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The modulation of guard cell function is the basis of stomatal closure, essential for
optimizing water use and CO2 uptake by leaves. Nitric oxide (NO) in guard cells plays
a very important role as a secondary messenger during stomatal closure induced by
effectors, including hormones. For example, exposure to abscisic acid (ABA) triggers a
marked increase in NO of guard cells, well before stomatal closure. In guard cells of
multiple species, like Arabidopsis, Vicia and pea, exposure to ABA or methyl jasmonate
or even microbial elicitors (e.g., chitosan) induces production of NO as well as reactive
oxygen species (ROS). The role of NO in stomatal closure has been confirmed by using NO
donors (e.g., SNP) and NO scavengers (like cPTIO) and inhibitors of NOS (L-NAME) or NR
(tungstate). Two enzymes: a L-NAME-sensitive, nitric oxide synthase (NOS)-like enzyme
and a tungstate-sensitive nitrate reductase (NR), can mediate ABA-induced NO rise in
guard cells. However, the existence of true NOS in plant tissues and its role in guard cell
NO-production are still a matter of intense debate. Guard cell signal transduction leading
to stomatal closure involves the participation of several components, besides NO, such
as cytosolic pH, ROS, free Ca2+, and phospholipids. Use of fluorescent dyes has revealed
that the rise in NO of guard cells occurs after the increase in cytoplasmic pH and ROS. The
rise in NO causes an elevation in cytosolic free Ca2+ and promotes the efflux of cations
as well as anions from guard cells. Stomatal guard cells have become a model system
to study the signaling cascade mechanisms in plants, particularly with NO as a dominant
component. The interrelationships and interactions of NO with cytosolic pH, ROS, and free
Ca2+ are quite complex and need further detailed examination. While assessing critically
the available literature, the present review projects possible areas of further work related
to NO-action in stomatal guard cells.
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INTRODUCTION
Stomatal pores are the gateways for not only transpirational H2O
loss but also entry of CO2 into leaves. Due to such dual role, the
regulation of stomatal aperture, and yet maintenance of open-
ing are essential to keep up the water balance and at the same

Abbreviations: ABA, abscisic acid; ABI1/2, ABA-insensitive protein phosphfa-
tase 2C type 1/2; cPTIO, 2-phenyl-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide;
cADPR, cyclic ADP ribose; CDPK, calcium-dependent protein kinase; CO, carbon
monoxide; CO2, carbon dioxide; cGMP, cyclic guanosine monophosphate; DAO,
diamine oxidase; DGK, diacylglycerol kinase; DAF-2DA, 4,5-diaminofluorescein
diacetate; DAG, diacylglycerol; ExtCaM, extra cellular calmodulin; flg22, flagellin
22; GSNO, S-nitrosoglutathione; GAPDH, glyceraldehyde-3-phosphate dehydro-
genase; GSH, glutathione; H2S, hydrogen sulfide; H2O2, hydrogen peroxide;
MAPK, mitogen-activated protein kinase; MJ, methyl jasmonate; L-NNA, Nω-
nitro-L-arginine; L-NAME, N-nitro-L-arginine methyl ester; NR, nitrate reductase;
NADPH, Nicotinamide adenine dinucleotide phosphate; NO, nitric oxide; NOS,
nitric oxide synthase; NIR, nitrite reductase; NOA, nitric oxide-associated; LPS,
lipopolysaccharide; PAO, polyamine oxidase; PAMP, pathogen-associated molec-
ular pattern; PIP2, phosphatidylinositol 4,5-bisphosphate; PA, phosphatidic acid;
PLD, phospholipase D; PLC, phospholipase C; PP2C, type 2C protein phos-
phatase; ROS, reactive oxygen species; SA, salicylic acid; SNP, sodium nitroprusside;
XOR, xanthine oxidoreductase; YEL, yeast elicitor; PYR/PYL/RCAR, pyrabactin
resistance protein1/PYR-like proteins/regulatory components of ABA receptor.

time make CO2 available for photosynthesis. Stomatal open-
ing and closure are mediated by the changes in turgor pressure
of guard cells. Stomata open when guard cells are turgid and
close when the guard cells are flaccid. As closed stomata restrict
pathogen entry into leaves, stomata become key players also in
defense response against several pathogens (Underwood et al.,
2007; Melotto et al., 2008). Several factors modulate stomatal
function, such as drought, light, high CO2, humidity, and plant
hormones, such as ABA (all abbreviations listed on first page).
Some of the plant hormones (ABA, MJ, ethylene), salicylic acid,
polyamines and even elicitors (mostly microbial) cause stomatal
closure, while auxins and cytokinins promote stomatal opening
(Bright et al., 2006; Acharya and Assmann, 2009; Alcázar et al.,
2010; Jing et al., 2012; Ye et al., 2013).

NO has multifunctional roles in plants: stomatal move-
ment, host-pathogen interactions, hormonal signaling during
growth/development and adaptation to abiotic/biotic stress
(Delledonne et al., 1998; Bright et al., 2006; Yan et al., 2007;
Neill et al., 2008; Wilson et al., 2008, 2009; Siddiqui et al., 2011).
In plants, NO can be a signal to induce secondary metabo-
lite accumulation (Lu et al., 2011) and to promote cell death
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(Gupta et al., 2011b; Bellin et al., 2013). The production of NO in
stomatal guard cells has been known since several years (Desikan
et al., 2002; Garcia-Mata et al., 2003). But the mechanisms of NO
action and interaction with other signaling components in guard

cells have been studied in detail, since only a few years. The rise in
NO of guard cells is a common and dominant event during stom-
atal closure induced by several effectors and in different plants
(Table 1).

Table 1 | The rise in NO of guard cells as a common event during stomatal closure induced by hormones, elicitors or environmental factors.

