aoi: 10.3389/Tpnys.2012.00482

# *Pancreas*++: automated quantification of pancreatic islet cells in microscopy images

# Hongyu Chen<sup>1†</sup>, Bronwen Martin<sup>2†</sup>, Huan Cai<sup>2</sup>, Jennifer L. Fiori<sup>3</sup>, Josephine M. Egan<sup>3</sup>, Sana Siddiqui<sup>1</sup> and Stuart Maudsley<sup>1</sup>\*

<sup>1</sup> Receptor Pharmacology Unit, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA

<sup>2</sup> Metabolism Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA

<sup>3</sup> Diabetes Section, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA

#### Edited by:

Leon Farhy, University of Virginia, USA

Reviewed by:

Leon Farhy, University of Virginia, USA

#### \*Correspondence:

Stuart Maudsley, Receptor Pharmacology Unit, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA. e-mail: maudsleyst@mail.nih.gov

<sup>†</sup>Hongyu Chen and Bronwen Martin have contributed equally to this work. The microscopic image analysis of pancreatic Islet of Langerhans morphology is crucial for the investigation of diabetes and metabolic diseases. Besides the general size of the islet, the percentage and relative position of glucagon-containing alpha-, and insulin-containing beta-cells is also important for pathophysiological analyses, especially in rodents. Hence, the ability to identify, quantify and spatially locate peripheral, and "involuted" alpha-cells in the islet core is an important analytical goal. There is a dearth of software available for the automated and sophisticated positional guantification of multiple cell types in the islet core. Manual analytical methods for these analyses, while relatively accurate, can suffer from a slow throughput rate as well as user-based biases. Here we describe a newly developed pancreatic islet analytical software program, Pancreas++, which facilitates the fully automated, non-biased, and highly reproducible investigation of islet area and alpha- and beta-cell quantity as well as position within the islet for either single or large batches of fluorescent images. We demonstrate the utility and accuracy of *Pancreas++* by comparing its performance to other pancreatic islet size and cell type (alpha, beta) quantification methods. Our Pancreas++ analysis was significantly faster than other methods, while still retaining low error rates and a high degree of result correlation with the manually generated reference standard.

Keywords: pancreas, islets of Langerhans, alpha-cells, beta-cells, quantification, software, algorithm

#### **INTRODUCTION**

Recent research has demonstrated that the maintenance of coherent somatic metabolism is vital for protecting against age or disease-related central and peripheral pathophysiology (Martin et al., 2008, 2010, 2012; Cai et al., 2012; Siddiqui et al., 2012). A large proportion of somatic metabolism is controlled by the regulated uptake and metabolism of the primary caloric foodstuff, i.e., glucose. Therefore, an appreciation of how somatic energy function is altered in aging or pathophysiological states entails at some point an in-depth analysis of the insulinotropic glucose-regulatory system. This system is centered upon the pancreas, a large secretory organ possessing endocrine secretory cells that release insulin into the major circulation in response to dietary glucose. The insulinreleasing cells, termed beta-cells, are situated into sub-organ cellular clusters termed Islets of Langerhans. The growth, development, function, and sensitivity of these beta-cells is, in-part, managed via a local secretory interaction with glucagon-containing alpha-cells that are also present in the pancreatic islets (Jain and Lammert, 2009). Islets also contain several other secretory cell types that are responsible for the local and systemic release of somatostatin (delta cells), pancreatic polypeptide (PP cells), and ghrelin (epsilon cells). However the majority of the pancreatic islet mass is made up of beta- (65-80%) and alpha-(15-20%) cells and thus, these cell populations are the most consistently measured to assess the connection between islet morphology and pancreatic function.

Rodent models are currently the most widely used experimental animal models. The pancreatic islets of rodents possess a distinct pattern in the relative islet distribution of alpha- and beta-cells. Hence, in rodents the central core of the islet comprises a near pure mass of beta-cells while in normal functioning islets the smaller numbers of alpha-cells are excluded from the betacell core and are found in a peripheral formation encircling the islet. Multiple studies have demonstrated that there are considerable correlations between the intra-islet physical distribution and interaction of these two cell types (alpha and beta) and somatic energy metabolic function (Van Assche et al., 1978; Parsons et al., 1992; Sorenson and Brelje, 1997, 2009; Karnik et al., 2007; Huang et al., 2009). One of the most common findings in the pancreatic islets, in states of metabolic dysfunction, is the abnormal presence of alpha-cells within the beta-cell islet core. The aberrant presence of these cells is often referred to as alpha-cell involution. As such, the visual analysis of these two important cell types within immunostained endocrine pancreatic islets, may help scientists develop a deeper understanding of etiology of metabolic diseases such as obesity and diabetes mellitus (Gepts, 1965; Clark et al., 1988; Sreenan et al., 1999; Sherry et al., 2006; Marchetti et al., 2008; Matveyenko and Butler, 2008) and how this is associated with morphological cellular pancreatic signatures. In particular, quantification of involuting alpha-cells (in addition to total changes in alpha- or beta-cell mass) that invade the interior of an islet is important for the detection of pancreatic abnormalities. Unfortunately, even with expert immunohistochemical staining, microscopic imaging of sectioned pancreata, with insulin (betacell) and glucagon (alpha-cell) detection can still generate visually noisy images that are difficult to interpret consistently and impartially. The varied use of different microscopic instruments and immunohistochemical staining procedures can compound these visual inconsistencies. Due to the inevitable inclusion of pixel noise, a naïve quantification of red and green pixels is potentially insufficient for accurate pancreatic islet structural analysis. To address these issues, we have developed a novel software application for the complete sub-islet automation of alpha- and beta-cell positional quantification and analysis, from general fluorescent microscopic images. Additionally, our novel software program can also analyze large batches of pancreatic immunohistochemistry images and provide accurate quantitative data on islet area, percentage of beta-cells, percentage of alpha-cells, and percentage of involuted alpha-cells. Our algorithm requires no manual intervention, and is resilient against noise, and therefore produces high-accuracy, high-speed image analysis. To assess our accuracy and high-speed processing we performed extensive computational validations. We assessed how our program demonstrates so-called "image resilience" by contending with image noise, i.e., the natural grainy texture of images. Images can often possess trace amounts of whitespace within a pancreatic islet and trace amounts of staining away from the islet. Resiliency to this type of image noise was validated by manually examining the outline of a cell and comparing it to the outline delineated by the active contour model. The model closely, if not exactly, matched nearly every image in the testing set used for validation. Therefore we feel that Pancreas++ represents an important and robust addition to current techniques for pancreatic image analysis and will hopefully assist in the investigation of connections between islet morphology and disease.

## MATERIALS AND METHODS

#### ISLET DETECTION USING ACTIVE CONTOUR MODELS

The first step in our methodology for automated analysis involves islet detection for the localized quantification of alpha- and betacells within islets. Focusing analysis on each individual islet allows for the discarding of free-floating red and green pixels independent of any pancreatic islet. Using a combination of thresholding, nearest-neighbor interpolation, and active contour models, large contiguous regions, i.e., the islets of interest, can be easily extracted without user interaction (Kass et al., 1988; Cohen, 1991). A crucial advantage of this method is the ability to fill in large amounts of space within pancreatic cells, a common product of noise in microscopic image analysis. Whereas conventional histogram analysis would fail to address this problem, islet detection using active contour models allows for interior spaces within an islet to influence total islet area calculation.

A popular model of choice for delineating outlines from a noisy image is the active contour model (Cootes et al., 1995). Active contours are represented by a dynamic "spline," or collection of points ( $\nu$ ), that bends and iteratively evolves under the influence of internal and external forces. The contour attempts to find the orientation that minimizes the energy function originating from the snake itself (interior), and from image forces (exterior). The function being minimized is as follows:

$$\int_{0}^{1} E_{\text{internal}} (\mathbf{v}(s)) + E_{\text{image}} (\mathbf{v}(s)) \, ds$$
$$\mathbf{v} = \{ (x_0, y_0), (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) \}$$

 $E_{\text{internal}}$  is composed of the weighted sum of two elements:  $E_{\text{continuity}}$  and  $E_{\text{curvature}}$ . These two forces place limitations on the snake's ability to stretch and bend, respectively. For the purposes of our algorithm, these two functions are defined as:

$$E_{\text{continuity}} = \alpha (s) \left\| \frac{dv (s)}{ds} \right\|^{2}$$
$$E_{\text{curvature}} = \beta (s) \left\| \frac{dv^{2} (s)}{ds^{2}} \right\|^{2}$$

 $E_{\text{continuity}}$  attempts to minimize the distance between the contour's points, having the added effect of causing the contour to shrink. To encourage smoothness and avoid oscillations,  $E_{\text{curvature}}$  penalizes high curvatures. Both continuity and curvature are approximated by finite differences applied to the contour's points. Finally,  $E_{\text{image}}$  is the force that pushes the spline to various features of the image. Since we are interested in delineating the surface of the pancreatic islets,  $E_{\text{image}}$  must reach a minimum at the image's edges. After applying a gradient transform on the image,  $E_{\text{image}}$  is simply the negative value of the intensities of every pixel:

$$E_{\text{image}} = -|\nabla I|^2$$

An important issue regarding the active contour is the initialization of contour points. This is achieved by standard thresholding and nearest-neighbor interpolation to remove noise outside of the islets and fill tissue gaps within islets. A flood fill algorithm is used to determine contiguous regions within the image, and, for each region sufficiently large, we initialize an active contour as a collection of points delineating a rectangle encompassing the entire islet. The contour is then allowed to deform into the shape of the contained islet.

We performed parameter optimization for our *Pancreas*++ algorithm as follows. Briefly, for algorithm parameter optimization we employed a subset of the overall testing image set. With this specific subset we honed the functional parameters of *Pancreas*++ with the use of manual quantification of alpha-cells (by count) as the "*gold standard*" of quantification. We used a grid search on the following parameters using the ranges specified while maximizing the accuracy with respect to the "*gold standard*" quantification: step size (3–9); continuity coefficient (0.0–3.0); nearest neighbors for interpolation (0–100); intensity threshold (0–255).

