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In addition to containing highly dynamic nanoscale domains, the plasma membranes

of many cell types are decorated with caveolae, flask-shaped domains enriched in the

structural protein caveolin-1 (Cav1). The importance of caveolae in numerous cellular

functions and processes has become well-recognized, and recent years have seen

dramatic advances in our understanding of how caveolae assemble and the mechanisms

control the turnover of Cav1. At the same time, work from our lab and others have

revealed that commonly utilized strategies such as overexpression and tagging of Cav1

have unexpectedly complex consequences on the trafficking and fate of Cav1. Here, we

discuss the implications of these findings for current models of caveolae biogenesis and

Cav1 turnover. In addition, we discuss how disease-associated mutants of Cav1 impact

caveolae assembly and outline open questions in this still-emerging area.

Keywords: caveolae, caveolin-1, GFP, trafficking, degradation, breast cancer, pulmonary arterial hypertension,

congenital generalized lipodystrophy

INTRODUCTION

In addition to containing nanoclusters of proteins and lipids, the surface of many cell types also
contain relatively stable flask-shaped invaginations that are 50–100 nm in diameter known as
caveolae. Initially discovered nearly 60 years ago in the plasma membranes of endothelial cells
of blood capillaries by electron microscopy, caveolae have been a target of scientific investigation
for decades (Palade, 1953). The discovery of the first caveolae-associated protein caveolin-1 (Cav1)
almost 40 years after the discovery of caveolae has greatly facilitated research into the structural and
functional aspects of caveolae (Kurzchalia et al., 1992; Rothberg et al., 1992). To date, caveolae have
been identified in a variety of tissues and cell types including endothelial cells, smooth muscle cells,
fibroblasts, myoblasts, and adipocytes, among others (Hansen et al., 2013; Parton and del Pozo,
2013), and the importance of a series of accessory proteins in sculpting caveolae and regulating their
dynamics is also now recognized (Hill et al., 2008; Hansen and Nichols, 2010; Hansen et al., 2011;
Moren et al., 2012; Stoeber et al., 2012; Ariotti and Parton, 2013; Ludwig et al., 2013; Kovtun et al.,
2014, 2015). It is also now clear that once formed, caveolae can flatten in response to membrane
stretch and thus serve as membrane reservoirs (Gervasio et al., 2011; Sinha et al., 2011).

Unlike the more controversial case of lipid rafts (Owen et al., 2012; Kraft, 2013; LaRocca et al.,
2013; Sevcsik and Schutz, 2016), caveolae are relatively stable structures and also thus readily
detectable by conventional fluorescence and electron microscopy approaches. In addition, their
presence in cells absolutely depends on the expression of Cav1, making them amenable to a range of
biochemical and biophysical analyses as well as studies in animal models (Drab et al., 2001; Razani
et al., 2001; Le Lay and Kurzchalia, 2005). Through these varied approaches, the importance of
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caveolae in numerous cellular functions and processes has
become well-recognized, and are thought to include roles
in signal transduction, endocytosis, pathogen invasion, lipid
homeostasis, and mechanotransduction (Parton and Simons,
2007; Hansen andNichols, 2010; Ariotti and Parton, 2013; Parton
and del Pozo, 2013; Cheng and Nichols, 2016). Furthermore,
Cav1 and other caveolins have been implicated several
pulmonary and vascular diseases, myopathies, lipodystrophies,
and cancers (Hayashi et al., 2001; Razani and Lisanti, 2001;
Cao et al., 2008; Kim et al., 2008; Mercier et al., 2009; Austin
et al., 2012; Ariotti and Parton, 2013; Garg et al., 2015;
Martinez-Outschoorn et al., 2015).

Given the importance of caveolae in both health and disease,
it is critical to gain a clear understanding of how caveolae
form and the mechanisms responsible for the turnover of
their components. In this mini-review, we summarize current
knowledge in these areas, including the unexpectedly complex
consequences that overexpression and tagging of Cav1 can have
on the trafficking and fate of Cav1 and caveolae biogenesis.
In addition, we discuss how disease-associated mutants of
Cav1 impact caveolae assembly and turnover and outline open
questions in this emerging area.