Effector Source in vivo Test plant References

PLANT HORMONES

ABA Endogenous Vicia faba García-Mata and Lamattina, 2002

Pisum sativum Gonugunta et al., 2008

Arabidopsis thaliana Neill et al., 2008; Islam et al., 2010

MJ Endogenous A. thaliana Munemasa et al., 2007; Saito et al., 2009

V. faba Xin et al., 2005

SA Endogenous V. faba, Commelina communis Xin et al., 2003

A. thaliana Sun et al., 2010; Khokon et al., 2011

Lycopersicon esculentum Poór and Tari, 2012

Ethylene Endogenous A. thaliana Jing et al., 2010

V. faba Liu et al., 2012

BIOTIC STRESS COMPONENTS (ELICITORS)

Chitosan Derivative of chitin fragments from
fungal cell wall

L. esculentum, C. communis Lee et al., 1999

P. sativum Srivastava et al., 2009

A. thaliana Khokon et al., 2010b

Flg22* 22 amino acid peptide from
Flagellin, bacterial flagellar protein

A. thaliana Melotto et al., 2006

LPS* Glycolipid component of gram
negative bacterial outer membrane

A. thaliana Melotto et al., 2006

E. coli O157:H7 Human pathogen A. thaliana Melotto et al., 2006

Harpin Xanthomonas oryzae Nicotiana benthamiana Zhang et al., 2009a, 2012b

INF1 Phytophthora infestans N. benthamiana Zhang et al., 2009a

Boehmerin Phytophthora boehmeriae N. benthamiana Zhang et al., 2009a, 2012b

Nep1 Magnaporthe oryzae N. benthamiana Zhang et al., 2012b

YEL (Yeast elicitor) Yeast extract A. thaliana Khokon et al., 2010a

Oligochitosan Fragment of chitosan prepared by
enzymatic hydrolysis

Brassica napus Li et al., 2009b

ENVIRONMENTAL FACTORS

UV-B Environment V. faba He et al., 2005

A. thaliana He et al., 2013

Bicarbonate (mimics high CO2) Environment P. sativum Kolla and Raghavendra, 2007

SIGNALING COMPONENTS

CaCl2 (Buffered) Endogenous A. thaliana Wang et al., 2012

H2O2 Endogenous V. faba He et al., 2005

A. thaliana Bright et al., 2006

Calmodulin Endogenous A. thaliana Li et al., 2009a

*PAMP- the term used for elicitors like flg22, LPS.
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There has been growing interest in NO as an essen-
tial signal molecule during stomatal closure, and plant
growth/development, besides defense against pathogens.
The ABA-induced stomatal closure is associated with a rise in NO
as well as ROS of guard cells. The rise in NO causes elevation of
free Ca2+ in guard cells, restriction of K+ influx and promotion
of anion efflux (Garcia-Mata et al., 2003; Sokolovski and Blatt,
2004), all resulting in loss of guard cell turgor and stomatal
closure. This article emphasizes that NO is a common factor
during stomatal closure induced by varying factors, including
hormones, microbial elicitors (yeast/bacterial/fungal/pathogen)
and abiotic environmental stresses. The possible sources of NO
are described, highlighting the ambiguity on the role of true NOS
in plants. A pathway of signal transduction, with the components
involved in NO action, is proposed. Attention is drawn toward
the interaction of NO with other signaling components in
guard cells. Finally, a few of the emerging topics and unresolved
questions, for further research are indicated.

In view of the large number of reports on the rise in NO of
guard cells in relation to stomatal closure, we had to limit ref-
erences to original articles, published in the last 5 years. There
are excellent reviews covering the earlier work on the role of NO
during stomatal closure (García-Mata and Lamattina, 2002, 2013;
Neill et al., 2003, 2008; Desikan et al., 2004; Lamotte et al., 2005;
Wilson et al., 2008, 2009; Hancock et al., 2011) and the impor-
tance of NO during the innate immunity responses of plants
(Wendehenne et al., 2004; Leitner et al., 2009; Gaupels et al., 2011;
Yoshioka et al., 2011). The importance of NO as a general signal-
ing molecule in several processes of growth and development have
been reviewed elsewhere (Durner and Klessig, 1999; Lamattina
et al., 2003; Moreau et al., 2010; Baudouin, 2011; Fröhlich and
Durner, 2011; Martínez-Ruiz et al., 2011; Astier et al., 2012;
Simontacchi et al., 2013).

HORMONES: ABA, ETHYLENE, METHYL JASMONATE
The rise in NO is a common step during stomatal closure induced
by hormones like ABA; or elicitors like chitosan; and even abi-
otic stress conditions (Table 1). Among the plant hormones, the
perception and action of ABA is well characterized (Sirichandra
et al., 2009; Cutler et al., 2010; Raghavendra et al., 2010). The
stomatal closure induced by ABA involves a series of events,
including a rise in reactive nitrogen species i.e., nitric oxide (NO).
Additional signaling components that are involved are: reactive
oxygen species (ROS, mostly H2O2), cytosolic Ca2+, cytoplas-
mic pH, G-proteins, protein kinases as CDPK and MAPK, pro-
tein phosphatases, phospholipases and sphingolipids (Gonugunta
et al., 2008; Neill et al., 2008; Wang and Song, 2008; Umezawa
et al., 2010; García-Mata and Lamattina, 2013). Extensive stud-
ies on guard cells of Arabidopsis, pea, Vicia faba and Commelina
communis have established that NO is an essential signaling com-
ponent during ABA-induced stomatal closure (Xin et al., 2005;
Gonugunta et al., 2008, 2009; Neill et al., 2008). The increase in
NO is usually associated with the elevated ROS levels, particu-
larly H2O2, generated by plasma membrane NADPH oxidase. The
role of several signaling components involved in NO production
and stomatal closure induced by ABA was convincingly demon-
strated by studies performed in Arabidopsis mutants (Table 2).