#### **ALPHA- AND BETA-CELL QUANTIFICATION**

Alpha-cell regions can be isolated by the use of color thresholding to generate binary masks. Each individual cell can be isolated by counting the contiguous regions via a flood fill algorithm. Since we are only interested in alpha- and beta-cells within islets instead of background noise, we only consider red and green pixels within the interior of the active contours outlined above. First, linear interpolation is applied to the collection of points in each active contour to produce a polygon outlining the shape of each islet. A ray-casting algorithm is used to determine, for each alpha-cell, whether or not its centroid lies within the interior of an islet. All cells exterior to every islet are assumed to be noise and discarded. At this point, quantification of total alpha-cells can be computed by summing the areas of each contiguous region in the alpha-cell binary mask within each islet. Since each islet's area can be computed with the active contours delineating each islet, beta-cell area is trivially computed by the difference between total islet area and alpha-cell area. In order to disambiguate between interior and exterior alpha-cells, we calculate using vector arithmetic the minimum distance between each alpha-cell centroid and its containing contour's edge. Alpha-cells with a distance of above a predetermined threshold are deemed interior alpha-cells and counted separately (Figure 1). The intensity threshold was determined to be 50, as determined by the above mentioned grid search.

#### PANCREATIC ISLET IMAGING METHODS

C57BL/6J mice obtained from Jackson Laboratories were fed a normal chow diet or a specific high fat high glucose (HFG) diet where mentioned. Rhesus primates (*Macaca mulatta*) were continuously housed at the NIH Animal Center (Poolesville, MD, USA). The animal center is fully accredited by the American Association for Accreditation of Laboratory Animal Care, and all procedures were approved by the Animal Care and Use Committee of the NIA Intramural Program. Normal and diabetic female primate pancreata were used in this study. For human samples, Dr. Frederic B. Askin from the Department of Pathology at The Johns Hopkins University School of Medicine (Baltimore, MD, USA) provided anonymous human pancreata sections in paraffin blocks.

After sectioning of pancreatic tissue, immunohistological detection of alpha- and beta-cells was achieved with antigen retrieval and incubation with insulin (1:300; Sigma) and glucagon (1:1000; Sigma) antibodies diluted with 1% BSA overnight at 4°C. After washing, sections were incubated for 1 h in fluorescent secondary antibodies (Alexa 488, Alexa 568, 1:1000, Invitrogen). No fluorescent staining was observed in any sections when primary antibodies were omitted. Images were collected using an LSM-710 confocal microscope (Carl Zeiss MicroImaging, Thornwood, NY, USA; Kim et al., 2011).

#### INPUT IMAGE PROCESSING FOR PANCREAS++

Correct formatting of input images for *Pancreas*++ is vital for accurate quantification results. Variations in the size of the input image, for batch or individual analyses, may result in numerical discrepancies in the user output results. *Pancreas*++ takes  $256 \times 256$  .bmp, .jpg, .png, .gif, and .wbmp images. Images not of this size must be scaled using a program such as Adobe Photoshop. Images such as .tifs which are not supported by *Pancreas*++ can be converted to one of the supported file formats using a third party image conversion program such as Pixillion (http://www.pixillion.com/) or an online resource such as convertmyimage.com. It is of crucial importance that alpha-cells are green, beta-cells are red, and all else neither green nor red.

#### **PROGRAM VALIDATION METHODS**

Since manual counting of all pixels is excessively labor-intensive and in contrast quantifying total alpha-cells is computationally trivial, technological validation was performed upon the manual quantification of interior alpha-cells. Since interior alpha-cell



count is dependent upon both accuracy of cell selection and accuracy of the containing contour, it serves as the best indicator for overall algorithm validity.

Quantification of pancreatic islet size, alpha-cell numbers, alpha-cell size, alpha-cell percentage, and beta-cell percentage was performed with *Pancreas++*, manual counting assisted by NIH-Image J and also with our previously described MAT-LAB (MathWorks)-based processing toolbox (Kim et al., 2011). For our manual method assisted with Image J, the contour of each islet was drawn and the area was measured. Color images were split into binary positive/negative data using a constant threshold limit, and alpha-cell area was measured. For quantification using our MATLAB (MathWorks)-based process, the region of interest (ROI) was drawn around each islet after background subtraction. The pixels within the bounds of the ROI and above the set threshold of eight were selected, from which actual islet area was calculated. The normalized variance of the ROI was used to calculate an artificial ellipse from which the major and minor axes were determined. Islet morphometry

and sizing analyses were performed in an unbiased, random fashion.

# RESULTS

#### **DESCRIPTION OF THE USER INTERFACE**

The *Pancreas*++ algorithms previously outlined (see Materials and Methods) and a cross-platform "front-end" interface were implemented using Java. *Pancreas*++ is able to process large amounts of microscopy images in an efficient manner. A user selects the input directory, and all images within the directory are automatically loaded into the program (**Figure 2**). After processing, the user can save the images into a .csv output file that can be opened using Microsoft Excel<sup>™</sup> or any other text editor. The output file contains a table with the image names, total islet area, total alpha-cell area, interior alpha-cell percentage, alpha-cell to beta-cell percentage, alpha-cell to beta-cell ratio, interior alpha-cell ratio, and individual islet information with respect to all the aforementioned quantifications. Pancreas++

