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Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by hyperglycemia

due to progressive immune-mediated destruction of insulin-producing pancreatic islet

β cells. Although many elegant studies have identified β cell autoantigens that are

targeted by the autoimmune response, the mechanisms by which these autoantigens

are generated remain poorly understood. Normal β cell physiology includes a high

demand for insulin production and secretion in response to dynamic glucose sensing.

This secretory function predisposes β cells to significantly higher levels of endoplasmic

reticulum (ER) stress compared to nonsecretory cells. In addition, many environmental

triggers associated with T1D onset further augment this inherent ER stress in β cells.

ER stress may increase abnormal post-translational modification (PTM) of endogenous

β cell proteins. Indeed, in other autoimmune disorders such as celiac disease, systemic

lupus erythematosus, multiple sclerosis, and rheumatoid arthritis, abnormally modified

neo-antigens are presented by antigen presenting cells (APCs) in draining lymph nodes.

In the context of genetic susceptibility to autoimmunity, presentation of neo-antigens

activates auto-reactive T cells and pathology ensues. Therefore, the ER stress induced

by normal β cell secretory physiology and environmental triggers may be sufficient to

generate neo-antigens for the autoimmune response in T1D. This review summarizes

what is currently known about ER stress and protein PTM in target organs of other

autoimmune disease models, as well as the data supporting a role for ER stress-induced

neo-antigen formation in β cells in T1D.
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INTRODUCTION

Type 1 diabetes (T1D) is a chronic autoimmune disease in
which insulin-producing pancreatic islet β cells are targeted
and destroyed by autoreactive immune cells. Autoimmune
recognition of β cells initiates processes that result in loss of β cell
mass and the decline of insulin-mediated control of blood glucose
levels. Eventually, the remaining β cells become insufficient
to maintain normal blood glucose levels, due to reduced β

cell numbers and/or to reduced insulin secretion, and chronic
hyperglycemia and T1D ensue.

Given the autoimmune mechanisms of β cell destruction, a
major underlying risk factor for T1D is a genetic predisposition
to autoimmunity. T1D is a polygenic disease, with many genetic
loci associated with disease onset. For example, polymorphisms
and variants in many genes related to innate and adaptive
immune cell function increase susceptibility to autoimmunity,
likely by causing failure of central and peripheral immune
tolerance mechanisms. With respect to central tolerance, human
leukocyte antigen (HLA), which is the genetic variable with
the greatest association to T1D onset (Todd et al., 1987;
Dorman et al., 1990; Luca et al., 2008), shapes the adaptive
immune repertoire by determining which T cells survive thymic
maturation and selection. Under normal circumstances, T
cells that respond too strongly to self-peptides presented by
HLA are deleted or inactivated (Hogquist and Jameson, 2014).
In individuals expressing autoimmune-prone polymorphisms
within the HLA gene locus, these central tolerance mechanisms
fail, permitting autoreactive T cells to mature, and exit the
thymus (Fan et al., 2009; Geenen, 2012). With respect to
peripheral tolerance, gene variants at other loci such as protein
tyrosine phosphatase, non-receptor type 22 (PTPN22) may
accelerate T1D onset through mechanisms that have not been
fully elucidated (Pociot and McDermott, 2002; Bottini et al.,
2004; Luca et al., 2008; Wallis et al., 2009). For example, some
studies suggest that, in the context of genetic predisposition
to autoimmunity, incomplete antigen presenting cell (APC)
maturation may contribute to T1D progression. These immature
APCs do not respond normally to growth factors (Serreze et al.,
1993) or to inflammatory stimuli (Serreze et al., 1993; Piganelli
et al., 1998). As a result, these APCs exhibit defective antigen
processing and presentation that activate autoreactive T cells,
but do not trigger tolerogenic mechanisms. Such failure in
peripheral immune tolerance may exacerbate T1D pathology.
However, as stated above, the precise mechanisms by which
many of these genetic variants contribute to T1D remain
unknown.

Although genetic predisposition is strongly associated with
T1D progression, many epidemiological factors suggest that
genetic predisposition is not sufficient to drive pathology. First,
only a small portion of individuals with HLA predisposition
actually progress to T1D (Knip et al., 2005). Second, monozygotic
twins demonstrate relatively low concordance for T1D onset
(Barnett et al., 1981; Verge et al., 1995). Third, the incidence
of T1D is increasing at a rate that cannot be supported by
genetic predisposition alone (Onkamo et al., 1999; Gale, 2002;
DIAMOND Project Group, 2006). Finally, the age of onset

and rate of progression of T1D vary greatly among patients.
Together, these data support a role for environmental factors
in triggering T1D onset and affecting progression. Among the
many environmental triggers associated with T1D onset are
viral infection (Atkinson et al., 1994; Horwitz et al., 1998, 2004;
Hiemstra et al., 2001; Härkönen et al., 2002; Schulte et al., 2010),
β cell exposure to chemicals (Like and Rossini, 1976; Rossini
et al., 1977; Takasu et al., 1991a) or reactive oxygen species
(ROS) (Piganelli et al., 2002; Tse et al., 2010; Delmastro and
Piganelli, 2011; Delmastro-Greenwood et al., 2014), dysglycemia
(Sosenko et al., 2009), and inflammation (Mandrup-Poulsen
et al., 1987; Held et al., 1990; Jiang and Woda, 1991). Each
of the environmental triggers listed here can cause β cell
endoplasmic reticulum (ER) stress, suggesting that ER stress may
be a common factor in disease onset. However, whether these
environmental factors share common pathways to T1D remains
unknown.

