Coprobacillaceae (136526)

Uncl. Coprobacillaceae (592616)

Bacteroidetes

Uncl. Rikenellaceae (4476780)

Abundant- Eubacterium dolichum

(229069)

Uncl. Clostridia (178304)

Uncl. Lachnospiraceae (211212)

Unique Uncl. Lactobacillus

(137580)

Uncl. Clostridia (188057)

Lactobacillus reuteri

(137043)

RE SE

Abundant+ Eubacterium dolichum

(229069)

Uncl. Ruminococcus (548503)

Uncl. Lachnospiraceae

(211212)

Uncl. Coprococcus (357765)

Uncl. Lachnospiraceae (158971)

Uncl. Ruminococcaceae (509101)

Abundant- Uncl. Coprobacillaceae

(592616)

Uncl. Lactobacillaceae

(292057)

Unique Uncl. Lachnospiraceae

(183867)

Uncl. Ruminococcaceae (228232)

Uncl. Lachnospiraceae

(2182669)

Uncl. Ruminococcaceae (189309)

Host genotype difference; Dietary cholesterol effect; Genotype × cholesterol interaction.

TABLE 6 | Significant (P < 0.006) Diet × Genotype interaction in plasma

total cholesterol level (mmol/L).

N = 16 Genotype

Diet RES SUS

Control 4.75± 0.39a 5.29±0.46a

Cholesterol 14.10± 1.07a 36.65±6.57b

Means followed by different letter superscripts are significantly different by Tukey’s HSD.

The Effect of Host Genotype on Cecal Microbiota
When Birds were on Control Diet
The SUS and RES quail strains are a result of divergent selection
from a common foundation population. The selection criteria
being the highest and lowest atherosclerotic plaque scores,
respectively, when the birds were fed a diet containing 1%
cholesterol (w/w) (Shih et al., 1983). As a correlated response,

TABLE 7 | Significant (P < 0.004) Diet × Genotype interaction in plasma

LDL level (mmol/L).

N = 16 Genotype

Diet RES SUS

Control 1.04± 0.06a 1.29±0.10a

Cholesterol 8.07± 2.09a 32.03±6.42b

Means followed by different letter superscripts are significantly different by Tukey’s HSD.

TABLE 8 | Significant (P < 0.004) Diet × Genotype interaction in plasma

LDL/HDL ratio.

N = 16 Genotype

Diet RES SUS

Control 0.34± 0.02a 0.38±0.05a

Cholesterol 2.45± 0.87a 8.52±1.48b

Means followed by different letter superscripts are significantly different by Tukey’s HSD.

we found that the selection not only modified the quail cecal
environment to host a different cecal microbiome when the birds
were fed a regular diet, but they also reacted differently when
fed a high cholesterol diet. In birds, embryos develop in the
egg outside the mother’s body and parental influence should be
minimum. In our study, the eggs of the four treatment groups
were artificially incubated at the same time in close proximity in
the same incubator. The birds of the two strains fed the same diet
were raised in the same pen. The housing density was low enough
to minimize any possibility of one strain dominating the other
and affected their feed intake. This was confirmed by the fact that
body weight and the mortality rate were not different between
the two strains. The difference in cecal microbiota between RC
and SC can therefore be attributed to host genetic differences in
affecting the cecal environment.

While there was no significant difference in CHAO1
richness and Simpson diversity between RC and SC cecal
microbiome, PCA analysis of cecal microbiota at the Phylum
level detected two distinct Firmicutes communities between
RC and SC. At the family level, RC was characterized by
significant abundance of Ruminococcaceae. At the OTU level,
10 OTUs were unique to RC. Combining the results from
the Venn diagram and NSC analyses, we concluded that RC
hosted two unique species, Lactobacillus reuteri (ID 137043)
and an unclassified Lactobacillus (ID 1375808), in significant
abundance. In comparison with other treatment groups, RC
has less abundance of Eubacterium dolichum (ID 229069) but
more abundance in an unclassified species of Clostridia (ID
178304). Ruminococcaceae is one of the two most abundant
families from the order Clostridiales found in the mammalian
gut environment, and have been associated with the maintenance
of gut health [38]. Ruminococcaceae is also the most common
family of microbes in chicken cecum (Apajalahti and Kettunen,
2006; Torok et al., 2011). L. reuteri has been commonly used
as a probiotic to suppress GI tract inflammation in human
(Shornikova et al., 1997). Resting cells of this species convert
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FIGURE 7 | Correlations heat map demonstrating the association between the abundances of different cecal microbial species and plasma lipid

parameters. Correlation coefficients are represented by color ranging from blue, negative correlation, to red, positive correlation. Significant correlations are noted by

*p < 0.05 and **p < 0.01.