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                     | Openin                                                                                                                                                                                                                       | nages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Save C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | output                                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |                                    |                            |                      |                   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------|----------------------|-------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                   | Panc<br>Versi<br>Supp<br>.br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | creatic I<br>ion 1.0.<br>oorted F<br>np .gif .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | slet Im:<br>0.0<br>file For<br>jpeg .jp                                                                                                                                                                                                                                             | age An:<br>mats:<br>ig .png                                                                                                                                                                                                  | alysis.<br>.wbmp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                        |                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |                                    |                            |                      |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                   | Crea<br>Ho<br>Intr<br>Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ted by:<br>ngyu C<br>ramura<br>tional I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hen, Bi<br>I Rese<br>nstitute                                                                                                                                                                                                                                                       | ronwen<br>arch Pr<br>of Agir                                                                                                                                                                                                 | Martin, Si<br>ogram<br>ig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tuart Mauds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sley                                                                                                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |                                    |                            |                      |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                   | Begin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n by cli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cking "(                                                                                                                                                                                                                                                                            | )pen In                                                                                                                                                                                                                      | nages" an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d selecting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | your ima                                                                                                                                                                                                               | ige dire                                                                                                                                                           | ectory.                                                                                                                                               |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |                                    |                            |                      |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                        |                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |                                    |                            |                      |                   |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С                                                                                                                                                                                      | D                                                                                                                                                                          | E                                                                                                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                 | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                            | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L. M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N                                                                                                                                                                                                                      | 0                                                                                                                                                                  | p                                                                                                                                                     | a                                                                                                                                                                                    | R                                                                                                                                                                                                                                                                                              | 5                                  | T                          | U                    | v                 |  |
| A<br>age_name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B<br>total_islet_ito                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C<br>tal_alph to                                                                                                                                                                       | D<br>tal_alph in                                                                                                                                                           | E<br>terior_a int                                                                                                                                                                                       | F<br>terior_a a                                                                                                                                                                                                                                                                                                                   | G<br>alpha_celi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H<br>interior_a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I<br>beta_cell_                                                                                                                                                                                                                                                                     | J<br>alpha_bet                                                                                                                                                                                                               | K<br>interior_alph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L M<br>a_beta_islet_info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N                                                                                                                                                                                                                      | 0                                                                                                                                                                  | P                                                                                                                                                     | Q                                                                                                                                                                                    | R                                                                                                                                                                                                                                                                                              | 5                                  | T                          | U                    | V                 |  |
| A<br>ge_name<br>).jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B<br>total_islet_to<br>61373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C<br>tal_alph to<br>6499<br>2291                                                                                                                                                       | D<br>tal_alph in<br>54                                                                                                                                                     | E<br>terior_a ini<br>2812                                                                                                                                                                               | F<br>terior_a a<br>22                                                                                                                                                                                                                                                                                                             | G<br>alpha_cell<br>0.105893<br>0.0529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>interior_a<br>0.045818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I<br>beta_cell_<br>0.626204                                                                                                                                                                                                                                                         | J<br>alpha_bet<br>0.169104                                                                                                                                                                                                   | K<br>interior_alphi<br>0.073168<br>0.02324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L M<br>a_beta_islet_info<br>Islet_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N<br>prmation<br>61373                                                                                                                                                                                                 | 0                                                                                                                                                                  | P<br>54                                                                                                                                               | Q<br>2812<br>828                                                                                                                                                                     | R 22                                                                                                                                                                                                                                                                                           | S                                  | T                          | U                    | V                 |  |
| A<br>ge_name<br>).jpg<br>2).jpg<br>3).jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B<br>total_islet_ito<br>61373<br>61058<br>52942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C<br>ttal_alph to<br>6499<br>3291<br>3964                                                                                                                                              | D<br>tal_alph in<br>54<br>37<br>39                                                                                                                                         | E<br>terior_a in<br>2812<br>828<br>1101                                                                                                                                                                 | F<br>terior_a a<br>22<br>10<br>11                                                                                                                                                                                                                                                                                                 | G<br>alpha_cell<br>0.105893<br>0.0539<br>0.074874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H<br>interior_a<br>0.045818<br>0.013561<br>0.020796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I<br>beta_cell<br>0.626204<br>0.609748<br>0.576272                                                                                                                                                                                                                                  | J<br>alpha_bet<br>0.169104<br>0.088396<br>0.129929                                                                                                                                                                           | K<br>0.073168<br>0.02224<br>0.036088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L M<br>a_beta_islet_info<br>Islet_1<br>Islet_1<br>Islet_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N<br>ormation<br>61373<br>61058<br>52942                                                                                                                                                                               | O<br>6499<br>3291<br>3964                                                                                                                                          | P<br>54<br>37<br>39                                                                                                                                   | Q<br>2812<br>828<br>1101                                                                                                                                                             | R<br>22<br>10                                                                                                                                                                                                                                                                                  | S                                  | T                          | U                    | V                 |  |
| A<br>ge_name<br>].jpg<br>2).jpg<br>3).jpg<br>4).jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B<br>total_islet_ito<br>61373<br>61058<br>52942<br>17306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C<br>tal_alph to<br>6499<br>3291<br>3964<br>2165                                                                                                                                       | D<br>tal_alph in<br>54<br>37<br>39<br>18                                                                                                                                   | E<br>terior_a in<br>2812<br>828<br>1101<br>483                                                                                                                                                          | F<br>terior_a a<br>22<br>10<br>11<br>4                                                                                                                                                                                                                                                                                            | G<br>alpha_cell<br>0.105893<br>0.0539<br>0.074874<br>0.125101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H<br>interior_a<br>0.045818<br>0.013561<br>0.020796<br>0.027909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i<br>beta_cell<br>0.626204<br>0.609748<br>0.576272<br>0.68092                                                                                                                                                                                                                       | J<br>alpha_bet<br>0.169104<br>0.088396<br>0.129929<br>0.183724                                                                                                                                                               | K<br>interior_alph:<br>0.073168<br>0.02224<br>0.036088<br>0.040988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L M<br>a_beta islet_infr<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N<br>prmation<br>61373<br>61058<br>52942<br>17306                                                                                                                                                                      | 0<br>6499<br>3291<br>3964<br>2165                                                                                                                                  | P<br>54<br>37<br>39<br>18                                                                                                                             | Q<br>2812<br>828<br>1101<br>483                                                                                                                                                      | R<br>22<br>10<br>11<br>4                                                                                                                                                                                                                                                                       | 5                                  | T                          | U                    | v                 |  |