The impaired NO production by ABA in nia1,nia2 mutants
(Desikan et al., 2006) and in atrbohD/F mutant is an indication
of the key roles of NR and NADPH oxidase, respectively (Bright
et al., 2006).

The other hormones, which induce an increase in NO lead-
ing to stomatal closure, are ethylene and MJ. External appli-
cation of ethephon (an ethylene-releasing compound) or 1-
aminocyclopropane-1-carboxylic acid (the precursor of ethylene)
induced stomatal closure in a dose-dependent manner in
Arabidopsis thaliana (Desikan et al., 2006). Ethylene-induced
stomatal closure was associated with a rise in not only NO, but
also H2O2, Ca2+, and cytoplasmic pH (Jing et al., 2010, 2012).
The precise order of these molecules during NO action and stom-
atal closure is not yet known. The effects of ethylene on NO
level may be either direct or indirect through the modulation of
endogenous ABA levels. This aspect needs additional experiments
for confirmation.

MJ, a linolenic acid derivative, is as powerful as ABA in induc-
ing stomatal closure, and elevating the levels of NO, besides ROS
in guard cells (Gonugunta et al., 2009; Munemasa et al., 2011b).
The role of NO as one of the signaling components during MJ-
induced stomatal closure is further confirmed by the decrease in
NO production and stomatal closure by L-NAME in V. faba guard
cells (Xin et al., 2005). The MJ or ABA-induced NO production
was impaired in rcn1 mutant of A. thaliana, deficient in the reg-
ulatory subunit of protein phosphatase 2A (RCN1) (Saito et al.,
2008, 2009). However, SNP (a NO donor) induced stomatal clo-
sure along with rise in guard cell NO levels in rcn1 mutant as well
as in wild type.

MICROBIAL ELICITORS
Besides being gateways for water/CO2, stomata can limit the inva-
sion of pathogenic bacteria, and thus be a part of the plant innate
immune system (Baker et al., 2010; Zeng et al., 2010). A burst
in NO production has long been identified as one of the plant
defense responses. Further, NO plays a very important role in
cell death and activation of defense genes against plant pathogens
(Delledonne et al., 2003; Romero-Puertas et al., 2004; Garcia-
Brugger et al., 2006). The protective role of NO doubles up, as
it upregulates secondary metabolism, and levels of antimicrobial
compounds (Wang and Wu, 2004; Zhang et al., 2012a). In view
of such crucial role, the molecular events in plant cells, triggered
by NO, to help in innate immunity have been studied in detail.
Compared to the extensive literature on the role of the NO-burst
as a component of pathogen resistance, there is very limited work
on the mechanism of NO-rise in guard cells, when exposed to
elicitors/plant pathogens.

A typical effect of several elicitors is the marked stomatal clo-
sure and an increase in guard cell NO (Table 1). NO production
was observed in guard cells of A. thaliana, Pisum sativum, and
Nicotiana benthamiana in response to elicitors such as, PAMP,
chitosan and oligochitosan (Melotto et al., 2006; Li et al., 2009b;
Srivastava et al., 2009). In addition, other elicitors such as harpin,
boehmerin, INF1, and Nep1 induced the production of NO in
guard cells of N. benthamiana (Zhang et al., 2009a, 2012b).
Impaired stomatal closure in response to elicitors by cPTIO
(NO scavenger) or upon treatment with L-NNA (NOS inhibitor)
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Table 2 | Use of Arabidopsis mutants to demonstrate the importance of signaling components involved in the rise of NO during stomatal

closure.

Mutant Deficiency in mutant Effector used for NO

rise

Impairment in the plant References

abi1-1 and abi2-1 Protein phosphatase 2C ABA Stomatal closure but not
NO production

Desikan et al., 2002

aba2-2 Protein phosphatase 2C Methyl jasmonate NO and ROS production Ye et al., 2013

atrbohD/F NADPH Oxidase ABA H2O2 production Bright et al., 2006

coi1 and abi2-1 Coronatine-insensitive1 protein
(COI1) and protein phosphatase
2C

Methyl jasmonate ROS and NO production Munemasa et al., 2007

cpk6-1 Calcium dependent protein kinase ABA and MJ NO levels; no change in
ROS

Munemasa et al., 2011a

gpa1-1, gpa1-2
atnoa1 and
atrbohD/F

G-protein α sub unit and NADPH
Oxidase

Extracellular
calmodulin (ExtCaM)

NO rise in guard cell and
stomatal closure

Li et al., 2009a

nia1 and nia2 Nitrate reductase Salicylic acid and ABA NO rise in guard cell and
stomatal closure

Bright et al., 2006; Hao et al., 2010

pldα1 Phospholipase Dα1 ABA NO production Zhang et al., 2009b

Pldδ-1/pldα1 Phosholipase Dα and Dδ ABA NO production only, but
not stomatal closure

Distéfano et al., 2012

rcn1 Regulatory subunit of protein
phosphatase 2A

Methyl jasmonate NO production Saito et al., 2009

confirms the role of NO in stomatal signaling (Melotto et al.,
2006; Khokon et al., 2010a,b; Zhang et al., 2012b).

The production of NO occurred downstream of ROS, dur-
ing stomatal closure induced by chitosan (Srivastava et al., 2009;
Khokon et al., 2010b). The signaling components identified with
elicitor-induced stomatal closure and NO-rise in guard cells are:
ROS/NADPH oxidases, G-proteins, vacuolar processing enzyme
(Zhang et al., 2009a, 2010, 2012b). It is not clear if the sig-
nal transduction chain involving NO-rise and stomatal closure
induced by different elicitors follows the same or a modified
pathway.