WHAT CONDITIONS ARE NECESSARY
FOR CAVEOLAE TO FORM CORRECTLY?

It is widely accepted that the assembly of caveolae requires
the expression of Cav1 (Drab et al., 2001; Razani et al., 2001).
A 178 amino acid-long protein, Cav1 is anchored to the
membrane by an intra-membrane region that assumes a hairpin-
like topology. The Cav1 protein contains four domains: the
N-terminal domain (residues 1-81), scaffolding domain (CSD,
residues 82-101), transmembrane domain (TMD, residues 102-
134), and C-terminal domain (residues 135-178) (Root et al.,
2015). The transmembrane domain is composed of two α-helices
separated by three residue linker region containing a proline
(P110) that induces a∼50◦ angle between the two α-helices (Root
et al., 2015). This allows Cav1 to adopt a hairpin topology in
the lipid bilayer such that both N- and C- termini are exposed
to the cytoplasmic interior of the cell (Root et al., 2015). To
date, however, the three dimensional structure of Cav1 remains
unknown.

Cav1 is synthesized in the endoplasmic reticulum and
undergoes a complicated series of oligomerization and trafficking
events well before reaching the plasma membrane (Figure 1).
Newly synthesized Cav1 is quickly organized into Cav1/Cav2
(caveolin-2) hetero-oligomers that contains 14-16 monomers
(Monier et al., 1995; Sargiacomo et al., 1995) and partition
as an 8S complex on sucrose gradients (Hayer et al., 2010a).
This 8S-oligomerization step appears to be pivotal for the
proper assembly of caveolae, because forms of Cav1 that fail to
oligomerize are unable to independently assemble into caveolae
(Mora et al., 1999; Lee et al., 2002; Ren et al., 2004; Shatz et al.,
2010). Thereafter, 8S complexes are transported to the Golgi
complex in a COPII-dependent mechanism where they serve
as the subunits necessary for the assembly of filament-like 70S

complexes that become enriched in cholesterol and lose their
diffusional mobility. The cholesterol-rich membranes containing
70S Cav1 complexes are then transported to the cell surface
(Hayer et al., 2010a).

At the plasma membrane, several accessory proteins are
subsequently recruited to caveolin complexes to facilitate
caveolae formation and assist in sculpting caveolar membranes
as well as regulate caveolae dynamics. They include members of
the cavin gene family, pacsin-2, and EHD-2 (Aboulaich et al.,
2004; Hill et al., 2008; Hansen and Nichols, 2010; Hansen et al.,
2011; Moren et al., 2012; Stoeber et al., 2012; Ariotti and Parton,
2013; Ludwig et al., 2013; Kovtun et al., 2014, 2015). Cavin-1
plays an important role in forming caveolae, as cavin-1 knock-
down significantly reduces caveolae number in both mammalian
cells and zebrafish (Hill et al., 2008) and cavin-1 knockout
mice lack caveolae altogether (Liu et al., 2008). Additional cavin
family members have also been identified, and recent studies
have elucidated the organization and structure of multiple cavin-
containing complexes (Hayer et al., 2010a; Ludwig et al., 2013;
Gambin et al., 2014; Kovtun et al., 2014, 2015). These findings
have been reviewed in detail elsewhere (Kovtun et al., 2015) and
will not be discussed further here. EHD-2 is thought to help
confine caveolae and reduce mobility at the plasma membrane
through interactions with actin (Moren et al., 2012; Stoeber
et al., 2012). Pacsin-2, which contains a membrane curvature-
associated F-BAR domain, has also been reported to be recruited
to and assist in sculpting caveolae (Hansen et al., 2011; Senju
et al., 2011). Furthermore, post-translational modifications of
Cav1 such as palmitoylation and phosphorylation also regulate
steps in caveolae assembly and caveolae structure (Monier et al.,
1996; Nomura and Fujimoto, 1999; Zimnicka et al., 2016).
However, expression of Cav1 in a bacterial expression system can
drive the formation of heterologous caveolae. Thus, Cav1 itself
is capable of inducing membrane curvature in some membrane
environments, even without the help of accessory proteins
(Walser et al., 2012; Ariotti et al., 2015).