| A<br>ge_name<br>].jpg<br>2).jpg<br>3).jpg<br>3).jpg<br>5).jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B<br>total_islet_ito<br>61373<br>61058<br>52942<br>17306<br>90689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C tal_alph to<br>6499<br>3291<br>3964<br>2165<br>5255                                                                                                                                  | D<br>tal_alph in<br>54<br>37<br>39<br>18<br>66                                                                                                                             | E<br>terior_a in/<br>2812<br>828<br>1101<br>483<br>2345                                                                                                                                                 | F<br>terior_a a<br>22<br>10<br>11<br>4<br>27                                                                                                                                                                                                                                                                                      | G<br>alpha_cell<br>0.105893<br>0.0539<br>0.074874<br>0.125101<br>0.057945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>interior_a<br>0.045818<br>0.013561<br>0.020796<br>0.027909<br>0.025858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l<br>beta_cell<br>0.626204<br>0.609748<br>0.576272<br>0.68092<br>0.563718                                                                                                                                                                                                           | J<br>alpha_bet<br>0.169104<br>0.088396<br>0.129929<br>0.183724<br>0.102791                                                                                                                                                   | K<br>interior_alph:<br>0.073168<br>0.02224<br>0.036088<br>0.040988<br>0.040988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L M<br>a_beta islet_info<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N<br>ormation<br>61373<br>61058<br>52942<br>17306<br>66959                                                                                                                                                             | 0<br>6499<br>3291<br>3964<br>2165<br>4485                                                                                                                          | P<br>54<br>37<br>39<br>18<br>54                                                                                                                       | Q<br>2812<br>828<br>1101<br>483<br>2265                                                                                                                                              | R<br>22<br>10<br>11<br>4<br>25                                                                                                                                                                                                                                                                 | S<br>Islet_2                       | T                          | U<br>770             | V<br>12           |  |
| A<br><u>ge_name</u><br>).jpg<br>2).jpg<br>3).jpg<br>4).jpg<br>5).jpg<br>6).jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B<br>total_islet_to<br>61373<br>61058<br>52942<br>17306<br>90689<br>153610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C tal_alph to<br>6499<br>3291<br>3964<br>2165<br>5255<br>11017                                                                                                                         | D<br>tal_alph in<br>54<br>37<br>39<br>18<br>66<br>99                                                                                                                       | E<br>terior_a in/<br>2812<br>828<br>1101<br>483<br>2345<br>7286                                                                                                                                         | F<br>terior_a a<br>22<br>10<br>11<br>4<br>27<br>64                                                                                                                                                                                                                                                                                | G<br>alpha_cell<br>0.105893<br>0.0539<br>0.074874<br>0.125101<br>0.057945<br>0.071721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>interior_a<br>0.045818<br>0.013561<br>0.020796<br>0.027909<br>0.025858<br>0.047432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l<br>beta_cell<br>0.626204<br>0.609748<br>0.576272<br>0.68092<br>0.563718<br>0.453128                                                                                                                                                                                               | J<br>alpha_bet<br>0.169104<br>0.088396<br>0.129929<br>0.183724<br>0.102791<br>0.158279                                                                                                                                       | к<br>interior_alph:<br>0.073168<br>0.02224<br>0.036088<br>0.04088<br>0.04587<br>0.104676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L M<br>a_beta islet_info<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N<br>ormation<br>61373<br>61058<br>52942<br>17306<br>66959<br>153610                                                                                                                                                   | 0<br>6499<br>3291<br>3964<br>2165<br>4485<br>11017                                                                                                                 | P<br>54<br>37<br>39<br>18<br>54<br>99                                                                                                                 | Q<br>2812<br>828<br>1101<br>483<br>2265<br>7286                                                                                                                                      | R<br>22<br>10<br>11<br>4<br>25<br>64                                                                                                                                                                                                                                                           | S<br>Islet_2                       | T<br>23730                 | U<br>770             | V<br>12           |  |
| A<br><u>ge_name</u><br>).jpg<br>2).jpg<br>2).jpg<br>4).jpg<br>5).jpg<br>6).jpg<br>2).jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8<br>total_islet_ito<br>61373<br>61058<br>52942<br>17306<br>90689<br>153610<br>17970<br>55660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C tal_alph to<br>6499<br>3291<br>3964<br>2165<br>5255<br>11017<br>2860<br>5541                                                                                                         | D<br>tal_alph in<br>54<br>37<br>39<br>18<br>66<br>99<br>17<br>29                                                                                                           | E<br>terior_a in<br>2812<br>828<br>1101<br>483<br>2345<br>7286<br>770<br>2592                                                                                                                           | F<br>(terior_a i<br>22<br>10<br>11<br>4<br>27<br>64<br>4<br>27                                                                                                                                                                                                                                                                    | G<br>alpha_cell<br>0.105893<br>0.0539<br>0.074874<br>0.125101<br>0.057945<br>0.071721<br>0.159154<br>0.09745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H<br>interior_a<br>0.045818<br>0.013561<br>0.020796<br>0.027909<br>0.025858<br>0.047432<br>0.042849<br>0.045602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l<br>beta_cell<br>0.626204<br>0.609748<br>0.576272<br>0.68092<br>0.68092<br>0.453128<br>0.453128<br>0.825598                                                                                                                                                                        | J<br>alpha_bet<br>0.169104<br>0.088396<br>0.129929<br>0.183724<br>0.102791<br>0.192774<br>0.192774                                                                                                                           | к<br>interior_alph:<br>0.073168<br>0.02224<br>0.036088<br>0.04088<br>0.04587<br>0.104676<br>0.051901<br>0.069022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L M<br>s beta islet_infi<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N<br>ormation<br>61373<br>61058<br>52942<br>17306<br>66959<br>153610<br>17970<br>56960                                                                                                                                 | 0<br>6499<br>3291<br>3964<br>2165<br>4485<br>11017<br>2860<br>5541                                                                                                 | P<br>54<br>37<br>39<br>18<br>54<br>99<br>17                                                                                                           | Q<br>2812<br>828<br>1101<br>483<br>2265<br>7286<br>7780                                                                                                                              | R<br>22<br>10<br>11<br>4<br>25<br>64<br>4                                                                                                                                                                                                                                                      | S<br>Islet_2                       | T<br>23730                 | U<br>770             | V<br>12           |  |
| A<br><u>ge_name</u><br>).jpg<br>2).jpg<br>3).jpg<br>4).jpg<br>5).jpg<br>6).jpg<br>7).jpg<br>8).jpg<br>9).jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B<br>total_islet_itc<br>61373<br>61058<br>52942<br>17306<br>90689<br>153610<br>17970<br>56860<br>53931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C tal_alph to<br>6499<br>3291<br>3964<br>2165<br>5255<br>11017<br>2860<br>5541<br>2835                                                                                                 | D<br>tal_alph in<br>54<br>37<br>39<br>18<br>66<br>99<br>17<br>39<br>26                                                                                                     | E<br>terior_a in<br>2812<br>828<br>1101<br>483<br>2345<br>7286<br>770<br>2593<br>1113                                                                                                                   | F<br>tterior_a i<br>22<br>10<br>11<br>4<br>27<br>64<br>4<br>3<br>8                                                                                                                                                                                                                                                                | G<br>alpha_celi<br>0.105893<br>0.074874<br>0.125101<br>0.125105<br>0.071721<br>0.09745<br>0.09745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H<br>interior_a<br>0.045818<br>0.013561<br>0.0207909<br>0.025858<br>0.047432<br>0.042849<br>0.045603<br>0.0265603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l<br>beta_cell<br>0.626204<br>0.609742<br>0.563718<br>0.453128<br>0.453128<br>0.660693<br>0.715896                                                                                                                                                                                  | J<br>alpha_bet<br>0.169104<br>0.088396<br>0.129929<br>0.183724<br>0.102791<br>0.158279<br>0.192774<br>0.147496<br>0.073428                                                                                                   | K<br>interior_alph:<br>0.073168<br>0.02224<br>0.036088<br>0.04988<br>0.04587<br>0.104676<br>0.051901<br>0.069023<br>0.028827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L M<br>a_beta islet_infr<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N<br>prmation<br>61373<br>61058<br>52942<br>173066<br>66959<br>153610<br>17970<br>56860<br>53931                                                                                                                       | 0<br>6499<br>3291<br>3964<br>2165<br>4485<br>11017<br>2860<br>5541<br>2835                                                                                         | P<br>54<br>37<br>39<br>18<br>54<br>99<br>17<br>39<br>26                                                                                               | Q<br>2812<br>828<br>1101<br>483<br>2265<br>7286<br>7286<br>770<br>2593<br>1113                                                                                                       | R<br>22<br>10<br>11<br>4<br>25<br>64<br>4<br>13<br>8                                                                                                                                                                                                                                           | S<br>Islet_2                       | T<br>23730                 | U<br>770             | V<br>12           |  |
| A<br><u>ge_name</u><br>).jpg<br>2).jpg<br>3).jpg<br>4).jpg<br>5).jpg<br>6).jpg<br>6).jpg<br>9).jpg<br>9).jpg<br>).jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8<br>total_islet_tt<br>61373<br>61058<br>52942<br>17306<br>90689<br>153610<br>17970<br>56860<br>53931<br>55678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C tal_alph to<br>6499<br>3291<br>3964<br>2165<br>5255<br>11017<br>2860<br>5541<br>2835<br>6085                                                                                         | D<br>tal_alph in<br>54<br>37<br>39<br>18<br>66<br>99<br>17<br>39<br>17<br>39<br>26<br>49                                                                                   | E<br>terior_a in<br>2812<br>828<br>1101<br>483<br>2345<br>7286<br>770<br>2593<br>1113<br>1731                                                                                                           | F<br>tterior_a a<br>22<br>10<br>11<br>4<br>27<br>64<br>4<br>13<br>3<br>8<br>14                                                                                                                                                                                                                                                    | G<br>alpha_cell<br>0.105893<br>0.074874<br>0.125101<br>0.125101<br>0.159154<br>0.071721<br>0.052567<br>0.052267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H<br>interior_a<br>0.045518<br>0.020796<br>0.020796<br>0.025858<br>0.047432<br>0.042849<br>0.042603<br>0.020637<br>0.020637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l<br>beta_cell<br>0.626204<br>0.576272<br>0.563718<br>0.453128<br>0.68092<br>0.55598<br>0.660693<br>0.715896<br>0.715896                                                                                                                                                            | J<br>alpha_bet<br>0.169104<br>0.088396<br>0.129929<br>0.183724<br>0.102791<br>0.158279<br>0.192774<br>0.147496<br>0.073428<br>0.0262488                                                                                      | к<br>interior_alph<br>0.073168<br>0.02224<br>0.036088<br>0.040588<br>0.04587<br>0.0194676<br>0.051901<br>0.096902<br>0.028827<br>0.07467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L M<br>a_beta_islet_info<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N<br>52942<br>17306<br>66959<br>153610<br>17970<br>55860<br>53931<br>54087                                                                                                                                             | 0<br>6499<br>3291<br>3964<br>2165<br>4485<br>11017<br>2860<br>5541<br>2835<br>6085                                                                                 | P<br>54<br>37<br>39<br>18<br>54<br>99<br>17<br>39<br>26<br>49                                                                                         | Q<br>2812<br>828<br>1101<br>483<br>2265<br>7286<br>770<br>2593<br>11731                                                                                                              | R<br>22<br>100<br>111<br>4<br>25<br>64<br>4<br>13<br>8<br>8                                                                                                                                                                                                                                    | S<br>Islet_2<br>Islet_2            | T<br>23730<br>1591         | U<br>770             | V<br>12<br>0      |  |