To understand how these factors lead to the progression
of T1D, scientists have studied the non-obese diabetic (NOD)
mouse. Mice of this strain develop spontaneous autoimmune
diabetes with many similarities to human T1D. These similarities
include genetic susceptibility at the HLA locus and other loci,
and intra-islet infiltration of immune cells resulting in β cell
destruction (Tochino, 1987; Leiter, 1989; Driver et al., 2012).
Seminal studies with this mouse model have identified many
β cell antigens targeted by the autoimmune response. These
murine autoantigens include preproinsulin (Wegmann et al.,
1994), glutamic acid decarboxylase (GAD65) (Tisch et al.,
1993), islet-specific glucose-6-phosphatase catalytic subunit-
related protein (IGRP) (Lieberman et al., 2003), chromogranin A
(CHgA) (Stadinski et al., 2010), islet amyloid polypeptide (IAPP)
(Delong et al., 2011), zinc transporter 8 (ZnT8) (Nayak et al.,
2014), and 78 kDa glucose-regulated protein (GRP78) (Rondas
et al., 2015). With the exception of GRP78, these proteins
are also confirmed autoantigens in human T1D (Baekkeskov
et al., 1990; Keller, 1990; Gorus et al., 1992; Yang et al.,
2006; Wenzlau et al., 2007; Gottlieb et al., 2014) along with
additional autoantigens found in humans but not yet identified
in NOD mice such as tyrosine phosphatase-like insulinoma
antigen 2 (IA-2) and IA-2β [also known as phosphatase homolog
of granules from rat insulinomas (phogrin)] (Bonifacio et al.,
1995; Lan et al., 1996), and islet cell autoantigen 69 (ICA69)
(Pietropaolo et al., 1993). However, the precise mechanisms by
which these β cell proteins come to be recognized and targeted
by the autoimmune response in T1D remain unknown. Recent
evidence suggests that some of these proteins undergo post-
translational modification (PTM), generating “neo-antigens”
with increased immunogenicity (Dunne et al., 2012). But
whether such PTMs occur in the β cell, and what cellular
processes might give rise to these PTMs in the β cell, remain
unknown.

Here, we discuss cellular conditions (both physiological and
pathological) that lead to protein PTM. We also review what
is currently known about PTM and neo-antigen generation in
target organs of other autoimmune disease models. Finally, we
review the evidence supporting a role for ER stress-induced PTM
in neo-antigen formation in β cells in T1D.
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ER STRESS ACTIVATES THE UNFOLDED
PROTEIN RESPONSE

The ER is the organelle primarily responsible for folding and
PTM of membrane-bound and secreted proteins. To accomplish
these tasks, the ER lumen contains the necessary factors to
support proper protein folding including molecular chaperones,
ATP, an oxidizing environment to support disulfide bond
formation, and millimolar concentrations of calcium (Ca2+)
(Gething and Sambrook, 1992). Proteins that are properly folded
exit the ER and continue toward their intended intra- or extra-
cellular locations. However, improperly folded proteins remain
in the ER and, when too many misfolded proteins accumulate,
ER homeostasis is disrupted and ER stress ensues. ER stress
activates the cytoprotective unfolded protein response (UPR),
which acts to relieve ER stress and restore homeostasis by
two mechanisms (Hetz, 2012). First, UPR signaling temporarily
inhibits the synthesis of new non-chaperone proteins to prevent
further burdening the ER machinery. Second, UPR signaling
increases the expression of protein chaperones to aid in the
folding of the accumulated misfolded proteins in the ER lumen.

During normal ER homeostasis, the chaperone GRP78 [also
known as binding immunoglobulin protein (BiP)] binds three

protein sensors of ER stress that reside in the ER membrane:
protein kinase RNA (PKR)-like ER kinase (PERK), activating
transcription factor 6 (ATF6), and inositol-requiring protein 1
(IRE1) (Bertolotti et al., 2000; Shen et al., 2002). Interaction
with GRP78 keeps these proteins inactive and thereby inhibits
the UPR (Figure 1A). However, when misfolded proteins
accumulate in the ER, GRP78 releases these protein sensors
to bind exposed hydrophobic residues in unfolded proteins.
Once free from GRP78, each protein sensor initiates a signaling
cascade of the UPR. PERK oligomerizes and becomes activated
through autophosphorylation in trans. Activated PERK then
phosphorylates the α subunit of translation initiation factor
2 (eIF2α) to attenuate mRNA translation and reduce the
protein burden in the ER (Harding et al., 2000a,b). ATF6
translocates to the Golgi apparatus where it is cleaved to yield
a transcription factor that initiates new chaperone synthesis
to aid with folding of accumulated misfolded proteins (Haze
et al., 1999). IRE1 oligomerizes and autophosphorylates in trans,
enabling its endonuclease capability. IRE1 then splices X-box
binding protein 1 (XBP-1) mRNA (Yoshida et al., 2001), which
encodes a transcription factor that regulates proteins involved
in relieving ER stress such as chaperones (Lee et al., 2003)
and proteins involved in lipid synthesis to increase ER volume