SALICYLIC ACID
SA is a phenolic compound, known to play a key role in a wide
range of physiological and developmental processes, such as ther-
mogenesis, fruit ripening, ethylene synthesis and plant defense
against pathogens (Loake and Grant, 2007). There have been
early reports on the regulation by SA of stomatal movement
(Manthe et al., 1992; Lee and Joon-Sang, 1998) and role of sig-
naling molecules, such as superoxide radicals, Ca2+, H2O2, and
NO in modulating SA-effects (Mori et al., 2001). The SA-induced
NO production and stomatal closure was impaired by cPTIO
(NO scavenger) in guard cells of V. faba (Xin et al., 2003) and
Arabidopsis (Khokon et al., 2011) highlighting the importance of
NO during responses to SA.

PHOSPHOLIPIDS
Phospholipids are major components of plasma membrane and
have emerged as key signaling molecules (Meijer and Munnik,
2003; Testerink and Munnik, 2005; Wang, 2005). These phos-
pholipids such as phosphatidic acid (PA), phosphatidylinositol
4,5-bisphosphate (PIP2) and diacylglycerol (DAG) regulate a wide
range of growth and developmental processes including ABA sig-
naling, programmed cell death and defense response (Katagiri
et al., 2005; Wang, 2005; Choi et al., 2008). Another group of
phospholipids, which could potentially interact with NO, are
sphingolipids (Guillas et al., 2013). The role of sphingolipids
in relation to NO-action on guard cells needs to be probed in
detail.

Among the phospholipids, the effect of PA appears to be quite
interesting. In plant tissues, PA generated by either PLC or PLD,
can inactivate K+

in channels and promote stomatal closure (Jacob
et al., 1999; Uraji et al., 2012). The increase in the levels of PA in
V. faba guard cells on exposure to NO and prevention of stom-
atal closure by inhibitors of either PLC or PLD suggested that NO
might be involved in the production of PA and stomatal closure
(Distéfano et al., 2008). Among the 12 PLD genes of Arabidopsis,
PLDα and PLDδ were shown to be involved in stomatal regula-
tion (Zhang et al., 2009b; Distéfano et al., 2012; Uraji et al., 2012).
Further description is in the section on “Signaling components in
guard cells during NO action.”
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POLYAMINES
Polyamines are ubiquitous, low molecular weight nitrogenous
aliphatic compounds, which regulate several physiological and
developmental functions (Kusano et al., 2008). Although the
exact mechanisms are not completely understood, polyamines
seem to help in plant adaptation to both biotic and abiotic stress
(Alcázar et al., 2010). There are indications that polyamines inter-
act with ABA (Alcázar et al., 2006, 2010). The limited reports
on the increase in NO production by polyamines are ambigu-
ous. Flores et al. (2008) observed that upregulation of arginase
activity reduced the release of NO in A. thaliana mutants. In
contrast, polyamines elevated NO production in tobacco BY-2
cells and Ocotea catharinensis somatic embryo cultures (Santa-
Catarina et al., 2007). Among the three polyamines tested, sper-
mine was the most effective in inducing NO production, followed
by spermidine and putrescine. Arginine, despite being a precursor
molecule for the polyamine biosynthesis, could not increase NO
(Tun et al., 2006).

The increase in NO of guard cells by polyamines may be related
to H2O2. Oxidation of putrescine by DAO can facilitate ABA-
induced H2O2 production (An et al., 2008). When polyamines
are catabolized by DAO or PAO, H2O2 is produced as one of the
products (Alcázar et al., 2010). Though speculative, it appears
reasonable to expect that the polyamine catabolic byproduct of
H2O2 can elevate NO, as NO acts downstream of relation to H2O2

during stomatal closure (Srivastava et al., 2009). Further studies
are required to clarify if polyamines have a direct or indirect effect
on the production of NO and ROS in stomatal guard cells.

SOURCES OF NO
The levels of NO within the cell, depends on the balance between
production and scavenging. There is considerable work on the
sources of NO in plant tissues, but very little information is avail-
able on the modes of scavenging NO. The possible sources of NO
production can be categorized as enzymatic or non-enzymatic.
Gupta et al. (2011a) summarized the literature on the sources of
NO in plants, proposing that seven possible routes of NO produc-
tion can be identified. In plants, the NR mediated NO production
is accepted widely, while there is ambiguity about the role of a
true NOS. Neill et al. (2008) reported that ABA-induced NO syn-
thesis in guard cells could be driven by both NOS-like enzyme
and NR activity. Nitrate can be reduced to nitrite and then to
NO by NR, using NADP(H) as an electron source (Besson-Bard
et al., 2008; Baudouin, 2011). However, the capability of NR in
NO production is calculated to be only about 1% of its nitrate
reduction capacity (Planchet et al., 2005). The root specific Ni-
NOR found in purified plasma membranes of tobacco (Nicotiana
tabacum) roots, has been proposed to be involved in the reduction
of apoplastic nitrite to NO (Stöhr and Stremlau, 2006). The role of
such plasma membrane bound nitrite: NO reductase (Ni-NOR)
in guard cell NO production is yet to be critically assessed.

The NOS-induced NO production is well documented in ani-
mal systems, with reports of three isoforms: inducible, neuronal
and endothelial NOS (Alderton et al., 2001). However, the exis-
tence of true NOS in plants is strongly questioned, because of
two major reasons: (i) apparent absence of NOS in the genome
of plants, including Arabidopsis; (ii) no convincing evidence for a

protein, with NOS-like activity in higher plants. Although pro-
teins with supposedly NOS activity are occasionally reported
(Fröhlich and Durner, 2011), their exact identity is questionable.
One of the NOS-like enzymes, described earlier (Moreau et al.,
2010), turned out to be a GTPase and renamed as NOA. The role
of NOA in NO production appears to be a possibility. Despite
intense efforts, a true NOS is yet to be discovered in higher plants.
The nearest finding is the report on arginine-dependent NOS-like
activity in a green alga, Ostreococcus tauri (Foresi et al., 2010).
The ambiguity on the source of NO extends to SA-mediated NO-
production, with reports implicating the importance of NOS-like
enzyme (Xin et al., 2003; Sun et al., 2010) or NR (Zottini et al.,
2007; Hao et al., 2010). Immediate attention is required to iden-
tify the precise enzymatic source of NO production in guard cells,
and such information would be applicable to other plant tissues.