| A<br>ge_name<br>).jpg<br>2).jpg<br>4).jpg<br>5).jpg<br>6).jpg<br>6).jpg<br>8).jpg<br>9).jpg<br>1).jpg<br>0).jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8<br>total_islet_tc<br>61058<br>52942<br>17306<br>90689<br>90689<br>153610<br>17970<br>556860<br>558960<br>55931<br>55678<br>94072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C 6499<br>3291<br>3964<br>2165<br>5255<br>11017<br>2860<br>5541<br>2835<br>6085<br>8775                                                                                                | D tal_alph in<br>54<br>37<br>39<br>18<br>66<br>99<br>17<br>39<br>26<br>49<br>56                                                                                            | E 2812<br>2812<br>828<br>1101<br>483<br>2345<br>7286<br>770<br>2593<br>1113<br>1731<br>2791                                                                                                             | F<br>tterior_a a<br>22<br>10<br>11<br>4<br>27<br>64<br>4<br>13<br>8<br>8<br>14<br>21                                                                                                                                                                                                                                              | G<br>alpha_cell<br>0.105893<br>0.074874<br>0.125101<br>0.057945<br>0.071721<br>0.159154<br>0.09745<br>0.05267<br>0.109289<br>0.09328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>interior_a<br>0.045818<br>0.013561<br>0.020796<br>0.025858<br>0.047432<br>0.042649<br>0.045603<br>0.020637<br>0.031089<br>0.032669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I<br>beta_cell<br>0.626204<br>0.509748<br>0.563718<br>0.68092<br>0.683718<br>0.453128<br>0.660693<br>0.715896<br>0.416358<br>0.612743                                                                                                                                               | J<br>alpha_bet<br>0.169104<br>0.088396<br>0.123929<br>0.183724<br>0.12274<br>0.158279<br>0.192774<br>0.47496<br>0.073428<br>0.262488<br>0.152233                                                                             | к<br>interior_alph<br>0.073168<br>0.02224<br>0.04088<br>0.040587<br>0.044576<br>0.051901<br>0.069023<br>0.028827<br>0.07467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L M<br>a beta islet_info<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N<br>61373<br>61058<br>52942<br>17306<br>66959<br>153610<br>17970<br>56860<br>53931<br>54087<br>94072                                                                                                                  | 0<br>6499<br>3291<br>3964<br>2165<br>4485<br>11017<br>2860<br>5541<br>2835<br>6085<br>8775                                                                         | P<br>54<br>37<br>39<br>18<br>54<br>99<br>17<br>39<br>26<br>49<br>956                                                                                  | Q<br>2812<br>828<br>1101<br>483<br>2265<br>7286<br>770<br>2593<br>1113<br>1731<br>2791                                                                                               | R<br>22<br>100<br>111<br>4<br>25<br>64<br>4<br>13<br>8<br>8<br>14<br>21                                                                                                                                                                                                                        | S<br>Islet_2<br>Islet_2            | T<br>23730<br>1591         | U<br>770<br>0        | V<br>12<br>0      |  |
| A<br>ggname<br>1.Jpg<br>2).Jpg<br>3).jpg<br>4).jpg<br>5).jpg<br>5).jpg<br>5).jpg<br>9).jpg<br>1.jpg<br>1).jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8<br>total_islet_tc<br>61373<br>61058<br>52942<br>17306<br>90689<br>90689<br>153610<br>17970<br>56860<br>539311<br>553578<br>94072<br>23346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C<br>ttal_alpt to<br>6499<br>3291<br>3964<br>5255<br>11017<br>2860<br>5541<br>2835<br>6085<br>8775<br>3144                                                                             | D<br>tal_alph in<br>54<br>37<br>39<br>18<br>66<br>99<br>17<br>39<br>26<br>49<br>56<br>15                                                                                   | E terior_a in<br>2812<br>828<br>1101<br>483<br>2345<br>7286<br>7700<br>2593<br>1113<br>1731<br>2791<br>755                                                                                              | F<br>tterior_a:<br>22<br>10<br>11<br>4<br>27<br>64<br>4<br>13<br>8<br>4<br>13<br>8<br>4<br>21<br>4                                                                                                                                                                                                                                | G<br>alpha_cell<br>0.105893<br>0.074874<br>0.125101<br>0.057945<br>0.071721<br>0.159154<br>0.09745<br>0.092567<br>0.109289<br>0.03928<br>0.03328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H<br>interior_a<br>0.045818<br>0.020796<br>0.0227909<br>0.025858<br>0.025858<br>0.02637<br>0.042603<br>0.020637<br>0.031089<br>0.029669<br>0.03234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l<br>beta_cell<br>0.626204<br>0.576272<br>0.68092<br>0.563718<br>0.453128<br>0.825598<br>0.660693<br>0.715896<br>0.416358<br>0.416358                                                                                                                                               | J<br>alpha_bet<br>0.169104<br>0.088396<br>0.129929<br>0.183724<br>0.102791<br>0.158279<br>0.192774<br>0.47496<br>0.073428<br>0.262488<br>0.152233<br>0.210245                                                                | K<br>interior_alph.<br>0.073168<br>0.026224<br>0.036088<br>0.040588<br>0.044567<br>0.051901<br>0.0669023<br>0.026827<br>0.07467<br>0.028827<br>0.07467<br>0.04842<br>0.050488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L M<br>beta islet_inf<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>isl | N<br>61373<br>61058<br>52942<br>17306<br>66959<br>153610<br>17970<br>55860<br>53931<br>54087<br>94072<br>23346                                                                                                         | 0<br>6499<br>3291<br>3964<br>2165<br>4485<br>11017<br>2860<br>5541<br>2835<br>6085<br>8775<br>3144                                                                 | P<br>54<br>37<br>39<br>18<br>54<br>99<br>17<br>39<br>26<br>49<br>56<br>15                                                                             | Q<br>2812<br>828<br>1101<br>483<br>2265<br>7286<br>7780<br>72593<br>1113<br>1731<br>2791<br>2755                                                                                     | R<br>22<br>10<br>11<br>4<br>25<br>64<br>4<br>13<br>8<br>13<br>8<br>14<br>21<br>4                                                                                                                                                                                                               | S<br>Islet_2<br>Islet_2            | T<br>23730<br>1591         | U<br>770<br>0        | V<br>12<br>0      |  |
| A<br>ge_name<br>1.jpg<br>2).jpg<br>3).jpg<br>4).jpg<br>5).jpg<br>5).jpg<br>5).jpg<br>9).jpg<br>9).jpg<br>1).jpg<br>1).jpg<br>2).jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8<br>total_islet_tt<br>61373<br>61058<br>52942<br>17306<br>90689<br>153610<br>17970<br>56860<br>53931<br>55678<br>94072<br>23346<br>23354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C tal_alph too<br>6499<br>3291<br>3964<br>2165<br>5255<br>11017<br>2860<br>55541<br>2835<br>6085<br>8775<br>3144<br>2451                                                               | D<br>tal_alph in<br>54<br>37<br>39<br>18<br>66<br>99<br>17<br>39<br>26<br>49<br>26<br>49<br>56<br>15<br>26                                                                 | E terior_a in 2812 828 1101 483 2345 7286 770 2593 1113 1731 2791 755 616                                                                                                                               | F<br>terior_a:<br>22<br>10<br>11<br>4<br>27<br>64<br>4<br>13<br>8<br>14<br>13<br>8<br>14<br>14<br>21<br>4<br>7<br>7                                                                                                                                                                                                               | G<br>alpha_cell<br>0.105893<br>0.0539<br>0.074874<br>0.125101<br>0.057945<br>0.057945<br>0.052567<br>0.09745<br>0.09289<br>0.09288<br>0.093288<br>0.032687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H<br>interior_a<br>0.045818<br>0.013561<br>0.0207909<br>0.025858<br>0.047432<br>0.042849<br>0.042603<br>0.042603<br>0.042603<br>0.04269<br>0.03269<br>0.03234<br>0.029659<br>0.03234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | l<br>beta_cell<br>0.626204<br>0.576272<br>0.68092<br>0.563718<br>0.453718<br>0.660693<br>0.715896<br>0.416358<br>0.612743<br>0.640538<br>0.640538                                                                                                                                   | J<br>alpha_bet<br>0.169104<br>0.129292<br>0.183724<br>0.15273<br>0.192774<br>0.147496<br>0.073428<br>0.262488<br>0.262488<br>0.210245<br>0.152233                                                                            | K<br>interior_alph<br>0.073168<br>0.02224<br>0.036088<br>0.040988<br>0.040988<br>0.040988<br>0.040988<br>0.040960<br>0.051901<br>0.04677<br>0.05482<br>0.028827<br>0.07467<br>0.04842<br>0.03934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L M<br>sbeta islet_infat<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1     | N<br>prmation<br>61373<br>61058<br>52942<br>17306<br>66959<br>153610<br>17970<br>56860<br>17970<br>56860<br>539311<br>54087<br>94072<br>23346<br>24170                                                                 | 0<br>6499<br>3291<br>3964<br>2165<br>4485<br>11017<br>2860<br>5541<br>2835<br>6085<br>8775<br>3144<br>2132                                                         | P<br>54<br>37<br>39<br>18<br>54<br>99<br>17<br>7<br>39<br>26<br>49<br>56<br>49<br>55<br>15<br>23                                                      | Q<br>2812<br>828<br>1101<br>483<br>2265<br>7286<br>7700<br>2593<br>1113<br>1731<br>1731<br>7755<br>616                                                                               | R<br>22<br>10<br>11<br>4<br>25<br>64<br>4<br>13<br>8<br>14<br>21<br>4<br>7<br>7                                                                                                                                                                                                                | S<br>Islet_2<br>Islet_2<br>Islet_2 | T<br>23730<br>1591<br>1184 | U<br>770<br>0<br>319 | V<br>12<br>0<br>3 |  |
| A<br>ge_name<br>j.jpg<br>2).jpg<br>4).jpg<br>5).jpg<br>5).jpg<br>5).jpg<br>5).jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>2.jpg<br>2.jpg<br>1.jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8<br>(total islet_it<br>61058<br>52942<br>17306<br>90689<br>90689<br>90689<br>153610<br>17970<br>56860<br>53931<br>55678<br>94072<br>23346<br>23354<br>14511<br>22601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C tai alph to 6499 3291 3964 2165 5255 11017 2860 5541 2835 6085 8775 3144 2451 2451 2169 399                                                                                          | D<br>tal_alph in<br>54<br>37<br>39<br>18<br>66<br>99<br>17<br>39<br>26<br>49<br>56<br>15<br>26<br>19<br>19                                                                 | E<br>terior_a in<br>2812<br>828<br>1101<br>483<br>2345<br>7286<br>770<br>2593<br>11113<br>1731<br>2791<br>755<br>616<br>244<br>245<br>215<br>215<br>215<br>215<br>215<br>215<br>215<br>215<br>215<br>21 | F<br>tterior_a :<br>22<br>10<br>11<br>4<br>27<br>64<br>4<br>4<br>3<br>8<br>14<br>21<br>4<br>7<br>1<br>4                                                                                                                                                                                                                           | G<br>alpha_cell<br>0.105893<br>0.0539<br>0.074874<br>0.125101<br>0.057945<br>0.05745<br>0.09745<br>0.09745<br>0.09745<br>0.09289<br>0.09328<br>0.09328<br>0.03289<br>0.034497<br>0.083498<br>0.134677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>interior_a<br>0.045818<br>0.013561<br>0.027960<br>0.027909<br>0.025858<br>0.047432<br>0.042630<br>0.045603<br>0.045603<br>0.032344<br>0.032344<br>0.032985<br>0.001654<br>0.05342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I<br>beta_cell<br>0.626204<br>0.609748<br>0.576272<br>0.68092<br>0.563718<br>0.453128<br>0.660693<br>0.715896<br>0.416358<br>0.612743<br>0.640538<br>0.618417<br>0.514231                                                                                                           | J<br>alpha_bet<br>0.169104<br>0.088396<br>0.129929<br>0.183724<br>0.102791<br>0.158279<br>0.192774<br>0.147496<br>0.073428<br>0.262488<br>0.152233<br>0.210245<br>0.210245<br>0.210245                                       | к<br>interior_alph<br>0.073168<br>0.02224<br>0.036088<br>0.040988<br>0.044587<br>0.044576<br>0.0451901<br>0.051901<br>0.051901<br>0.051901<br>0.051902<br>0.02827<br>0.004842<br>0.004842<br>0.033934<br>0.033934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L M<br>beta islet_info<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1                                                                                                                                                                                                                                                                                                                           | N<br>prmation<br>61373<br>61058<br>52942<br>17306<br>66959<br>153610<br>17970<br>56860<br>53931<br>54087<br>94072<br>23346<br>23140<br>23140<br>23140<br>23140                                                         | 0<br>6499<br>3291<br>3964<br>2165<br>4485<br>11017<br>2860<br>5541<br>2835<br>6085<br>8775<br>3144<br>2132<br>2169<br>2989                                         | P<br>54<br>37<br>39<br>18<br>54<br>99<br>17<br>39<br>26<br>49<br>56<br>15<br>23<br>19                                                                 | Q<br>2812<br>828<br>1101<br>483<br>2265<br>7286<br>770<br>2593<br>1113<br>1731<br>2795<br>616<br>24<br>24<br>1261                                                                    | R<br>222<br>100<br>111<br>4<br>255<br>64<br>4<br>4<br>13<br>8<br>14<br>21<br>4<br>7<br>7<br>1                                                                                                                                                                                                  | S<br>Islet_2<br>Islet_2<br>Islet_2 | T<br>23730<br>1591<br>1184 | U<br>770<br>0<br>319 | V<br>12<br>0<br>3 |  |
| A<br>ge_name<br>l.jpg<br>2).jpg<br>3).jpg<br>4).jpg<br>5).jpg<br>5).jpg<br>3).jpg<br>3).jpg<br>1).jpg<br>1).jpg<br>2).jpg<br>1.jpg<br>1.jpg<br>1.jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8<br>total_slet_tc<br>61373<br>61058<br>52942<br>17306<br>90689<br>153610<br>17970<br>56860<br>53931<br>55578<br>94072<br>23346<br>23354<br>14511<br>23601<br>53941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C tal_alph to<br>6499<br>3291<br>3964<br>2165<br>5255<br>11017<br>2860<br>5541<br>2860<br>5541<br>2860<br>5541<br>2860<br>5541<br>2865<br>8775<br>3144<br>2451<br>2169<br>2988<br>3888 | D<br>tal_alph in<br>54<br>37<br>39<br>18<br>66<br>99<br>917<br>39<br>26<br>49<br>56<br>15<br>26<br>15<br>26<br>19<br>13<br>31                                              | E<br>terior_a in<br>2812<br>828<br>1101<br>483<br>2345<br>7286<br>770<br>2593<br>1113<br>1731<br>2791<br>755<br>616<br>616<br>24<br>1265<br>1265                                                        | F<br>tterior a i<br>22<br>100<br>111<br>4<br>27<br>64<br>4<br>4<br>27<br>64<br>4<br>3<br>8<br>14<br>21<br>4<br>7<br>1<br>1<br>4<br>9                                                                                                                                                                                              | G<br>alpha_cell<br>0.105893<br>0.05399<br>0.074874<br>0.125101<br>0.057455<br>0.071721<br>0.159154<br>0.09745<br>0.09289<br>0.032867<br>0.109289<br>0.032467<br>0.083498<br>0.149473<br>0.126605<br>0.072023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H<br>interior_a<br>0.013561<br>0.020796<br>0.027909<br>0.025858<br>0.042849<br>0.042603<br>0.020689<br>0.020689<br>0.020685<br>0.020855<br>0.020855<br>0.020855<br>0.020855<br>0.020855<br>0.020855<br>0.020855<br>0.020855<br>0.0208543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l<br>beta_cell<br>0.626204<br>0.609748<br>0.576272<br>0.68092<br>0.563718<br>0.453128<br>0.453128<br>0.45598<br>0.416358<br>0.416358<br>0.612743<br>0.618417<br>0.514231<br>0.56862<br>0.630944                                                                                     | J<br>alpha_bet<br>0.169104<br>0.088396<br>0.129929<br>0.183724<br>0.102791<br>0.158279<br>0.192774<br>0.147496<br>0.073428<br>0.262488<br>0.073428<br>0.210245<br>0.210245<br>0.22053<br>0.2102253                           | k<br>interior_alph<br>0.073168<br>0.02224<br>0.02224<br>0.02688<br>0.04587<br>0.04587<br>0.045827<br>0.069023<br>0.02827<br>0.07467<br>0.04542<br>0.059048<br>0.033934<br>0.033934<br>0.033954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L M<br>a_beta_islet_inf<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1                                                                                                                                                                                                                                                                                                                          | N<br>61373<br>61058<br>52942<br>17306<br>66959<br>153610<br>17970<br>55860<br>53931<br>54087<br>94072<br>23346<br>28170<br>18451<br>23346<br>28170<br>28171<br>23601<br>53941                                          | 0<br>6499<br>3291<br>3964<br>2165<br>4485<br>511017<br>2860<br>5541<br>2835<br>6085<br>8775<br>3144<br>2132<br>2169<br>2988<br>3885                                | P<br>54<br>37<br>39<br>18<br>54<br>99<br>17<br>39<br>26<br>6<br>49<br>56<br>15<br>23<br>3<br>19<br>13                                                 | Q<br>2812<br>828<br>1101<br>433<br>2265<br>7286<br>770<br>2593<br>1113<br>1731<br>2791<br>755<br>616<br>24<br>1261<br>1265                                                           | R<br>22<br>10<br>11<br>4<br>25<br>5<br>64<br>4<br>13<br>8<br>8<br>14<br>21<br>4<br>7<br>7<br>1<br>4<br>9                                                                                                                                                                                       | S<br>Islet_2<br>Islet_2<br>Islet_2 | T<br>23730<br>1591<br>1184 | U<br>770<br>0<br>319 | V<br>12<br>0<br>3 |  |