FIGURE 1 | Signaling pathways of the unfolded protein response. (A) When protein folding proceeds normally, the protein sensors of ER stress (PERK, ATF6,

and IRE1) are bound and held in their inactive state by GRP78. (B) When misfolded proteins accumulate in the ER lumen, GRP78 binds misfolded proteins, thereby

releasing the protein sensors of ER stress and allowing for the activation of the cytoprotective UPR. PERK autophosphorylates in trans, then activates eIF2α by

phosphorylation to attenuate translation of additional non-chaperone proteins. ATF6 translocates to the Golgi apparatus and is cleaved to yield a transcription factor

that up-regulates the expression of molecular chaperones to aid in the folding of accumulated proteins in the ER. IRE1 autophosphorylates in trans and splices XBP-1

mRNA. The spliced mRNA encodes a transcription factor that up-regulates the expression of additional molecular chaperones and UPR proteins to relieve ER stress.

If ER stress is too great or prolonged, the UPR induces expression of pro-apoptotic proteins such as CHOP.
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(Sriburi et al., 2004). Through these three signaling cascades, the
UPR attempts to reduce ER stress and prevent stress-induced
apoptosis (Figure 1B).

However, if the burden of unfolded proteins and the
subsequent ER dysfunction are too great or too prolonged,
these cytoprotective functions of the UPR fail. Under these
conditions, pro-apoptotic signaling pathways become activated
and ultimately lead to death of the affected cell (Figure 1B). For
example, the UPR induces C/EBP Homologous Protein (CHOP)
expression (Wang et al., 1996), which increases ROS-mediated
mitochondrial apoptosis signaling pathways (Zinszner et al.,
1998; McCullough et al., 2001).

Thus, ER stress and the UPR have significant effects on cellular
function and viability. Even in cells that return to homeostasis
following UPR activation, ER stress and dysfunction still have
consequences. For example, ER stress often results in the release
of Ca2+ from the ER lumen to the cytosol. Since high Ca2+

concentrations are necessary for protein folding, this efflux of
Ca2+ negatively affects ER function. Second, ER stress and
dysfunction lead to abnormal protein folding and PTM, affecting
protein function. Therefore, ER stress, even when temporary,
may have important effects on cellular function and physiology.

ER STRESS IS A CONSEQUENCE OF
NORMAL β CELL PHYSIOLOGY

All cells undergo some degree of ER stress and activate theUPR in
response to improper protein folding or during times of increased
protein translation. However, professional secretory cells are
uniquely susceptible to ER stress as a result of their normal
physiology. In addition to proteins for cellular maintenance,
secretory cells are burdened with synthesizing the proteins to
be secreted and the proteins required for functional secretory
pathways. Thus, the demands of protein translation and folding
in the ER of secretory cells are significantly greater than in
nonsecretory cells. Although secretory cells contain a more fully
developed ER with additional chaperones to compensate for
this demand (Shimizu and Hendershot, 2009), the increased ER
burden leads to increased occurrence of ER stress.

β cells, like all professional secretory cells, naturally undergo
high levels of ER stress as a result of their normal secretory
physiology (Araki et al., 2003a; Lipson et al., 2006a,b; Wu and
Kaufman, 2006; Fonseca et al., 2007; Ortsäter and Sjöholm,
2007; Eizirik et al., 2008; Volchuk and Ron, 2010; Kim
et al., 2012; Teodoro et al., 2012). Indeed, β cells undergo
significant ER stress during postprandial glucose-stimulated
insulin synthesis (Lipson et al., 2006a,b). β cells increase
translation of preproinsulin by 50-fold in response to heightened
blood glucose concentrations, reaching a production rate of 1
million molecules of preproinsulin per minute (Scheuner and
Kaufman, 2008). These 1 million molecules flood the ER lumen
for folding and disulfide bond formation, causing tremendous
ER stress. Such cellular processes of dynamic insulin production
and heightened ER stress occur from an early age. In XBP-1
splicing reporter mice, the pancreas was the first tissue to exhibit
high levels of ER stress and did so as early as 16 days old post

birth (Iwawaki et al., 2004). Therefore, normal insulin-secreting
physiology alone significantly increases ER stress in β cells.