The use of fluorescent protein-tagged forms of Cav1 has made
it possible to assess caveolae biogenesis and dynamics. Such
experiments have often been carried out by expressing low levels
of Cav1 in Cav1−/− mouse embryonic fibroblasts (Kirkham
et al., 2008; Ariotti et al., 2015) or more recently at endogenous
expression levels in genome-edited cell lines (Shvets et al., 2015).
However, a large literature also exists where Cav1 has been
studied in the context of overexpression systems. One potential
caveat of such studies is that both overexpression and tagging
strategies can interfere with caveolae biogenesis (Parton and del
Pozo, 2013). For example, it has been reported that in some cell
types, after a few hours of expression overexpressed Cav1 fails to
co-localize with endogenous Cav1, implying that exogenous Cav1
is not always incorporated into caveolae (Hayer et al., 2010b).
Indeed, caveolin-enriched organelles termed “caveosomes” were
later shown to arise as a consequence of the accumulation of
overexpressed caveolin in late endosomal structures (Pelkmans
et al., 2001; Hayer et al., 2010b).

Studies from our own group further have revealed that
the behavior of overexpressed Cav1 also depends on the
type of the tag (Hanson et al., 2013; Han et al., 2015). In
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FIGURE 1 | Current model of caveolae biogenesis. (Left) Newly synthesized wild type Cav1 undergoes a series of oligomerization events as it passes through the

secretory pathway. At the plasma membrane, accessory proteins interact with Cav1 complexes to form mature caveolae. (Right) In contrast, a breast-cancer

associated mutant of Cav1, Cav1-P132L, is unable to oligomerize correctly and accumulates in the Golgi complex, where it is likely targeted for degradation. For

simplicity, not all caveolae accessory proteins are illustrated here.

COS-7 cells, for example, Cav1-GFP strongly accumulates in
a perinuclear compartment (Hanson et al., 2013) in the form
of irregular aggregates that contain little if any endogenous
Cav1 (Han et al., 2015). The behavior of Cav1-mCherry differs
dramatically from that of Cav1-GFP in the same cell line, both
in terms of its subcellular localization (Hanson et al., 2013)
and biochemical properties (Han et al., 2015). Furthermore,

the degree to which Cav1-GFP accumulates intracellularly
depends on the cell type in which it is expressed (Hanson
et al., 2013). Thus, the ability of Cav1 to form oligomers
and traffic correctly to the plasma membrane is heavily
dependent on how the protein is tagged as well as the cellular
environment, pointing to the exquisitely sensitive nature of
caveolae assembly.
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WHAT MECHANISMS ARE RESPONSIBLE
FOR THE TURNOVER OF CAV1 AND
CAVEOLAE?

Cav1 is known to be a relatively long-lived protein; estimates of
the half-life of endogenous Cav1 from metabolic labeling studies
range from 5 to 36 h (Conrad et al., 1995; Forbes et al., 2007;
Hayer et al., 2010b). Turnover of Cav1 is accelerated under
conditions that compromise caveolar assembly and/or destabilize
70S caveolar scaffolds (Hayer et al., 2010b). Under these
conditions, Cav1 is ubiquitinated and targeted to endosomal
sorting complex required for transport (ESCRT) machinery via
intraluminal vesicles of multi-vesicular bodies and subsequently
is degraded within lysosomes (Hayer et al., 2010b). Thus, under
these conditions Cav1 behaves as endocytic cargo that is targeted
to early endosomes and follows a classical endocytic pathway
leading to degradation.

More recent evidence has revealed additional cellular
machinery involved in Cav1 turnover by this pathway. One
major contributor is Valosin Containing Protein (VCP/p97),
an AAA-ATPase that functions in processing of ubiquitinated
cellular proteins. Along with its cofactor UBXD1, VCP binds to
monoubiquitinated Cav1 on endosomes and in turn influences
trafficking, endosomal sorting, and degradation of Cav1 (Ritz
et al., 2011). The ubiquitination events required for targeting
Cav1 into this pathway occur at the N-terminal region of the
protein (Kirchner et al., 2013). Turnover of ubiquitinated Cav1
is aided by the Ankrd13 proteins, which contain a ubiquitin
interactingmotif that bind to polyubiquinated Cav1 oligomers on
endosomes (Burana et al., 2016).While these studies have defined
a distinct pathway that controls the turnover of Cav1, there are
hints in the literature that additional machinery and mechanisms
involved in Cav1 turnover remain to be discovered (Austin et al.,
2012; Bakhshi et al., 2013; Cha et al., 2015; Mougeolle et al., 2015;
Schrauwen et al., 2015).