| A<br>ge_name<br>.jpg<br>2).jpg<br>3).jpg<br>3).jpg<br>3).jpg<br>3).jpg<br>3).jpg<br>2).jpg<br>2).jpg<br>1.jpg<br>.jpg<br>.jpg<br>.jpg<br>.jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B<br>ttotal islet_itc<br>61373<br>61058<br>52942<br>17306<br>90689<br>153610<br>17970<br>56860<br>23346<br>23354<br>23354<br>23354<br>23354<br>15511<br>2360<br>23354<br>235578<br>94072<br>23354<br>23354<br>23354<br>235578<br>23354<br>235578<br>23354<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>235578<br>23557878<br>235578<br>23557878<br>235578<br>235578<br>235578<br>235578<br>235578<br>235 | C tal_alph to<br>6499<br>3291<br>5255<br>5255<br>11017<br>2860<br>5541<br>2835<br>6085<br>8775<br>3144<br>2451<br>2451<br>2451<br>2451<br>2451<br>2451<br>2451<br>2                    | D<br>tal_alph in<br>54<br>377<br>39<br>18<br>66<br>99<br>17<br>7<br>26<br>49<br>26<br>49<br>26<br>15<br>26<br>15<br>26<br>19<br>13<br>31<br>33<br>31                       | E<br>terior_a in<br>2812<br>2285<br>1101<br>483<br>2345<br>7286<br>770<br>2593<br>1113<br>1731<br>2791<br>2791<br>755<br>616<br>24<br>1261<br>1265<br>2230                                              | F<br>tterior_a<br>10<br>111<br>4<br>27<br>64<br>4<br>13<br>8<br>8<br>14<br>21<br>4<br>7<br>7<br>1<br>4<br>9<br>9<br>16                                                                                                                                                                                                            | G<br>alpha_cell<br>0.105893<br>0.074874<br>0.125101<br>0.057945<br>0.057945<br>0.057945<br>0.057945<br>0.057945<br>0.057945<br>0.057945<br>0.057945<br>0.057945<br>0.097428<br>0.03248<br>0.13467<br>0.083498<br>0.149473<br>0.149473<br>0.149473<br>0.149473<br>0.149473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>interior_a<br>0.045818<br>0.02796<br>0.027909<br>0.025858<br>0.047432<br>0.042603<br>0.042603<br>0.020637<br>0.031089<br>0.029659<br>0.032345<br>0.001654<br>0.037495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i<br>beta_cell<br>0.626204<br>0.609748<br>0.566722<br>0.68092<br>0.825598<br>0.660693<br>0.715896<br>0.416358<br>0.612743<br>0.640538<br>0.612743<br>0.640538<br>0.6128417<br>0.514231<br>0.554623                                                                                  | J<br>alpha_bet<br>0.169104<br>0.088396<br>0.129929<br>0.183724<br>0.102791<br>0.192774<br>0.147496<br>0.073428<br>0.262488<br>0.152233<br>0.210245<br>0.135019<br>0.290673<br>0.222653<br>0.113229<br>0.146012               | к<br>interior_alph<br>0.073168<br>0.02224<br>0.040988<br>0.04587<br>0.040982<br>0.04587<br>0.04587<br>0.0459023<br>0.051901<br>0.05482<br>0.028627<br>0.028627<br>0.024842<br>0.032865<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039364<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039365<br>0.039565<br>0.039565<br>0.039565<br>0.039565<br>0.039565<br>0.039565<br>0.039565<br>0.039565<br>0 | L M<br>Jeta islet_Info<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1<br>Islet_1                                                                                                                                                                                                                                                                                                                           | N<br>prmation<br>61373<br>52942<br>17306<br>66959<br>153610<br>17970<br>56860<br>53931<br>74087<br>94072<br>23346<br>28170<br>14501<br>253941<br>53941<br>53941                                                        | O<br>6499<br>3291<br>3965<br>4485<br>11017<br>2860<br>5541<br>2835<br>6085<br>5541<br>2835<br>60875<br>3144<br>2132<br>2169<br>2988<br>3885                        | P<br>54<br>37<br>39<br>18<br>54<br>99<br>17<br>39<br>26<br>49<br>26<br>15<br>23<br>19<br>19<br>13<br>31<br>3<br>43                                    | Q<br>2812<br>828<br>1101<br>433<br>2265<br>7266<br>7266<br>7260<br>2593<br>1113<br>1731<br>2791<br>2791<br>2791<br>2791<br>2791<br>2791<br>2795<br>616<br>24<br>1261<br>1261<br>1265 | R<br>22<br>100<br>111<br>4<br>25<br>64<br>4<br>4<br>13<br>8<br>14<br>4<br>21<br>4<br>7<br>7<br>1<br>1<br>4<br>9<br>16                                                                                                                                                                          | S<br>Islet_2<br>Islet_2<br>Islet_2 | T<br>23730<br>1591<br>1184 | U<br>770<br>0<br>319 | V<br>12<br>0<br>3 |  |
| A<br>ge_name<br>].jpg<br>2].jpg<br>3].jpg<br>4].jpg<br>5].jpg<br>6].jpg<br>9].jpg<br>1].jpg<br>1].jpg<br>1].jpg<br>1].jpg<br>1].jpg<br>1].jpg<br>1].jpg<br>1].jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8<br>(total_islet_tt<br>61373<br>61058<br>52942<br>17306<br>90689<br>153610<br>17970<br>56680<br>53931<br>55678<br>94072<br>23346<br>23354<br>23354<br>145111<br>23601<br>53941<br>53941<br>53941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C tal alph to<br>6499<br>3291<br>3964<br>5255<br>11017<br>2860<br>5541<br>2860<br>5541<br>6085<br>8775<br>3144<br>2451<br>2451<br>2169<br>2988<br>3885<br>4694<br>4046                 | D<br>tal_alph in<br>54<br>37<br>39<br>18<br>66<br>69<br>99<br>17<br>39<br>26<br>49<br>56<br>15<br>26<br>15<br>26<br>15<br>13<br>31<br>31<br>31<br>33                       | E 2812<br>2812<br>828<br>1101<br>483<br>2345<br>7286<br>7780<br>7770<br>2593<br>1113<br>1731<br>2791<br>7755<br>616<br>24<br>1261<br>1265<br>2230<br>652                                                | F<br>tterior_a<br>22<br>100<br>111<br>4<br>4<br>7<br>64<br>4<br>3<br>8<br>14<br>27<br>64<br>4<br>3<br>8<br>14<br>12<br>4<br>7<br>7<br>1<br>4<br>9<br>9<br>16                                                                                                                                                                      | G<br>alpha_cell<br>0.105893<br>0.074874<br>0.125101<br>0.057945<br>0.057945<br>0.057945<br>0.057455<br>0.057245<br>0.09745<br>0.09745<br>0.09289<br>0.13467<br>0.083498<br>0.13467<br>0.083498<br>0.146473<br>0.126605<br>0.072023<br>0.078244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H<br>interior_a<br>0.045818<br>0.020796<br>0.025858<br>0.047432<br>0.042849<br>0.042637<br>0.031089<br>0.029659<br>0.03234<br>0.020985<br>0.0323452<br>0.05143<br>0.053432<br>0.037495<br>0.016845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I<br>beta_cell<br>0.626204<br>0.609748<br>0.576272<br>0.68092<br>0.68092<br>0.68092<br>0.68093<br>0.63538<br>0.612743<br>0.640538<br>0.612743<br>0.640538<br>0.6128417<br>0.514231<br>0.514231<br>0.514231<br>0.514231                                                              | J<br>alpha_bet<br>0.169104<br>0.088396<br>0.129929<br>0.183724<br>0.102791<br>0.158279<br>0.147496<br>0.073428<br>0.262488<br>0.210245<br>0.152233<br>0.210245<br>0.220653<br>0.13229<br>0.146012<br>0.165786                | к<br>interior_alph<br>0.073168<br>0.02224<br>0.036088<br>0.040988<br>0.040988<br>0.040988<br>0.040988<br>0.040988<br>0.040988<br>0.040982<br>0.040982<br>0.05487<br>0.054842<br>0.054842<br>0.053934<br>0.033934<br>0.033934<br>0.033936<br>0.093967<br>0.026716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L M<br>beta islet_info<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1                                                                                                                                                                                                                                                                                                                           | N<br>prmation<br>61373<br>61058<br>52942<br>17306<br>66959<br>153610<br>17970<br>56860<br>53931<br>794072<br>23346<br>28370<br>48511<br>23601<br>53941<br>53941<br>53941                                               | O<br>6499<br>3291<br>3964<br>2165<br>4485<br>11017<br>2860<br>5541<br>2835<br>6085<br>8775<br>3144<br>2132<br>2169<br>2988<br>3885<br>3885<br>4694                 | P<br>54<br>37<br>39<br>18<br>54<br>99<br>17<br>39<br>26<br>6<br>49<br>56<br>15<br>23<br>19<br>13<br>31<br>31<br>33                                    | Q<br>2812<br>828<br>1101<br>433<br>2265<br>7266<br>770<br>2593<br>1113<br>1731<br>2791<br>1731<br>2791<br>1735<br>616<br>24<br>1261<br>2230<br>616<br>24<br>52                       | R<br>222<br>100<br>111<br>4<br>225<br>664<br>4<br>133<br>8<br>8<br>14<br>221<br>4<br>7<br>7<br>1<br>4<br>9<br>9<br>16<br>100                                                                                                                                                                   | S<br>Islet_2<br>Islet_2<br>Islet_2 | T<br>23730<br>1591<br>1184 | U<br>770<br>0<br>319 | v<br>12<br>0      |  |
| A<br>ge_name<br>J.jpg<br>2.jpg<br>3.jpg<br>4).jpg<br>5.jpg<br>5.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.jpg<br>3.j | B   total_slet_tc   61373   61058   52942   17306   90689   153610   55931   55578   94072   23346   23354   14511   23601   53941   53941   53941   53941   53941   53941   53941   53947   38705   66268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C<br>ttal_alph to<br>6499<br>3291<br>3964<br>2165<br>5255<br>11017<br>2860<br>5541<br>2885<br>68775<br>3144<br>2451<br>2169<br>2988<br>3885<br>4694<br>4046<br>66555                   | D tal_alph in 54 37 39 166 99 17 39 26 49 56 15 26 19 13 31 31 33 31 33 38 51                                                                                              | E 2812<br>828<br>1101<br>483<br>2345<br>7286<br>7286<br>7286<br>7286<br>7280<br>2593<br>1113<br>1731<br>2791<br>755<br>616<br>24<br>1265<br>2230<br>652<br>2230                                         | F<br>tterior_a.<br>22<br>20<br>111<br>4<br>4<br>4<br>7<br>64<br>4<br>4<br>7<br>1<br>1<br>4<br>7<br>1<br>1<br>9<br>16<br>0<br>10                                                                                                                                                                                                   | G<br>alpha_cel<br>0.105893<br>0.074874<br>0.125101<br>0.057945<br>0.071721<br>0.159154<br>0.092745<br>0.09289<br>0.09289<br>0.09288<br>0.149473<br>0.126605<br>0.072023<br>0.0778924<br>0.100426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H<br>interior_a<br>0.045818<br>0.012590<br>0.022796<br>0.022790<br>0.022858<br>0.042849<br>0.042603<br>0.042849<br>0.042603<br>0.022659<br>0.022659<br>0.031089<br>0.022659<br>0.01654<br>0.023652<br>0.016845<br>0.016845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i<br>beta_cell,<br>0.626204<br>0.699748<br>0.576272<br>0.68092<br>0.453128<br>0.453128<br>0.453128<br>0.453128<br>0.612743<br>0.640538<br>0.56862<br>0.56862<br>0.56862<br>0.566053<br>0.640533<br>0.640533                                                                         | J<br>alpha_bet<br>0.169104<br>0.29929<br>0.183724<br>0.129279<br>0.192774<br>0.147496<br>0.073428<br>0.0262488<br>0.152233<br>0.220455<br>0.135019<br>0.220673<br>0.222653<br>0.113229<br>0.146012<br>0.1136786<br>0.213363  | K<br>interior_alph<br>0.073168<br>0.02224<br>0.036088<br>0.04587<br>0.104676<br>0.051901<br>0.045827<br>0.04542<br>0.051901<br>0.04542<br>0.003216<br>0.033934<br>0.003216<br>0.038669<br>0.09397<br>0.036699<br>0.052999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L M<br>beta islet_info<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1<br>islet_1                                                                                                                                                                                                                                                                                                                           | N<br>61373<br>61058<br>52942<br>17366<br>66959<br>153610<br>17976<br>56860<br>53931<br>54067<br>23346<br>28170<br>14511<br>28601<br>53941<br>28170<br>14511<br>259475<br>38705                                         | O<br>6499<br>3291<br>3964<br>2165<br>4485<br>11017<br>2860<br>5541<br>2835<br>6085<br>8775<br>3144<br>2132<br>2169<br>2988<br>3885<br>3885<br>4694<br>4046<br>6655 | P<br>54<br>37<br>39<br>18<br>54<br>99<br>17<br>39<br>26<br>55<br>55<br>23<br>19<br>13<br>31<br>33<br>13<br>33<br>8<br>51                              | Q<br>2812<br>828<br>1101<br>483<br>2265<br>7286<br>7786<br>7786<br>7783<br>11113<br>1731<br>2791<br>755<br>616<br>24<br>1265<br>2230<br>655<br>2230                                  | R<br>222<br>100<br>111<br>4<br>4<br>55<br>64<br>4<br>4<br>3<br>8<br>8<br>14<br>4<br>21<br>14<br>7<br>7<br>7<br>1<br>1<br>4<br>9<br>9<br>16<br>6<br>100<br>11                                                                                                                                   | S<br>Islet_2<br>Islet_2<br>Islet_2 | T<br>23730<br>1591<br>1184 | U<br>770<br>0<br>319 | V<br>12<br>0<br>3 |  |
| A<br>ige_name<br>).jpg<br>2).jpg<br>3).jpg<br>5).jpg<br>5).jpg<br>6).jpg<br>0).jpg<br>1).jpg<br>1).jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg<br>1.jpg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B<br>tctal_islet_tc<br>61373<br>61058<br>52942<br>17306<br>90689<br>90689<br>153610<br>17970<br>56860<br>23354<br>23354<br>23354<br>143511<br>23601<br>53941<br>53941<br>539475<br>38705<br>66268<br>35575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C tal_alph to<br>6499 3291 3964 2165 5255 11017 2860 5541 2835 6085 8775 3144 2451 2169 2988 3885 4694 466 6655 3174                                                                   | D tal_alph inn<br>54<br>37<br>39<br>18<br>66<br>99<br>17<br>39<br>26<br>49<br>56<br>49<br>56<br>15<br>26<br>15<br>26<br>15<br>13<br>31<br>43<br>31<br>43<br>38<br>51<br>32 | E terior_a in<br>2812<br>828<br>1101<br>483<br>2345<br>7786<br>7786<br>7786<br>7786<br>7786<br>7786<br>7786<br>778                                                                                      | F<br>22<br>10<br>11<br>4<br>27<br>64<br>4<br>13<br>8<br>8<br>4<br>14<br>13<br>8<br>8<br>4<br>14<br>12<br>1<br>4<br>4<br>7<br>1<br>1<br>4<br>9<br>16<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>11<br>14<br>27<br>27<br>10<br>10<br>11<br>14<br>14<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19 | G<br>alpha_cell<br>0.105893<br>0.074874<br>0.125101<br>0.071745<br>0.07745<br>0.09745<br>0.09745<br>0.09745<br>0.09289<br>0.09288<br>0.13467<br>0.093498<br>0.149473<br>0.126605<br>0.072023<br>0.078924<br>0.149473<br>0.126605<br>0.078924<br>0.149473<br>0.149473<br>0.149473<br>0.149473<br>0.149473<br>0.149473<br>0.149473<br>0.149473<br>0.149473<br>0.149473<br>0.149473<br>0.149474<br>0.149474<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.14944<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.149444<br>0.1494444<br>0.14944444444444444444444444444444444444 | H<br>interior<br>0.045818<br>0.013561<br>0.027909<br>0.027858<br>0.027618<br>0.0245603<br>0.021654<br>0.031689<br>0.031689<br>0.031689<br>0.031654<br>0.031654<br>0.031654<br>0.031654<br>0.031655<br>0.031654<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.031655<br>0.0316555<br>0.0316555<br>0.0316555<br>0.031655555<br>0.031655555<br>0.0316555555555555555555555555555555555555 | 1<br>beta_cell<br>0.626204<br>0.609748<br>0.576272<br>0.68092<br>0.453128<br>0.453128<br>0.453128<br>0.640538<br>0.612743<br>0.640538<br>0.612743<br>0.640538<br>0.612743<br>0.640538<br>0.6128417<br>0.540538<br>0.636084<br>0.54053<br>0.636084<br>0.54053<br>0.636054<br>0.54053 | J<br>alpha_bet<br>0.169304<br>0.129329<br>0.183724<br>0.129279<br>0.192774<br>0.137428<br>0.262488<br>0.262488<br>0.352233<br>0.210245<br>0.152233<br>0.210245<br>0.1322653<br>0.113229<br>0.1430456<br>0.213363<br>0.149456 | к<br>interior_alph<br>0.073168<br>0.02224<br>0.036088<br>0.04587<br>0.04587<br>0.04587<br>0.045827<br>0.045827<br>0.045827<br>0.045827<br>0.045827<br>0.045827<br>0.04582<br>0.032862<br>0.032862<br>0.03364<br>0.03364<br>0.03364<br>0.039364<br>0.069367<br>0.069367<br>0.069367<br>0.0693716<br>0.069399<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.0651467<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055145<br>0.055       | L M<br>1 beta islet_inform<br>1 beta islet_1<br>1 blet_1<br>1 bl                                                                                                                                                                                                                                                                                                                                                                        | N<br>prmation<br>61373<br>51058<br>52942<br>17306<br>66959<br>153610<br>17970<br>56860<br>53931<br>54087<br>94072<br>23346<br>28170<br>14511<br>12510<br>12514<br>12511<br>12511<br>539475<br>538705<br>66268<br>35576 | 0<br>6499<br>3291<br>3964<br>2165<br>4485<br>5541<br>2835<br>6085<br>8775<br>3144<br>2132<br>2189<br>2988<br>3885<br>4694<br>4046<br>6655<br>3174                  | P<br>54<br>37<br>39<br>18<br>54<br>99<br>17<br>7<br>39<br>9<br>26<br>49<br>26<br>56<br>55<br>55<br>55<br>15<br>23<br>19<br>13<br>31<br>43<br>38<br>51 | Q<br>2812<br>828<br>1101<br>433<br>2265<br>7728<br>7728<br>7753<br>1113<br>1731<br>2791<br>2791<br>1735<br>616<br>24<br>1261<br>1265<br>24<br>1261<br>1265<br>2219<br>652<br>1093    | R<br>222<br>100<br>111<br>4<br>255<br>64<br>4<br>133<br>8<br>8<br>4<br>4<br>13<br>14<br>4<br>21<br>4<br>7<br>11<br>4<br>4<br>9<br>9<br>16<br>100<br>101<br>11<br>4<br>8<br>8<br>8<br>8<br>8<br>14<br>4<br>8<br>8<br>14<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | S<br>Islet_2<br>Islet_2<br>Islet_2 | T<br>23730<br>1591<br>1184 | U<br>770<br>0<br>319 | V<br>12<br>0<br>3 |  |