In addition to the high levels of inherent ER stress, many
of the putative environmental triggers associated with T1D may
further enhance β cell ER stress. First, Coxsackie viral infection
disrupts the ER membrane (van Kuppeveld et al., 1997, 2002,
2005) releasing Ca2+ from the ER into the cytosol. Second, β

cell exposure to chemicals such as streptozotocin and alloxan
cause protein ADP-ribosylation (Sandler and Swenne, 1983) and
ROS generation (Heikkila et al., 1976; Takasu et al., 1991b;
Bedoya et al., 1996), both of which lead to protein misfolding,
and also decrease ER lumen Ca2+ concentrations (Kim et al.,
1994; Park et al., 1995). Third, β cell exposure to ROS from
either extracellular or intracellular sources releases Ca2+ from
the ER lumen into the cytosol (Favero et al., 1995; Xu et al.,
1998; Görlach et al., 2006). Also, dysglycemia leads to increased
glucose sensing that, as discussed above, significantly increases
insulin production and secretion (Scheuner and Kaufman, 2008).
Finally, pancreatic inflammation and cytokine exposure activates
c-jun N-terminal (JNK) mitogen-activated protein (MAP) kinase
signaling pathways (Wang et al., 2009; Lee et al., 2011). The
cellular effects of each environmental trigger exacerbate β cell
ER stress. Therefore, although the precise mechanisms by which
these environmental triggers accelerate T1D may vary, all the
factors listed here can increase β cell ER stress above the normal
physiological levels. Therefore, heightened ER stress may be a
common factor in early T1D pathogenesis (Figure 2).

ER stress and diabetes have been linked in both human and
mouse studies. In studies of human islets, ER stress markers

FIGURE 2 | Environmental triggers associated with T1D exacerbate β

cell ER stress. Environmental factors such as viral infection, chemicals, ROS,

dysglycemia, and pancreatic inflammation are associated with onset of T1D.

Each of these environmental triggers of T1D also increases β cell ER stress

above the inherently high levels induced by normal β cell physiology.
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were increased in islets of T1D patients compared to islets of
nondiabetic controls (Marhfour et al., 2012). In the Akita mouse
model, the Ins2C96Y mutation prevents the formation of a crucial
disulfide bond leading to misfolded insulin (Ron, 2002) and high
ER stress in these β cells (Ron, 2002; Araki et al., 2003b; Nozaki
et al., 2004). This ER stress leads to β cell apoptosis through the
activation of CHOP signaling pathways (Oyadomari et al., 2002;
Ron, 2002). However, inhibition of CHOP-mediated apoptosis
merely delays, but does not halt, β cell loss and disease onset
(Oyadomari et al., 2002). These data suggest that apoptosis may
not be the only mechanism by which ER stress causes β cell death
and diabetes.

ER STRESS ALTERS CA2+

CONCENTRATIONS IN THE ER LUMEN
AND CYTOSOL

In addition to folding and PTM of proteins, the ER is an
important organelle for the maintenance of intracellular Ca2+

homeostasis. The ER contains the largest intracellular store of
Ca2+ and is an important source of Ca2+ necessary for regulating
a variety of cellular functions both in the ER lumen and in the
cytosol (Meldolesi and Pozzan, 1998).

Within the ER lumen, high concentrations of Ca2+ are
important for proper protein folding. Many molecular
chaperones, including GRP78, are Ca2+-dependent (Ma
and Hendershot, 2004). In addition, the proteins that facilitate
the formation of disulfide bonds [protein disulfide isomerases
(PDI)] also require Ca2+ (Nigam et al., 1994). To maintain

the high concentration Ca2+ necessary for ER function,
sarco/endoplasmic reticulum Ca2+ ATPases (SERCA) pumps in
the ER membrane actively transport Ca2+ from the cytosol into
the ER lumen (Figure 3). These pumps are regulated by existing
concentrations of Ca2+ in the lumen to prevent ER Ca2+ stores
from rising too high. Inhibition of these SERCA pumps prevents
the movement of Ca2+ into the ER, decreasing the function of
molecular chaperones and PDI, and increasing the burden of
misfolded protein in the ER (Mekahli et al., 2011).

In the cytosol, Ca2+ plays important roles in a variety of
cellular functions including metabolism, vesicular trafficking,
secretion, transcription, and apoptosis (Berridge et al., 2000).
Ca2+ channels in the ER membrane such as ryanodine-receptor
(RyR) and inositol 1,4,5-trisphosphate receptor (IP3R) release
Ca2+ from the ER lumen into the cytosol according to its
chemical gradient (Figure 3). Like the SERCA pumps, the
function of these channels is regulated to prevent depletion of the
ER Ca2+ concentrations (Mekahli et al., 2011).