HOW DO DISEASE-ASSOCIATED
MUTATIONS AFFECT CAVEOLAE
ASSEMBLY AND TURNOVER?

Cav1 has been implicated as a key player in a number of human
diseases, and several disease-associated mutations in Cav1 have
been identified (Hayashi et al., 2001; Razani and Lisanti, 2001;
Cohen et al., 2004; Cao et al., 2008; Kim et al., 2008; Mercier
et al., 2009; Austin et al., 2012; Ariotti and Parton, 2013; Garg
et al., 2015; Martinez-Outschoorn et al., 2015). Perhaps the best
known example is Cav1-P132L, originally identified as a somatic
mutation associated with breast cancer (Hayashi et al., 2001).
Although, the frequency with which this mutation occurs in
humans has been highly debated (Hayashi et al., 2001; Lee et al.,
2002; Koike et al., 2010; Lacroix-Triki et al., 2010; Ferraldeschi
et al., 2012; Patani et al., 2012), Cav1-P132L has become a useful
model for studying the behavior of mistrafficked forms of Cav1.
This is because unlike wild type Cav1, Cav1-P132L typically
localizes to the perinuclear region in a compartment proposed
to correspond to the Golgi complex and does not form caveolae

(Lee et al., 2002). Furthermore, Cav1-P132L primarily exists as
monomer or dimer instead of the typical oligomers of wild type
Cav1 observed in the cell (Lee et al., 2002; Ren et al., 2004; Hayer
et al., 2010a; Rieth et al., 2012; Han et al., 2015). These features
of Cav1-P132L differ substantially from the behavior of wild type
Cav1 (Figure 1).

Interestingly, Cav1-P132L can also impact the behavior of
wild type Cav1. In one of the earliest studies of Cav1-P132L,
co-expression of Cav1-P132L with wild type Cav1 was shown to
lead to a loss of wild type Cav1’s affinity for detergent resistant
membranes as well as to trap wild type Cav1 together with Cav1-
P132L in a perinuclear compartment. Based on these findings, it
was concluded that Cav1-P132L behaves in a dominant-negative
manner, thereby interfering with caveolae formation (Lee et al.,
2002). However, another study found that when co-expressed
with wild type Cav1, Cav1-P132L had no effect on the localization
of wild type Cav1 in FRT cells even though the mutant protein
was localized in a perinuclear compartment (Ren et al., 2004).
A different group showed that the number of caveolae increased
upon stable expression of Cav1-P132L in H1299 cells, a cell line
derived fromhuman non-small cell carcinoma that endogenously
expresses wild type Cav1 (Shatz et al., 2010). Thus, conflicting
evidence exists as to how Cav1-P132L impacts caveolae assembly
and function.