TABLE 9 | Significant Pearson’s Correlations§ between the abundance of

cecal bacteria species and plasma lipid parameters.

OTUs Total Chol HDL LDL LDL/HDL

FIRMICUTES

Lachnospiraceae

Uncl. Ruminococcus (229097) 0.85** 0.85** 0.78*

Uncl. Ruminococcus (174695) 0.73* 0.74* 0.76*

Uncl. Ruminococcus (263138) 0.72*

Uncl. Ruminococcus (130214) 0.74*

Uncl. Ruminococcus (130103) −0.84**

Uncl. Ruminococcus (548503) 0.88** 0.88** 0.83**

Uncl. Ruminococcus (191273) 0.80* 0.79* 0.71*

Uncl. Blautia (326936) −0.80**

Ruminococcaceae

Unclassified (189309) 0.89** 0.98** 0.90**

Unclassified (566391) 0.85** 0.83** 0.75*

Unclassified (988932) 0.82* 0.80* 0.72*

Clostridia

Unclassified (178304) 0.97** 0.95** 0.90**

Erysipelotrichaceae

Eubacterium dolichum (229069) −0.71*

Coprobacillaceae

Unclassified (NCUR 1) 0.84** 0.82** 0.74*

§After elimination of significant correlations due to a single outlier; *P < 0.05; **P < 0.01.

glycerol into a potent, broad-spectrum antimicrobial substance
termed reuterin (Axelsson et al., 1989). Dietary supplementation
with L. reuteri ATCC 55730 resulted in significant colonization
in the stomach, duodenum, and ileum of healthy humans,
and this is associated with significant improvements of the
immune response in the gastrointestinal mucosa (Valeur et al.,
2004). Selection for resistance to diet induced atherosclerosis
may have improved the general gut (cecum) health of RES
quail.

At the family level, SC was characterized by abundance
of Coprobacillaceae. Out of the six OTUs identified by Venn
Diagram Analysis as unique in SC, only one was deemed
significantly abundant by NSC analysis: an unclassified Clostridia
species (ID 188057). Comparing with other treatment groups, SC
has more abundance of four Lachnospiraceae species, including
Blautia producta (ID 158211) and unclassified Coprococcus (ID
186319). SC also has more abundance of two unclassified
Coprobacillaceae species (ID 136526 and 592616), an unclassified
Lactobacillaceae species (ID 292057), and an unclassified
Rikenellaceae (Bacteroidetes) species (ID 4476780). In the less
abundant category, SC has an unclassified Clostridia (ID 178304)
which was significantly more abundant in RC, and an unclassified
Lachnospiraceae species (ID 211212). Although Coprobacillaceae
is found in most of the microbiome data set of different hosts,
it is not a well-studied Family and not much information is
available about activities of members of this Family (Verbarg
et al., 2014). Lachnospiraceae species are cellulose-degrading
bacteria prevalent in bovine gut samples. They produce butyric
acid to degrade plant fiber such as xylans. In human, butyrate
arising from such microbial fermentation is important for
the energy metabolism and normal development of colonic
epithelial cells and has a mainly protective role (activating
immune/inflammatory responses) in relation to colonic disease
(Pryde et al., 2002; Maslowski et al., 2009; Vinolo et al.,
2011). Mice precolonized with a murine Lachnospiraceae isolate
had significantly decreased Clostrium difficile (a pathogen)
colonization, lower intestinal cytotoxin levels and exhibited
less severe clinical signs and colonic histopathology (Reeves
et al., 2012). Many Clostridia species are toxigenic (Hatheway,
1990). The question remains whether the unclassified Clostridia
species (ID 188057) that was only found in SC is pathogenic.
Videnska et al. (2014) examined the succession and replacement
of bacterial population in the cecum of laying hens at various ages
and found that cecal microbiota in young chicks were dominated
by Firmicutes, but as the hen became sexually mature and started
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egg production, a gradual succession of the representatives of
Firmicutes and also their replacement with the representatives of
Bacteroidetes was observed (Videnska et al., 2014). Rikenellaceae
only started to colonize the cecum when the hen was in full
egg production. Atherosclerosis is also accelerated by aging
(Weingand et al., 1986; Clarkson et al., 1987; Collins et al., 2009).
The hypothesis that selection for susceptibility to diet-induced
atherosclerosis has also pre-maturely aged the cecal environment
is worth testing.

Divergent selection for resistance and susceptibility to
dietary cholesterol induced atherosclerosis has shifted the cecal
microbiome of Japanese quail in different ways.