In spite of the regulation of SERCA pumps and Ca2+

channels, the normal Ca2+ gradient across the ER membrane
is altered during ER stress, leading to decreased Ca2+ in
the ER and increased Ca2+ in the cytosol. These changes in
Ca2+ concentrations have important effects for the cell. The
ER chaperones and PDI necessary for proper protein folding
depend on Ca2+, so this imbalance exacerbates ER stress and
further activates the UPR. In addition, increased cytosolic
Ca2+ can cause apoptosis. For instance, Ca2+ release from
the ER activates the ER-associated procaspase 12 (murine) or
procaspase 4 (human), which initiate the caspase cell death
pathway (Nakagawa et al., 2000; Hitomi et al., 2004). Also,

FIGURE 3 | Regulation of ER Ca2+ concentrations. (A) Under normal conditions, Ca2+ concentrations are higher in the ER lumen than in the cytosol. This

balance is maintained by SERCA pumps that bring Ca2+ into the ER lumen, and Ca2+ channels (RyR and IP3R) that release Ca2+ into the cytoplasm as needed for

normal cellular signaling. (B) During ER stress, the Ca2+ gradient across the ER membrane is disturbed, leading to Ca2+ release from the ER and increased Ca2+

concentrations in the cytoplasm.
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the Ca2+-dependent ER chaperone calreticulin (Michalak et al.,
2009) activates caspase 3- and cytochrome c-dependent apoptosis
pathways when ER Ca2+ concentrations decrease (Nakamura
et al., 2000). Furthermore, increased cytosolic Ca2+ activates
enzymes such as calpain and calciuneurin which activate
mitochondria-dependent signaling cascades that ultimately lead
to cellular apoptosis (Nakagawa and Yuan, 2000; Gil-Parrado
et al., 2002; Kim et al., 2002; Hajnóczky et al., 2003).

Therefore, the maintenance of Ca2+ homeostasis is crucial for
cellular health and function. Disruption of this Ca2+ gradient
across the ERmembrane hasmajor consequences for ER function
and cellular viability.

INCREASED CYTOSOLIC CA2+ ACTIVATES
POST-TRANSLATIONAL MODIFICATION
ENZYMES

While the of activation apoptotic signaling pathways usually
requires prolonged ER stress and disrupted Ca2+ gradients,
other cytosolic Ca2+-depenent enzymes are activated in response
to more transient ER stress and heightened cytosolic Ca2+

concentrations. In particular, two families of Ca2+-dependent
PTM enzymes are activated during ER stress. The activation of
these enzymes has important implications for the proteins being
folded in the ER.

Tissue Transglutaminase 2
Tissue transglutaminase 2 (Tgase2) is a ubiquitously expressed
Ca2+-dependent PTM enzyme that resides in the cytosol
(Lesort et al., 1998). Tgase2 becomes activated when Ca2+

concentrations in the cytosol rise above normal physiological
levels. Indeed, Tgase2 activity requires Ca2+ concentrations
above what is necessary for normal cellular signaling. As such,
Tgase2 usually becomes activated only when cellular homeostasis
is disrupted, such as when Ca2+ is released from the ER during
ER stress (Ientile et al., 2007; Kojima et al., 2010;Wilhelmus et al.,
2011; Kuo et al., 2012; Verhaar et al., 2012). Once active, Tgase2
translocates to several intra- and extra-cellular compartments
(Park et al., 2010) including the ER (Orru et al., 2003; Wilhelmus
et al., 2011; Verhaar et al., 2012) and secretory granules (Russo
et al., 2013), to modify proteins by two mechanisms (Facchiano
et al., 2006): first, Tgase2 forms ε (γ-glutamyl) isopeptide bonds
between gluatmine and lysine residues that crosslink proteins,
and second, Tgase2 facilitates the deamidation of glutamine.
PTM of proteins by Tgase2 is important for a variety of normal
cellular processes (Fesus and Piacentini, 2002; Gundemir et al.,
2012). For example, Tgase2 modifies caspase 3 (Yamaguchi
and Wang, 2006) and mitochondrial proteins (Fok and Mehta,
2007) to regulate apoptosis, nuclear proteins to regulate gene
expression (Ballestar et al., 1996; Lesort et al., 1998; Han and Park,
2000), and extracellular matrix protein to promote cell adhesion
(Gaudry et al., 1999; Akimov et al., 2000) and wound healing
(Haroon et al., 1999; Stephens et al., 2004; Verderio et al., 2004).

Peptidylarginine Deiminase
Peptidylarginine deiminases (PAD) are another family of Ca2+-
dependent PTM enzymes that reside in the cytosol (Vossenaar

et al., 2003b). Of the five mammalian isoforms, PAD2 is the
most widely expressed, and is the isoform expressed in the
pancreas (Takahara et al., 1989). PAD become activated when
cytosolic Ca2+ concentrations increase to levels 100-fold above
normal physiological levels (Takahara et al., 1986; Vossenaar
et al., 2003b). When activated, PAD are recruited to various
subcellular compartments to modify proteins (Jang et al., 2011).
PAD convert arginine to citrulline, which causes a loss of a
positive charge in the amino acid sequence (Rogers et al., 1977).
This change in charge has significant implications for protein
folding, interaction, and function (Tarcsa et al., 1996). PAD
play several roles in the context of normal cellular physiology.
For example, PAD target IκB kinase gamma (IKKγ) to inhibit
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) activation (Lee et al., 2010), target vimentin to regulate
cytoskeletal disassembly (Inagaki et al., 1989), and are important
in the formation of neutrophil extracellular traps (NET) (Li et al.,
2010).