Why these behaviors of Cav1-P132L differ so much across
studies is not yet clear. One potential clue comes from our
recent observation that simply overexpressing Cav1-GFP causes
a large fraction of the protein to be targeted to a perinuclear
structure in COS-7 cells (Hanson et al., 2013). Furthermore,
forms of Cav1 that were targeted to the plasma membrane
when expressed separately became trapped intracellularly when
they were co-expressed with Cav1-GFP (Hanson et al., 2013).
Thus, in this system Cav1-GFP mimics the dominant negative
trafficking defect originally reported for the Cav1-P123L mutant
(Lee et al., 2002). Further, we observed that the majority of Cav1-
GFP was degraded within 5 h, suggesting it may be improperly
folded and thus targeted for degradation (Hanson et al., 2013).
These findings raise the possibility that the dominant negative
behavior reported for Cav1-P132L might at least in part be the
result of misfolding induced by a combination of tagging and
overexpression. They also raise questions about the identity of
the perinuclear compartment that Cav1-GFP and Cav1-P132L
accumulate in. In the case of Cav1-P132L, this compartment
was originally proposed to correspond to the Golgi complex
(Lee et al., 2002). However, given that perinuclear Cav1-GFP
forms irregular aggregates, another possibility is that Cav1-GFP
associates with aggresomes, structures that form in response to
the accumulation of protein aggregates too large to be degraded
by the proteasome (Wojcik et al., 1996; Johnston et al., 1998;
Kopito, 2000; Garcia-Mata et al., 2002; Hyttinen et al., 2014).
If this is the case, it would have important consequences for
our current understanding of trafficking defects ascribed to
mutant forms of both Cav1 and other caveolin family members,
including a dominant negative P104L mutation in caveolin-
3 associated with muscular dystrophy that corresponds to the
P132L mutation in Cav1 (Carozzi et al., 2002; Sotgia et al., 2003;
Pol et al., 2005; Cai et al., 2009).
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In addition to Cav1-P132L, in recent years several additional
disease-associated mutants of Cav1 have been identified,
including one homozygous null mutation and three heterozygous
frameshift mutations in the Cav1 gene identified in patients
with pulmonary arterial hypertension (PAH), lipodystrophy,
or both (Kim et al., 2008; Austin et al., 2012; Garg et al.,
2015; Schrauwen et al., 2015). The first mutation, c.G112T
(p.E38X), is linked to lipodystrophy and leads to a complete
loss of Cav1 protein expression (Kim et al., 2008). Two
of the frameshift mutations, c.474delA (p.P158P fsX22), and
c.473delC (p.P158H fsX22), generate a novel 21 amino acid-
long C-terminus beyond amino acid position 158 associated
with PAH (Austin et al., 2012). The third non-sense mutation,
c.479_480delTT (p.F160X), introduces a premature stop codon
that results in a truncated mutant protein lacking the last
19 amino acids of wild type Cav1 C-terminus. Interestingly,
this mutation is associated with both PAH and congenital
generalized lipodystrophy (Garg et al., 2015; Schrauwen et al.,
2015).

How these mutant forms of Cav1 contribute to the
development of PAH and/or congenital generalized
lipodystrophy is not yet clear. However, one notable similarity
shared by P158P/H and F160X is that they occur in the distal
C-terminus of Cav1. This domain of Cav1 is thought to be
important for Cav1 homo-oligomerization, Golgi-plasma
membrane trafficking, and DRM association (Song et al., 1997;
Machleidt et al., 2000). Initial studies in patient skin fibroblasts
show that the presence of either P158P fsX22 or the truncation
mutant F160X lead to decreased Cav1 protein levels (Austin
et al., 2012; Schrauwen et al., 2015). It is thus possible that
at least some of the newly identified PAH-associated Cav1
mutants are targeted for degradation, and may also function as
dominant negatives against wild type Cav1. Caveolae assembly
appears to be at least partially preserved for the case of the
F160X mutation (Garg et al., 2015), although pathway analysis
indicates its expression impacts signaling pathways that are
important adipose tissue homeostasis (Schrauwen et al., 2015).
It will be interesting to determine whether caveolae form
correctly for the P158P mutants and whether Cav1 follows
a conventional trafficking and degradative pathway in these
patients.

CONCLUSION

In summary, our understanding of how Cav1 assembles to form
caveolae and is turned over outside of caveolae has increased
tremendously over the past few years, yet is far from complete.
A clear model of caveolae biogenesis has emerged, but additional
work is needed to understand how disease-associated Cav1
mutants impact this process. Indeed, how wild type Cav1 itself
is packed into caveolae is not yet entirely clear. How cells
dispose of Cav1 in response to stress, and whether similar
or different mechanisms are utilized to target various disease-
associated mutants of Cav1 for degradation also remain to
be more fully investigated. Some of these processes may be
mimicked by overexpression of tagged forms of Cav1. Thus,

further investigation of what may at first glance appear to be
an artifact of tissue culture may ultimately reveal mechanisms
that are of physiological and/or pathophysiological importance.
Finally, it is important to recognize that a consensus model for
how caveolae function does not yet exist (Cheng and Nichols,
2016). An important challenge for the future will be to better
understand how abundance and structure of caveolae control
the many functions currently ascribed to this intriguing class of
membrane domains.
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