The Effect of Dietary Cholesterol on Cecal
Microbiota
The diet we used for the study was a synthetic diet where
all the dietary ingredients were known and standardized. The
composition of the control and experimental diets was identical
except for the added cholesterol and a small amount (0.02% w/w)
of Cholic acid to aid the digestion and absorption of cholesterol.
The difference in cecal microbiota between birds fed the control
diet and the experimental diet can therefore be attributed to
dietary cholesterol.

Dietary cholesterol has major effects on cecal microbiota in
RES and SUS alike. At the Family level, birds on cholesterol
diet had significantly more Erysipelotrichaceae, but significantly
less unclassified Bacilli and unclassified Clostridia than birds on
control diet. At the genus level, birds fed the cholesterol diet
had significantly less abundance of unclassified Ruminococcus.
All members of the Erysipelotrichaceae Family were associated
with one or several hosts including mammals, birds, fish
and marine invertebrates, and most members were found as
opportunistic pathogens affecting various parts of the body
(Verbarg et al., 2014). Dietary cholesterol has reduced the
abundance of Ruminococcus and facilitated the abundance of
opportunistic pathogens in the quail ceca andmay have increased
the risk of assaults by these opportunistic pathogens.

The Effect of Genotype × Diet Interaction on
Cecal Microbiota
When SUS and RES were put on a high cholesterol diet, they
also reacted differently, in terms of the microbiota that they
were hosting, to the dietary cholesterol. CHAO1 richness of cecal
microbiome in RE was significantly reduced when compared
with RC, but CHAO1 richness of cecal microbiome in SUS was
not affected by diet.

At the family level, cecal microbiota in RC was characterized
by the relative abundance of Ruminococcaceae, unclassified
Clostridiales, Bacilli and Clostridia, and RE by abundance of
Erysipelotrichaceae. RC had significantly more Ruminococcaceae
than RE. SC was characterized by abundance of Coprobacillaceae,
but SE was characterized by abundance of Lachnospiraceae. The
abundance of Ruminococcaceae was not affected by diet in SUS.
At the OTU level, Eubacterium dolichum was rare in RC but
became overabundant in RE. Both SC and SE showed rarity of
E. dolichum.

When mice were fed a “Western diet” which was high in
fat and cholesterol, the overall diversity of their gut microbiota
dropped significantly due to a bloom of a class of Firmicutes
calledMollicutes, a member of which is E. dolichum (Turnbaugh
et al., 2008). E. dolichum has a number of genomic features
that could promote their own fitness in competition with other
microbes in the cecal nutrient metabolic milieu created by the
host’s consumption of the Western diet (Turnbaugh et al., 2008).
Their abundance is associated with obesity in mice. A similar
situation may have occurred in RE in their reaction to dietary
cholesterol. SE has abundance of Lachnospiraceae. At the same
time, their abundance of Ruminococcaceaewas not compromised
by dietary cholesterol. Lachnospiraceae and Ruminococcaceae
have been associated with the maintenance of gut health (Place
et al., 2005; Huws et al., 2011; Vinolo et al., 2011; Reeves et al.,
2012; Biddle et al., 2013; Greer et al., 2013). These two families are
specialists for degrading cellulose and hemicellulose components
of plant materials which are fermented and converted into
short chain fatty acids (SCFAs) be absorbed and used by the
host (Biddle et al., 2013). SCFAs have an important roles in
maintaining intestinal homeostasis (Pryde et al., 2002; Place et al.,
2005; Cotta and Forster, 2006; Wong et al., 2006; Greer et al.,
2013). The results from our study seem to indicate that the
divergent selection for susceptibility/resistant to diet induced
atherosclerosis has adversely affected the cecal health of RE but
not SE, via their cecal microbiome. Whether this change in the
cecal environment has effects on the metabolism and absorption
of dietary cholesterol remains to be studied.

Cecal Microbiota and Atherosclerosis
Recently there has been a flourish of studies on the relationship
between gut microbiota and cardiovascular diseases in human
and in animalmodels. In human, about 50% of dietary cholesterol
is absorbed in the duodenum. All cholesterol arriving in the
large intestine can be metabolized by Eubacterium bacteria to
coprostanol and minor amounts of coprostanone (Macdonald
et al., 1983). Coprostanol, unlike cholesterol, is poorly absorbed
by the human intestine and hence, conversion of cholesterol to
coprostanol might be a way to lower serum cholesterol in human
and rodents (Sekimoto et al., 1983; Li, 1995; Stepankova et al.,
2010). However, feeding Eubacterium coprostanoligenes to laying
hens failed to lower plasma cholesterol (Li et al., 1996). In our
study, Eubacterium dolichum was found in abundance in the
RE cecum but not in SE. However, the ability of E. dolichum to
convert cholesterol to coprostanol has not been demonstrated
although we have found a significant but negative correlation of
E. dolichum abundance with plasma HDL level. On the other
hand, the primary cholesterol absorption sites are in the small
intestine and it will be worthwhile to examine the microbiota in
duodenum and ileum (S Liu and KM Cheng, study in progress).