CA2+-DEPENDENT PTM GENERATES
NEO-ANTIGENS

Although PTMs are important in normal cellular signaling and
physiology, PTM of proteins may contribute to autoimmune
disorders. If proteins aremodified differently in peripheral tissues
than in the thymus, the modified peripheral proteins may act
as neo-antigens for which there is no immune tolerance (Doyle
and Mamula, 2012). Indeed, a variety of PTMs are implicated
in the pathology of several autoimmune diseases (Table 1).
Importantly, many neo-antigens are formed through PTM by
the Ca2+-dependent enzymes Tgase2 and PAD. For example,
Tgase2 activity is significantly elevated in celiac disease patients
(Bruce et al., 1985). Tgase2 forms intermolecular ε (γ-glutamyl)
isopeptide bonds, generating dimers of itself and gliadin as
well as oligomers of gliadin (Molberg et al., 1998; Fleckenstein
et al., 2004). These complexes are recognized by the immune
system as neo-antigens, giving rise to increased T cell responses
(Molberg et al., 1998) and anti-Tgase2 antibody production
(Dieterich et al., 1997). These immune responses exacerbate the
inflammatory conditions in the gut (Halttunen and Mäki, 1999;
Barone et al., 2007). Also, in multiple sclerosis, citrullination
of myelin basic protein forms a neo-antigen to which T cells
respond (Martin et al., 1994). This neo-antigen causes disease in
experimental autoimmune encephalomyelitis (the mouse model
of multiple sclerosis) (Zhou et al., 1995). Finally, in rheumatoid
arthritis, patients develop autoantibodies to the citrullinated
forms of many proteins (Schellekens et al., 1998;Masson-Bessière
et al., 2001; Vossenaar et al., 2003a, 2004; Burkhardt et al., 2005;
Kinloch et al., 2005). These autoantibodies are detected in the
synovial fluid of rheumatoid arthritis patients at early stages
of disease (van Boekel et al., 2002; Vasishta, 2002), suggesting
the importance of these PAD-generated neo-antigens for disease
progression.

Although Tgase2- and PAD-mediated PTMs are known
to generate neo-antigens, little research has been conducted
regarding the precise mechanisms by which these pathological
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TABLE 1 | Neo-antigens formed by PTM in autoimmune diseases.

Disease Autoantigen PTM References

Celiac disease Gliadin Deamidation Molberg et al., 1998

Collagen-induced

arthritis

Type II collagen Glycosylation Corthay et al., 1998

Hydroxylation Corthay et al., 1998

Multiple

Sclerosis/EAE

Myelin basic protein Acetylation Zamvil et al., 1986

Citrullination Martin et al., 1994

Myelin

oligodendrocyte

glycoprotein

Malondialdehyde Wållberg et al., 2007

αB-crystallin Phosphorylation van Stipdonk et al.,

1998

Rheumatoid

Arthritis

Filaggrin Citrullination Schellekens et al.,

1998

Fibrin Citrullination Masson-Bessière

et al., 2001

Fibrinogen Citrullination Vossenaar et al.,

2003a

Vimentin Citrullination Vossenaar et al.,

2004

Collagen Citrullination Burkhardt et al.,

2005

α-Enolase Citrullination Kinloch et al., 2005

Systemic lupus

erythematosus

Small nuclear

ribonucleoprotein

particle

Isoaspartylation Mamula et al., 1999

70 kd subunit of U1

small nuclear

ribonucleoprotein

particle

Phosphorylation Monneaux et al.,

2003

Lupus La protein Phosphorylation Coudevylle et al.,

2006

SmD1/SmD3 Methylation Brahms et al., 2000

PTMs arise in the particular cells and tissues targeted in
these autoimmune disease models. However, Tgase2 and PAD,
as described above, become activated under conditions that
cause significantly elevated cytosolic Ca2+. The main cause
of significantly elevated Ca2+ is cellular stress, especially
ER stress. Therefore, ER stress may give rise to neo-
antigen formation through abnormal Ca2+-dependent PTM of
endogenous proteins.

T1D AUTOANTIGENS EXHIBIT INCREASED
IMMUNOGENICITY AFTER PTM

Although it is well established that PTM of endogenous
proteins forms neo-antigens that initiate and exacerbate the
autoimmune response in many autoimmune diseases (Table 1),
the role of PTM in β cell autoantigen formation long remained
unexplored. However, in the last 10 years, many seminal
studies have demonstrated that known murine and human β

cell autoantigens exhibit greater immunogenicity after PTM

TABLE 2 | Neo-antigens formed by PTM in T1D.