There is an additional possibility of NO production by non-
enzymatic reactions. Two such instances are: (i) Reduction of
nitrite to NO occurred under the acidic and highly reduced con-
ditions, and such NO formation was not impaired by typical
NOS inhibitors (Zweier et al., 1999); and (ii) Rapid produc-
tion of NO from nitrite in the incubation medium, Hordeum
vulgare (barley) aleurone layers further promoted by phenolic
compounds (Bethke et al., 2004). However, the relevance of these
non-enzymatic NO sources in guard cells are unclear, and these
may not be as crucial as enzymatic ones.

Our current knowledge of biological scavenging mechanisms
of NO in plants, is quite meagre. Being diffusible, NO can react
with several molecules within the cell. Such decrease in NO,
due to its highly reactive nature should be considered impor-
tant. There are reports that GSH and plant hemoglobins, could
scavenge NO (Perazzolli et al., 2004; Basu et al., 2010), but
the exact enzymatic steps of NO conversion need to be eluci-
dated. The nitrosylation of cellular proteins could be involved
in the NO action as well as the maintenance of NO levels. For
example, nitrosylation has been found to affect the activity of
proteins, such as GAPDH (Lindermayr et al., 2005; Vescovi et al.,
2013; Zaffagnini et al., 2013) and outward K+-rectifying channels
(Sokolovski and Blatt, 2004).

SIGNALING COMPONENTS IN GUARD CELLS DURING
NO ACTION
Several signaling components have been identified to act either
upstream or downstream of NO. The role of different com-
ponents was established by usually three sets of evidence: (i)
Employing inhibitors or scavengers, (ii) Monitoring the compo-
nents by suitable fluorescent dyes; and finally (iii) Validation by
using mutants deficient in a given component of signal trans-
duction chain (Table 2). The inhibitors related to NO are: cPTIO
(scavenger of NO), L-NAME (inhibitor of NOS) and tungstate
(inhibitor of NR). In some studies, artificial NO donors such as
SNP and GSNO are also used. Studies on real-time monitoring
of NO production, during stomatal closure have demonstrated
that pH and ROS of guard cells rise before that of NO and
stomatal closure occurs subsequently. Such early rise in pH and
ROS was observed during stomatal closure induced by ABA,
MJ as well as chitosan (Suhita et al., 2004; Gonugunta et al.,
2008, 2009; Srivastava et al., 2009). Studies using NO scavenger
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(cPTIO) or L-NAME and tungstate, inhibitors of “NOS-like”
and NR prevented the NO production but not ROS during
stomatal closure in epidermal strips. Among the signaling com-
ponents: PYR/PYL/RCAR (ABA-receptor proteins), ABI1/2 (that
help binding to receptor proteins), ROS (generated by NADPH
oxidase), pH, G-proteins and PA/PLC/PLDα1 act upstream of NO
rise (Sirichandra et al., 2009; Zhang et al., 2009b; Cutler et al.,
2010). In contrast to the role of PLDα1, PLDδ is reported at
either upstream or downstream of NO production in guard cells
(Distéfano et al., 2012; Uraji et al., 2012). Similarly, Ca2+ may
act at both levels upstream and downstream of NO (Garcia-Mata
et al., 2003; Gonugunta et al., 2008).

Unlike other reports, an intriguing observation was that ABI1
and ABI2 might act downstream of the NO in stomatal signaling
by ABA in A. thaliana guard cells (Desikan et al., 2002). Studies
with mutants deficient in ROS production (like rbohD/F) and
by inhibitors like DPI, confirmed the strong association between
ROS and NO (Bright et al., 2006; Neill et al., 2008; Srivastava
et al., 2009). The stomatal closure induced by ABA or H2O2

and associated NO production were impaired in nia1,nia2 double
mutant (Bright et al., 2006). The NO production by micro-
bial elicitors (boehmerin, harpin and INF1) was impaired in
NbrbohA and NbrbohB single and double silenced plants confirm-
ing that ROS acted upstream of NO production (Zhang et al.,
2009a). Similarly, limited stomatal closure and NO production in
response to microbial elicitors (harpin, Nep1, boehmerin) in G-
protein (Gα-, Gβ1-, and Gβ2-) silenced plants of N. benthamiana
prove that G-proteins facilitate NO production, before stomatal
closure (Li et al., 2009a; Zhang et al., 2012b).

The ability of PA to interact with ABI1 and NADPH oxidase
(Zhang et al., 2004) implies that PA may act either upstream or
downstream of NO. Distéfano et al. (2008, 2010) have established
that the rise in NO causes elevation of PA which acts downstream
of the NO during stomatal closure in V. faba. In the signaling
scheme, proposed by Distéfano et al. (2010), ABA-induced NO
activates PLC and/or PLD pathways to generate PA (Zhang et al.,
2009b; Uraji et al., 2012). One of the products of PLC, namely
IP3 can induce the release of Ca2+ from internal stores leading to
stomatal closure. Attention needs to be drawn to reported par-
ticipation of the PI3 and PI4 kinases (Kolla and Raghavendra,
2007) in bicarbonate-induced NO production. Such pathway is
extremely interesting and may represent ROS-independent route
of NO-production.