can be downloaded free of charge at the following address: http://www.irp.nia.nih.gov/bioinformatics/pancreas++.html

#### PERFORMANCE

Our software requires sufficient amounts of free computer memory to compute, e.g., for  $512 \times 512$  images, the program requires about 467 MB of random access memory. The program typically processes about four  $512 \times 512$  images per second using 64-bit Windows 7, a 2.40 GHz processor, and 8GB of random access memory. The time-complexity of the algorithm outlined above is  $O(n^3)$ .

#### **VALIDATION OF ACCURACY**

To validate our algorithm's computational accuracy, Pancreas++ was tested on 75 microscopy images. The images were taken to represent a dataset with a high image content variance to test the program's robustness ("image resilience"). As a comparative reference, manual quantification of the interior islet alpha-cells was also performed. Disambiguation between exterior and interior islets during manual quantification was subjectively determined. The manually counted results were then compared to the results obtained by our algorithm for validation purposes. The results from the comparison are reported in Figure 3. Figure 3 displays a scatterplot of the interior alpha-cell count computed by both automated and manual methods. The slope and intercept coefficients obtained by linear regression are 0.9777 and 0.0206, respectively. The above-zero value of the intercept coefficient indicates a slight overestimation of interior alpha-cells on average. The Pearson Correlation coefficient was computed to be 0.9909, indicating a high degree of correlation between the two methods. A Chi-square test for goodness of fit yielded a

p-value of  $1.7 \times 10^{-7}$ , further indicating a deterministic relation between manual counting and the proposed algorithm. The average absolute and relative errors between the two methods were 0.8310 and 0.0158, respectively. Therefore, our automated method can reproduce the accuracy of an experienced molecular biologist but in a mere fraction of the time required. *Pancreas*++ was able to generate nuanced (e.g., calculation of interior alpha-cell counts and interior alpha-cell to beta-cell ratios) and accurate numerical pancreatic islet cellular data in a matter of seconds, compared to manual counting that requires hours of dedicated viewing.

#### **APPLICATION IN BIOLOGICAL EXPERIMENTS**

In addition to application with murine islet images, we also tested the performance of Pancreas++ with non-murine pancreatic images, e.g., primate and human (Figure 4). In a similar manner to its performance with murine islets, Pancreas++ was able to extract islet morphology and cell type specific information from both primate and human images. In biomedical experiments, the comparison of treated group with un-treated control group or the pathological tissue with normal tissue is of vital clinical and experimental importance. In order to demonstrate the accuracy and efficiency of Pancreas++ in a pathophysiological setting, we used different methods to quantify and compare pancreatic islet morphology of mice fed a control chow diet with ones fed a deleterious HFG diet (Figure 5). HFG diets cause a metabolic shift from euglycemic states to pathophysiological conditions associated with Type II diabetes. In this pathological state we compared the speed of multiple image analysis between Pancreas++, Image J-assisted manual counting, and our MATLAB-based process (20 images in each group



were analyzed). We found that for total information processing for the input images Pancreas++ was significantly (p < 0.01)faster than the other two approaches (Figure 5C). As shown in **Figures 5D–H** (using *Pancreas*++), the mice fed with HFG diet had significantly increased pancreatic islet size, alpha-cell size, alpha-cells, but similar alpha-cell percentage and beta-cell percentage respectively compared with mice fed with the control diet. The same pattern of islet morphological differences between these two groups was also obtained by quantifying the same images using the MATLAB (Figures 5I-M) or the manual method (Figures 5N-R). The accuracy and efficiency of Pancreas++ was also assessed by quantifying and comparing normal and diabetic primate pancreatic islet images (Figure 6). Diabetic primates exhibited significantly increased alpha-cell numbers (Figure 6F), total alpha-cell size (Figure 6E), alpha-cell percentage (Figure 6G), decreased beta-cell percentage (Figure 6H), but similar islet size (Figure 6D) compared with normal primates.