In human and mice, intestinal microbes (Clostridium,
Peptostreptococcaceae, Tenerites, and Clostridiaceae) can
catabolize choline and L-carnitine to gaseous trimethylamine
(TMA) (Al-Waiz et al., 1992; Koeth et al., 2013) which can be
efficiently absorbed and metabolized by hepatic enzymes, Flavin
monooxygenase 3 (FMO3), to form TMAO, an oxidized product
of TMA (Cashman et al., 2003). TMAO promotes atherosclerosis
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by up-regulation of macrophage scavenger receptors (Wang
et al., 2011) and by down-regulating genes involved in reverse
cholesterol transportation (Koeth et al., 2013). The dietary
sources of choline are foods such as eggs, milk, red meat, liver,
shell fish, and fish, which are rich in lecithin (Wang et al., 2011).
The dietary source of L-carnitine is red meat (Koeth et al., 2013).
None of these food items are in the natural diet of Japanese
quail. The synthetic diets that we have prepared for the study
are also very low in choline (0.04% w/w of choline chloride) and
L-carnitine. The atherosclerosis we found in the SE may not
be promoted through this pathway but Shih et al. (1983) and
Godin et al. (2003) reported that after cholesterol feeding, plasma
cholesterol levels remained high for a significantly longer time
in SE than in RE (Shih et al., 1983). Li et al. (2012) also found
down regulation of some of the cholesterol transport genes in
the SE liver (Li et al., 2012). It will be worthwhile to examine the
expression of hepatic FMO3 and RCT associated genes which
can be regulated by TMAO, in the SE compared with RE (JE Kim
and KM Cheng, study in progress).

It has been proposed that bacterial lipopolysaccharide (LPS),
a constituent of Gram negative bacteria present in the gut
microbiota, can be transported from the intestine to target tissue
and combine with CD14 and the toll-like receptor 4 (TLR4)
at the surface of innate immune cells such as macrophages.
Such “metabolic endotoxemia” can trigger the secretion of
proinflammatory cytokines. Efflux of cholesterol from vessel wall
macrophages is believed to be a critical first step by which RCT
protects against atherosclerosis. TLR4 inhibits RCT and thusmay
modulate cholesterol metabolism. These findings suggest that
gut microbiota may be important for RCT but it is not clear
whether gut microbiota contributes to atherosclerosis through
this pathway (Caesar et al., 2010). In our study, RE is the only
group that has abundant gram negative bacteria (E. dolichum) in
their cecal microbiota and yet they were resistant to diet induced
atherosclerosis. On the other hand, the abundance of several
gram positive species (Lachnospiraceae and Ruminococcaceae)
was positively correlated with plasma TG and plasma LDL
levels. The hypothesis that selection for susceptibility to diet
induced atherosclerosis in Japanese quail has also shifted their
gut microbiota to enhance the metabolism and absorption of
cholesterol remains to be tested.

Several animal models have been developed for studying
atherosclerosis, but each has advantages and limitations (Jokinen
et al., 1985; Getz and Reardon, 2012; Kapourchali et al., 2014).
The Japanese quail model may have advantages over others
because quail are naturally deficient in apolipoprotein E. When

fed a high cholesterol diet, males of the SUS strain developed
lesions exhibiting structural features (e.g., focal hemorrhage,
calcification and fibrosis) that closely resemble those in the
human disorder (Shih et al., 1983). Atherogenic diets increase
the LDL and VLDL fraction of cholesterol with minimal
effects on HDL, thus facilitating the study of metabolism and
transport of cholesterol in relationship to atherosclerosis (Li
et al., 2012). Our study of cecal microbiota in these quail
has demonstrated that selection for susceptibility/resistance to
diet induced atherosclerosis has also affected the quail’s cecal
environment to host distinctly different cecal microbiome.

Moreover, the SUS and RES quail also reacted differently, in
terms of the cecal microbiota that they are hosting, to dietary
cholesterol. Our study allowed us to raise new questions about the
relationship between gut microbiota and cholesterol metabolism.
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