A direct well-known effect of NO is it’s up-regulation of Ca2+
ion channel activity, promoting the release of Ca2+ from intra-
cellular Ca2+ stores. Such rise in Ca2+ by NO was blocked by
antagonists of guanylate cyclase and cADPR indicating that the
downstream action of NO is mediated by both cADPR and cGMP.
Parallely, the rise in cytosolic free Ca2+ inactivates K+

in channels
(blocking K+

in currents) and activates Cl− ion channels (increasing
anion currents), and both events lead to stomatal closure (Garcia-
Mata et al., 2003; Sokolovski and Blatt, 2004; Sokolovski et al.,
2005). A possible scheme of the signal transduction mechanism
involving various components is presented in Figure 1.

Besides their key roles during the rise in NO and subsequent
effects, several signaling components tend to interact (Table 3).
The best and well known interactions of NO are with ROS, Ca2+

FIGURE 1 | Signal transduction mechanism involved during stomatal

closure induced by ABA, MJ, and microbial elicitors. The
components/secondary messengers induced by either ABA or MJ or
elicitors leading to the production of nitric oxide are indicated by forward
arrows. The ion channels are represented by blue color. During stomatal
signaling mechanism the guard cells upon perception of ABA, MJ, or
elicitors, activate NADPH oxidase, leading to a burst of ROS, which leads to
a NO burst. The elevation of NO raises the cytosolic free Ca2+, through
up-regulation of cADPR and cGMP. In turn, the high cytosolic Ca2+ causes a
down-regulation of K+ inward channels and activation of outward anion
channels, all leading to stomatal closure. Parallely, NO can increase the
levels of PA via modulation of PLD and PLC. Several of these steps are
validated by the use of mutants of Arabidopsis (indicated by red color),
deficient in a particular signaling component. In the mutants, the relevant
steps are blocked. The Arabidopsis mutants represented in this Figure are:
abi1/abi2, ABA-insensitive (ABI1 and ABI2 protein phosphatases);
atrbohD/F, A. thaliana NADPH oxidase catalytic subunit D/F; atnoa, A.
thaliana nitric oxide-associated 1; coi1, coronatine-insensitive 1 mutant;
cpk, calcium-dependent protein kinase; gork, guard cell outward rectifying
K+ channel; jar1, JA response 1 mutant; nia1, nia2, Nitrate reductase
double mutant; ost1, open stomata 1 kinase; pldα1/pldδ, phospholipase
α1/phospholipase δ double mutant; rcn1, protein phosphatase 2A
regulatory A subunit 1; slac1, slow anion channel-associated 1 mutant. A
description of these components is given in the section on “Signaling
components in guard cells during NO action.” Further information can be
seen in Tables 1, 2. Abbreviations are listed in first page. The events
demonstrated by experimental evidence are represented by solid arrows.
The possible interactions/effects are indicated by broken arrows.

and PA, and to some extent, with pH. For e.g., Ca2+ stimulates
NO production and NO in turn can rise Ca2+ levels (Garcia-
Mata and Lamattina, 2007). Such dual role of Ca2+ is extremely
interesting and warrants detailed examination. Similarly, the pro-
duction of NO and PA promote the levels of each other (Zhang
et al., 2009b). There may be a feedback regulation by NO of
cytosolic pH, since the rise in NO by SNP increased also the pH
of guard cells (Gonugunta et al., 2008, 2009), but there is no
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Table 3 | Interactions of signaling components with NO during modulation of stomatal closure induced by different effectors.

Signaling

component

Type of interaction Plant Effector References

Cytosolic pH Precedes NO production Pisum sativum ABA, MJ and Chitosan Gonugunta et al., 2008, 2009

Arabidopsis thaliana Ethylene Jing et al., 2010

H2O2 Promotes NO production P. sativum Chitosan Srivastava et al., 2009

A. thaliana ABA Bright et al., 2006

Ca2+ Increases NO production Vicia faba ABA Garcia-Mata and Lamattina, 2007

PLDα1 Increases NO production A. thaliana ABA Zhang et al., 2009b

PLDδ Acts downstream of NO A. thaliana ABA and NO Distéfano et al., 2012

H2S Depletes NO levels in guard cells A. thaliana H2S Lisjak et al., 2010

Functions downstream of NO V. faba Ethylene Jing et al., 2012

ABA NO increases the sensitivity to ABA A. thaliana NR and NOA Lozano-Juste and León, 2010

MJ Elevates endogenous ABA A. thaliana Methyl jasmonate Ye et al., 2013

convincing evidence of such regulation of guard cell pH by NO
during stomatal closure.

The marked interactions between signaling components,
involving NO, constitute a dynamic and complex regulatory net-
work. Because of the complicated nature of signaling network
and strong interactions among them, only a few attempts have
been made to model these events. Li et al. (2006) presented a
dynamic model of signaling components in which NO is pro-
duced by NR and NOS-like enzyme, in response to ABA, and the
Ca2+ mobilized from intracellular sources, could induce stomatal
closure. Similarly, Beguerisse-Díaz et al. (2012) proposed a model
of interactions between NO and ethylene. These models need to
be validated by experimental evidences.