The same pattern of differences between normal and diabetic primates was also obtained by quantifying the same images using the MATLAB (**Figures 6I–M**) or the manual counting method (**Figures 6N–R**).

#### **DISCUSSION**

In creating *Pancreas*++, we have developed a novel method for the fully automated quantification of islet area, alpha-cell area, quantity, and beta-cell percentage based on pancreatic microscopy images. The proposed algorithm uses active contour models to quantify images accurately and quickly, resulting in an output in an easy-to-read tabular format. *Pancreas*++ can distinguish between relevant pixels and noise, process multiple islets within the same image, and function without the aid of user interaction. The results from the program were validated against the "gold standard" of manual counting of interior islets. Results from the validation suggested that while significantly reducing the quantification time

![](_page_6_Figure_2.jpeg)

high glucose (HFG) diet using *Pancreas++*, MATLAB, and manual method. (A,B) Are representative images of pancreatic islet from mice on control and HFG diets respectively. (C) Shows the time that *Pancreas++*, MATLAB, and manual method take to analyze the same images. The mice on HFG diet had significantly higher total islet area (D), total alpha-cell area (E), total alpha-cell numbers (F), but similar alpha-cell percentage (G) and beta-cell percentage (H) compared to the mice on control diet analyzed by

*Pancreas*++. Islet area (I); total alpha-cell area (J); total alpha-cell numbers (K); alpha-cell percentage (L); beta-cell percentage (M) of mice on control; and HFG diet analyzed by MATLAB showed the same pattern as the results analyzed by *Pancreas*++. Also islet area (N); total alpha-cell area (O); total alpha-cell numbers (P); alpha-cell percentage (Q); beta-cell percentage (R) of mice on control and HFG diet analyzed by manual methods showed the same pattern as the results analyzed by *Pancreas*++. Data are means  $\pm$  SEM. \*\* $p \leq 0.01$ , n = 10/group.

compared to manual counting, a high degree of correlation to this standard procedure and a very low error rate was generated. Our novel algorithm allows biologists to not only quantify cell count and area, but also to detect the presence of interior alpha-cells, an indicator of the potential pathophysiological abnormality of a murine pancreatic islet. We also demonstrated the application of Pancreas++ in biological pancreatic experiments with divergent species, e.g., primate and human. Our program was able to generate the same results as those obtained using either the MATLAB-based program or with manual counting assisted with Image J. However the batch processing time of Pancreas++ to obtain total islet area, total alpha-cell area, total alpha-cell count, interior alpha-cell area, interior alpha-cell count, alpha-cell percentage, interior alpha-cell percentage, beta-cell percentage, alphacell to beta-cell ratio, and interior alpha-cell to beta-cell ratio was significantly less than the other approaches tested. In these tests

even with the increased processing speed, no significant loss of information retrieval accuracy was noted. Automated quantification algorithms greatly reduce user bias and allow biologists to rapidly process large amounts of biomedical images. However it is prudent for researchers already employing a different islet quantification process to personally validate, using the "gold standard" of manual counting, their own data with the automated output of Pancreas++. We therefore recommend a thorough "in-house" validation and quality control of image size, pixel density, dye selection, confocal microscope settings and image type before any large-scale, automated implementation of Pancreas++ in a new experimental setting. Our novel algorithm allows biologists to not only quantify cell count and area, but also to detect the presence of interior alpha-cells, an indicator of the potential abnormality of a pancreatic islet in murine tissue. Accurate, unbiased extraction of information on both the quality and quantity of endocrine cells

![](_page_7_Figure_2.jpeg)

FIGURE 6 | Analysis of pancreatic islets from normal and diabetic primates using *Pancreas++*, MATLAB and manual method. (A,B) Are representative images of pancreatic islets from normal and diabetic primates respectively. (C) Shows the time that *Pancreas++*, MATLAB, and manual method take to analyze the same images. The diabetic primate had significantly higher total alpha-cell area (E); total alpha-cell numbers (F); alpha-cell percentage (G), lower beta-cell percentage (H), but similar islet area (D) compared to the normal primate analyzed by *Pancreas++*. Islet area (I); total alpha-cell area (J); total alpha-cell numbers (K); alpha-cell percentage (L); beta-cell percentage (M) of normal and diabetic primate analyzed by MATLAB showed the same pattern as the results analyzed by *Pancreas*++. Also islet area (N); total alpha-cell area (O); total alpha-cell numbers (P); alpha-cell percentage (Q); beta-cell percentage (R) of normal and diabetic primates analyzed by manual methods showed the same pattern as the results analyzed by *Pancreas*++. Data are means  $\pm$  SEM. \*\* $p \le 0.01$ , n = 10/group.

in microscopy images may help scientists develop an increased understanding of metabolism and metabolic disorders in the future.

#### REFERENCES

- Cai, H., Cong, W. N., Ji, S., Rothman, S., Maudsley, S., and Martin, B. (2012). Metabolic dysfunction in Alzheimer's disease and related neurodegenerative disorders. *Curr. Alzheimer Res.* 9, 5–17.
- Clark, A., Wells, C. A., Buley, I. D., Cruickshank, J. K., Vanhegan, R. I., Matthews, D. R., et al. (1988). Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis:

quantitative changes in the pancreas in type 2 diabetes. *Diabetes Res.* 9, 151–159.

- Cohen, L. D. (1991). On active contour models and balloons. Comput. Vis. Graph. Image Process. 53, 211–218.
- Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J. (1995). Active shape models – their training and application. *Comput. Vis. Image Underst.* 61, 38–59.

## ACKNOWLEDGMENTS

This work was supported by the Intramural Research Program of the National Institute on Aging, National Institutes of Health.

- Gepts, W. (1965). Pathologic anatomy of the pancreas in juvenile diabetes mellitus. *Diabetes* 14, 619–633.
- Huang, C., Snider, F., and Cross, J. C. (2009). Prolactin receptor is required for normal glucose homeostasis and modulation of beta-cell mass during pregnancy. *Endocrinol*ogy 150, 1618–1626.
- Jain, R., and Lammert, E. (2009). Cellcell interactions in the endocrine

pancreas. Diabetes Obes. Metab. 11, 159–167.

- Karnik, S. K., Chen, H., McLean, G. W., Heit, J. J., Gu, X., Zhang, A. Y., et al. (2007). Menin controls growth of pancreatic beta-cells in pregnant mice and promotes gestational diabetes mellitus. *Science* 318, 806–809.
- Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: active contour models. *Int. J. Comput. Vis.* 1, 321–331.

- Kim, W., Doyle, M. E., Liu, Z., Lao, Q., Shin, Y. K., Carlson, O. D., et al. (2011). Cannabinoids inhibit insulin receptor signaling in pancreatic beta-cells. *Diabetes* 60, 1198–1209.
- Marchetti, P., Dotta, F., Lauro, D., and Purrello, F. (2008). An overview of pancreatic beta-cell defects in human type 2 diabetes: implications for treatment. *Regul. Pept.* 146, 4–11.
- Martin, B., Chadwick, W., Cong, W. N., Pantaleo, N., Daimon, C. M., Golden, E. J., et al. (2012). Euglycemic agent-mediated hypothalamic transcriptomic manipulation in the N171-82Q model of Huntington's disease is related to their physiological efficacy. J. Biol. Chem. 231766–31782.
- Martin, B., Ji, S., Maudsley, S., and Mattson, M. P. (2010). "Control" laboratory rodents are metabolically morbid: why it matters. *Proc. Natl. Acad. Sci. U.S.A.* 107, 6127–6133.
- Martin, B., Pearson, M., Brenneman, R., Golden, E., Keselman, A., Iyun, T., et al. (2008). Conserved

and differential effects of dietary energy intake on the hippocampal transcriptomes of females and males. *PLoS ONE* 3:e2398. doi:10.1371/journal.pone.0002398

- Matveyenko, A. V., and Butler, P. C. (2008). Relationship between betacell mass and diabetes onset. *Diabetes Obes. Metab.* 10(Suppl. 4), 23–31.
- Parsons, J. A., Brelje, T. C., and Sorenson, R. L. (1992). Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. *Endocrinology* 130, 1459–1466.
- Sherry, N. A., Kushner, J. A., Glandt, M., Kitamura, T., Brillantes, A. M., and Herold, K. C. (2006). Effects of autoimmunity and immune therapy on beta-cell turnover in type 1 diabetes. *Diabetes* 55, 3238–3245.
- Siddiqui, S., Fang, M., Ni, B., Lu, D., Martin, B., and Maudsley, S. (2012). Central role of the EGF receptor

in neurometabolic aging. *Int. J. Endocrinol.* 2012, 739428.

- Sorenson, R. L., and Brelje, T. C. (1997). Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. *Horm. Metab. Res.* 29, 301–307.
- Sorenson, R. L., and Brelje, T. C. (2009). Prolactin receptors are critical to the adaptation of islets to pregnancy. *Endocrinology* 150, 1566–1569.
- Sreenan, S., Pick, A. J., Levisetti, M., Baldwin, A. C., Pugh, W., and Polonsky, K. S. (1999). Increased betacell proliferation and reduced mass before diabetes onset in the nonobese diabetic mouse. *Diabetes* 48, 989–996.
- Van Assche, F. A., Aerts, L., and De Prins, F. (1978). A morphological study of the endocrine pancreas in human pregnancy. Br. J. Obstet. Gynaecol. 85, 818–820.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 17 October 2012; accepted: 09 December 2012; published online: 03 January 2013.

Citation: Chen H, Martin B, Cai H, Fiori JL, Egan JM, Siddiqui S and Maudsley S (2013) Pancreas++: automated quantification of pancreatic islet cells in microscopy images. Front. Physio. **3**:482. doi: 10.3389/fphys.2012.00482

This article was submitted to Frontiers in Systems Biology, a specialty of Frontiers in Physiology.

Copyright © 2013 Chen, Martin, Cai, Fiori, Egan, Siddiqui and Maudsley. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.