Autoantigen PTM References

Proinsulin Oxidation Mannering et al., 2005

CHgA (WE14) Crosslinking/

Isospeptide Bond

Delong et al., 2012;

Gottlieb et al., 2014

Preproinsulin Deamidation van Lummel et al., 2014

ICA69 Deamidation van Lummel et al., 2014

ZnT8 Deamidation van Lummel et al., 2014

Phogrin Deamidation van Lummel et al., 2014

IA-2 Deamidation van Lummel et al., 2014

IGRP Deamidation van Lummel et al., 2014

GAD65 Citrullination McGinty et al., 2014

Deamidation McGinty et al., 2014; van

Lummel et al., 2014

GRP78 Citrullination Rondas et al., 2015

(Table 2). For example, T cells from a human T1D patient
recognized an oxidized epitope of proinsulin (Mannering et al.,
2005). These T cell responses depended on the formation of a
vicinal disulfide bond, as replacement of either cysteine with a
serine residue abolished T cell responses against this peptide. In
addition, PTM by the Ca2+-dependent enzymes Tgase2 and PAD
increases the immunogenicity of several β cell proteins.

Chromogranin A
The first β cell autoantigen shown to elicit greater immune
responses after Ca2+-dependent modification was the WE14
peptide of chromogranin A (CHgA) (Delong et al., 2012).
The authors had previously demonstrated that the BDC2.5
diabetogenic CD4+ T cell clone recognizes WE14 (Stadinski
et al., 2010). However, exceptionally high peptide concentrations
were required for full T cell activation. In this study, Delong et al.
demonstrated that treatment of WE14 with Tgase2 generated a
covalently cross-linked peptide that is preferentially presented
to BDC2.5 T cells, thereby increasing proliferation and IFNγ

production. In addition, splenocytes isolated from pre-diabetic
NOD mice responded more strongly to Tgase2-modified WE14
than to the native peptide. A subsequent study showed thatWE14
was recognized by T cells from human T1D patients, and that
treatment of WE14 with Tgase2 increased the response elicited
from these T cells (Gottlieb et al., 2014). This confirmed the
relevance of this modified β cell antigen to human T1D. Together,
these studies demonstrated that Tgase2-modification of CHgA
contributes to the strong activation of autoreactive immune cells
in T1D.

Preproinsulin
The deamidation of glutamine by Tgase2 also modulates the
recognition of β cell antigens. In a recent study, deamidated
peptides from many islet proteins were eluted from T1D-
associated HLA-DQ proteins (van Lummel et al., 2014). These
Tgase2-modified peptides bound more strongly than their
unmodified counterparts to HLA-DQ molecules. Among these,
a Tgase2-modified peptide from preproinsulin elicited responses

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 October 2015 | Volume 3 | Article 67

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Marré et al. ER stress in T1D pathology

from CD4+ T cells from a new-onset T1D patient. This study
therefore identified novel islet peptides that become neo-antigens
through PTM. This study also demonstrated stronger binding to
disease-associated HLA molecules as one mechanism by which β

cell neo-antigens elicit stronger autoimmune responses.

GAD65
Another β cell protein shown to elicit greater immune responses
after PTM is GAD65. Modification of multiple GAD65 peptides
by either Tgase2 (deamidation) or PAD (deimidation) increased
immunogenicity (McGinty et al., 2014). These peptides bind
MHC class II molecules more strongly than the native peptides.
Furthermore, T cells that recognize the modified peptides were
present at higher frequencies in human T1D patients than
in HLA-matched control subjects. These T cells responded
to Tgase2-modified peptides of GAD65 more strongly than
to the unmodified peptides and displayed a disease-relevant
memory phenotype. These data demonstrated a role for Ca2+-
dependent PTM in increasing immunogenicity of GAD65
peptides, and further supported a role for PTM-mediated
neo-antigen generation in human T1D.

GRP78
Most recently, citrullinated GRP78 was identified as an
autoantigen in diabetic NOD mice (Rondas et al., 2015). CD4+

T cells from diabetic NOD mice secreted significantly higher
IFNγ in response to citrullinated GRP78 compared to T cells
from non-diabetic mice. In addition, new-onset diabetic NOD
mice exhibited higher titers of autoantibodies that recognize

modified GRP78 compared to age-matched non-diabetic mice.
Importantly, these T cell responses and α-GRP78 autoantibodies
specifically recognized the ctirullinated peptide, not the native
peptide, demonstrating the relevance of PTM to the generation
of this neo-antigen. This study, therefore, identified modified
GRP78 as a novel autoantigen in the NODmouse model of T1D.

Together, these studies demonstrate that, as in other
autoimmune disorders, PTM enhances the immunogenicity of
several known autoantigens in T1D. However, these studies were
conducted with synthetic peptides that were modified in vitro
or designed to mimic modified sequences. Whether the β cell
proteins from which these peptides are derived undergo PTM
within the β cell remains unknown. In addition, the mechanisms
by which Tgase2 and PAD might be activated in the β cell
remain undefined. However, as we have discussed here, Tgase2
and PAD are both Ca2+-dependent and known to be activated
during ER stress. β cells inherently undergo particularly high
levels of ER stress, whichmay be further increased upon exposure
to environmental triggers of T1D. This high ER stress may
activate Tgase2 and PAD to modify endogenous β cell proteins,
generating neo-antigens. Therefore, β cell autoantigens may
become immunogenic due to ER stress-induced PTM.