CONCLUDING REMARKS
The available literature amply demonstrates that NO is a common
signaling component and a converging step for events initiated by
ABA, MJ, or elicitors. The upstream components of NO, which
rise during ABA action, are broadly understood. For example,
ABA binds to PYR/PYL/RCAR proteins and then to PP2C form-
ing a trimeric complex. Due to the non-availability of PP2C,
protein kinases are activated to trigger several downstream ele-
ments (Cutler et al., 2010; Raghavendra et al., 2010). However, the
mechanism of reception and transduction of elicitor signals, par-
ticularly the elicitor-receptor interactions, and events leading to
NO rise, are not clear and need detailed examination. The levels of
NO in guard cells during stomatal closure are usually monitored
by using suitable fluorescent dyes, such as DAF-2DA. But these

measurements are being debated, since the specificity of fluores-
cent dyes has been questioned, due to their proneness to artifacts.
Efforts are on to reassess and reconcile measurements of NO in
plant tissues (Mur et al., 2011). The exact source of NO in plant
tissues continues to be a controversial topic. Several possibilities
have been identified, such as NR, NIR, NOS-like and even NOA,
but the available literature is not convincing enough to assess the
relative significance of the different sources (Neill et al., 2008;
Gupta et al., 2011a).

A range of highly interesting topics are emerging, studies on
which can be quite useful. Among these are: modulation of NO
by endogenous plant hormones, such as ABA (Lozano-Juste and
León, 2010), role and interaction with other gaseous molecules
such as H2S and CO, termed gasotransmitters (García-Mata
and Lamattina, 2013), and the post-translational modification of
downstream proteins by NO or ROS or both (Yoshioka et al.,
2011). In summary, further detailed work on the role and source
of NO in guard cells promises to be a rewarding exercise and may
provide information relevant to other plant tissues.

ACKNOWLEDGMENTS
The work is supported by a J C Bose National Fellowship
(No. SR/S2/JCB-06/2006) to Agepati S. Raghavendra, from
the Department of Science and Technology, New Delhi; and
University Grants Commission-Junior Research Fellowship to
Gunja Gayatri and Srinivas Agurla. We also thank DBT-CREBB,
DST-FIST and UGC-SAP-CAS, for support of infrastructure in
Department/School.

REFERENCES
Acharya, B. R., and Assmann, S. M.

(2009). Hormone interactions in
stomatal function. Plant Mol. Biol.
69, 451–462. doi: 10.1007/s11103-
008-9427-0

Alcázar, R., Altabella, T., Marco, F.,
Bortolotti, C., Reymond, M.,
Koncz, C., et al. (2010). Polyamines:
molecules with regulatory functions

in plant abiotic stress tolerance.
Planta 231, 1237–1249. doi:
10.1007/s00425-010-1130-0

Alcázar, R., Cuevas, J. C., Patron,
M., Altabella, T., and Tiburcio,
A. F. (2006). Abscisic acid modu-
lates polyamine metabolism under
water stress in Arabidopsis thaliana.
Physiol. Plant. 128, 448–455. doi:
10.1111/j.1399-3054.2006.00780.x

Alderton, W. K., Cooper, C. E.,
and Knowles, R. G. (2001).
Nitric oxide synthases: struc-
ture, function and inhibition.
Biochem. J. 357, 593–615. doi:
10.1042/0264-6021:3570593

An, Z., Jing, W., Liu, Y., and Zhang,
W. (2008). Hydrogen peroxide
generated by copper amine oxidase
is involved in abscisic acid-induced

stomatal closure in Vicia faba.
J. Exp. Bot. 59, 815–825. doi:
10.1093/jxb/erm370

Astier, J., Kulik, A., Koen, E., Besson-
Bard, A., Bourque, S., Jeandroz,
S., et al. (2012). Protein S-
nitrosylation: what’s going on
in plants? Free Radic. Biol. Med.
53, 1101–1110. doi: 10.1016/
j.freeradbiomed.2012.06.032

www.frontiersin.org October 2013 | Volume 4 | Article 425 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Physiology/archive


Gayatri et al. Nitric oxide and guard cells

Baker, C. M., Chitrakar, R.,
Obulareddy, N., Panchal, S.,
Williams, P., and Melotto, M.
(2010). Molecular battles between
plant and pathogenic bacteria in the
phyllosphere. Braz. J. Med. Biol. Res.
43, 698–704. doi: 10.1590/S0100-
879X2010007500060

Basu, S., Keszler, A., Azarova, N. A.,
Nwanze, N., Perlegas, A., Shiva,
S., et al. (2010). A novel role
for cytochrome c: efficient catal-
ysis of S-nitrosothiol formation.
Free Radic. Bio. Med. 48, 255–263.
doi: 10.1016/j.freeradbiomed.2009.
10.049

Baudouin, E. (2011). The language of
nitric oxide signalling. Plant Biol.
13, 233–242. doi: 10.1111/j.1438-
8677.2010.00403.x

Beguerisse-Díaz, M., Hernández-
Gómez, M. C., Lizzul, A. M.,
Barahona, M., and Desikan,
R. (2012). Compound stress
response in stomatal closure: a
mathematical model of ABA and
ethylene interaction in guard
cells. BMC Syst. Biol. 6:146. doi:
10.1186/1752-0509-6-146

Bellin, D., Asai, S., Delledonne,
M., and Yoshioka, H. (2013).
Nitric oxide as a mediator for
defense responses. Mol. Plant-
Microbe Interact. 26, 271–277. doi:
10.1094/MPMI-09-12-0214-CR

Besson-Bard, A., Pugin, A., and
Wendehenne, D. (2008). New
insights into nitric oxide signalling
in plants. Annu. Rev. Plant Biol.
59, 21–39. doi: 10.1146/annurev.
arplant.59.032607.092830

Bethke, P. C., Badger, M. R., and
Jones, R. L. (2004). Apoplastic syn-
thesis of nitric oxide by plant tis-
sues. Plant Cell 16, 332–341. doi:
10.1105/tpc.017822

Bright, J., Desikan, R., Hancock,
J. T., Weir, I. S., and Neill, S. J.
(2006). ABA-induced NO gen-
eration and stomatal closure
in Arabidopsis are dependent
on H2O2 synthesis. Plant J. 45,
113–122. doi: 10.1111/j.1365-313X.
2005.02615.x