CONCLUSION

Many elegant and seminal studies have demonstrated that
peptides derived from β cell autoantigens become more
immunogenic after PTM (Mannering et al., 2005; Delong et al.,
2012; Dunne et al., 2012; Gottlieb et al., 2014; McGinty et al.,

FIGURE 4 | ER stress induces neo-antigen formation in β cells. (A) During normal conditions, proteins are translated and properly folded in the ER lumen. (B)

During ER stress, proper protein folding is inhibited and misfolded proteins accumulate. (C) Ca2+ is released from the ER, significantly increasing the concentration of

cytosolic Ca2+. (D) Heightened Ca2+ in the cytosol increases the activity of PTM enzymes, such as Tgase2 and PAD. (E) Activated Tgase2 and PAD modify β cell

proteins, generating neo-antigens for the autoimmune response in T1D.
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2014; van Lummel et al., 2014; Rondas et al., 2015). However,
the mechanisms by which these neo-antigens are modified in
the β cell have not yet been elucidated. Here, we propose that
the normal physiology of the β cell, together with the exposure
of β cells to a variety of environmental factors, significantly
raises ER stress, leading to the release of Ca2+ from the ER
lumen into the cytosol. This Ca2+ flux may activate cytosolic
PTM enzymes, which could modify β cell proteins, generating
neo-antigens (Figure 4). Because islet β cells are inherently
susceptible to high ER stress, these PTMs may occur in all β cells
in all individuals. Therefore, T1D onset may not be determined
by whether these neo-antigens are generated, but perhaps by
genetic predisposition to autoimmunity. Individuals without
a genetic predisposition to autoimmunity do not experience
a failure of immune tolerance due to central and peripheral
mechanisms that maintain immunological tolerance. Thus, the
presentation of ER stress-induced modified neo-antigens by
APCsmay not activate peripheral T cells and T1Dmay not occur.
In contrast, individuals that do harbor genetic predispositions
to autoimmunity experience defects in mechanisms of immune
tolerance. In these individuals, presentation of modified neo-
antigens by APCs could activate autoreactive T cells and cause
autoimmune destruction of β cells.

Once the autoimmune response is initiated, the effects of β

cell ER stress aremagnified. ER stress progressively increases with
immune infiltration into the islet (Tersey et al., 2012). Heightened
ER stress could lead to increased cytosolic Ca2+ and increased
activity of Tgase2 and PAD. Recent studies have shown that
Tgase2- and PAD-mediated PTMs increase the immunogenicity
of peptides derived from known β cell autoantigens (Table 2).
Therefore, as β cell ER stress progressively increases, these
ever-more active enzymes may modify proteins beyond their
physiological targets, including known β cell autoantigens.
These neo-antigens could be processed and presented by APCs
to T cells in draining lymph nodes. Activated immune cells
returning to the islet may further increase β cell ER tress by
two mechanisms. First, activated immune cells secrete cytokines
that directly increase ER stress. Second, immune-mediated
destruction reduces β cell mass, requiring the remaining β cells
to produce more insulin per cell and augmenting the ER stress
in each β cell. Increased ER stress likely leads to the generation
of additional neo-antigens, further fueling the autoimmune
response. Therefore, once pathology is initiated in T1D, the cycle

of ER stress and neo-antigen generation likely hastens the onset
of T1D and continues until the β cell mass is fully destroyed.

The recent studies that have identifiedmodified β cell peptides
as neo-antigens have opened important new areas of research
in the field of T1D. Additional studies to confirm the cause
of increased ER stress in the β cell, and to establish the
role of ER stress in the generation of these neo-antigens, will
further advance the field. In particular, understanding how
these neo-antigens arise in β cells will identify opportunities for
therapeutic intervention before the β cell mass is destroyed. For
example, therapies that aid in proper protein folding or otherwise
reduce ER stress may prevent the formation of neo-antigens.
Alternatively, therapeutic agents that promote the degradation
of abnormal proteins may remove neo-antigens from β cells.
Either therapeutic mechanism may prevent immune-mediated
recognition of β cells. Indeed, therapeutic agents that reduce
ER stress or degrade misfolded proteins are effective in other
disease models (Boyce et al., 2005; Ozcan et al., 2006; Harris
and Rubinsztein, 2011; Zode et al., 2011; Bachar-Wikstrom et al.,
2012; Hasnain et al., 2012; Engin et al., 2013; Jiang et al., 2015).
Similar treatments in T1D models may reduce ER stress-induced
neo-antigen formation in β cells, preventing immune destruction
of β cells and preventing onset of T1D.
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