Choi, Y., Lee, Y., Jeon, B. W.,
Staiger, C. J., and Lee, Y. (2008).
Phosphatidylinositol 3− and
4−phosphate modulate actin
filament reorganization in
guard cells of day flower. Plant
Cell Environ. 31, 366–377. doi:
10.1111/j.1365-3040.2007.01769.x

Cutler, S. R., Rodriguez, P. L.,
Finkelstein, R. R., and Abrams,
S. R. (2010). Abscisic acid: emer-
gence of a core signalling network.
Annu. Rev. Plant Biol. 61, 651–679.
doi: 10.1146/annurev-arplant-
042809-112122

Delledonne, M., Polverari, A., and
Murgia, I. (2003). The functions
of nitric oxide-mediated signalling
and changes in gene expression
during the hypersensitive response.
Antioxid. Redox Signal. 5, 33–41.
doi: 10.1089/152308603321223522

Delledonne, M., Xia, Y., Dixon, R. A.,
and Lamb, C. (1998). Nitric oxide
functions as a signal in plant disease
resistance. Nature 394, 585–588.
doi: 10.1038/29087

Desikan, R., Cheung, K., Bright, J.,
Henson, D., Hancock, J. T., and
Neill, Neill, S. J. (2004). ABA,
hydrogen peroxide and nitric oxide
signalling in stomatal guard cells.
J. Exp. Bot. 55, 205–212. doi:
10.1093/jxb/erh033

Desikan, R., Griffiths, R., Hancock,
J., and Neill, S. (2002). A new
role for an old enzyme: nitrate
reductase-mediated nitric oxide
generation is required for abscisic
acid-induced stomatal closure in
Arabidopsis thaliana. Proc. Natl.
Acad. Sci. U.S.A. 99, 16314–16318.
doi: 10.1073/pnas.252461999

Desikan, R., Last, K., Harrett-Williams,
R., Tagliavia, C., Harter, K.,
Hooley, R., et al. (2006). Ethylene-
induced stomatal closure in
Arabidopsis occurs via AtrbohF-
mediated hydrogen peroxide
synthesis. Plant J. 47, 907–916. doi:
10.1111/j.1365-313X.2006.02842.x

Distéfano, A. M., García-Mata, C.,
Lamattina, L., and Laxalt, A. M.
(2008). Nitric oxide-induced phos-
phatidic acid accumulation: a role
for phospholipases C and D in
stomatal closure. Plant Cell Environ.
31, 187–194. doi: 10.1111/j.1365-
3040.2007.01756.x

Distéfano, A. M., Lanteri, M. L.,
ten Have, A., García-Mata, C.,
Lamattina, L., and Laxalt, A.
M. (2010). Nitric oxide and
phosphatidic acid signalling in
plants. Plant Cell Monogr. 16,
223–242. doi: 10.1007/978-3-642-
03873-0_15

Distéfano, A. M., Scuffi, D., García-
Mata, C., Lamattina, L., and Laxalt,
A. M. (2012). Phospholipase
Dδ is involved in nitric oxide-
induced stomatal closure.
Planta 236, 1899–1907. doi:
10.1007/s00425-012-1745-4

Durner, J., and Klessig, D. F.
(1999). Nitric oxide as a signal
in plants. Curr. Opin. Plant Biol. 2,
369–374. doi: 10.1016/
S1369-5266(99)00007-2

Flores, T., Todd, C. D., Tovar-
Mendez, A., Dhanoa, P. K.,
Correa-Aragunde, N., Hoyos,
M. E., et al. (2008). Arginase-
negative mutants of Arabidopsis

exhibit increased nitric oxide
signalling in root development.
Plant Physiol. 147, 1936–1946. doi:
10.1104/pp.108.121459

Foresi, N., Correa-Aragunde, N.,
Parisi, G., Caló, G., Salerno,
G., and Lamattina, L. (2010).
Characterization of a nitric oxide
synthase from the plant kingdom:
NO generation from the green alga
Ostreococcus tauri is light irradiance
and growth phase dependent.
Plant Cell 22, 3816–3830. doi:
10.1105/tpc.109.073510

Fröhlich, A., and Durner, J. (2011).
The hunt for plant nitric oxide
synthase (NOS): Is one really
needed? Plant Sci. 181, 401–404.
doi: 10.1016/j.plantsci.2011.07.014

Garcia-Brugger, A., Lamotte, O.,
Vandelle, E., Bourque, S.,
Lecourieux, D., Poinssot, B.,
et al. (2006). Early signalling
events induced by elicitors
of plant defenses. Mol. Plant-
Microbe Interact. 19, 711–724. doi:
10.1094/MPMI-19-0711

Garcia-Mata, C., Gay, R., Sokolovski,
S., Hills, A., Lamattina, L., and
Blatt, M. R. (2003). Nitric oxide
regulates K+ and Cl− channels
in guard cells through a sub-
set of abscisic acid- evoked sig-
nalling pathways. Proc. Natl. Acad.
Sci. U.S.A. 100, 11116-11121. doi:
10.1073/pnas.1434381100

García-Mata, C., and Lamattina, L.
(2002). Nitric oxide and abscisic
acid cross talk in guard cells.
Plant Physiol. 128, 790–792. doi:
10.1104/pp.011020

Garcia-Mata, C., and Lamattina,
L. (2007). Abscisic acid (ABA)
inhibits light-induced stomatal
opening through calcium- and
nitric oxide-mediated signalling
pathways. Nitric Oxide 17, 143–151.
doi: 10.1016/j.niox.2007.08.001

García-Mata, C., and Lamattina, L.
(2013). Gasotransmitters are emerg-
ing as new guard cell signalling
molecules and regulators of leaf gas
exchange. Plant Sci. 201–202, 66–73.
doi: 10.1016/j.plantsci.2012.11.007

Gaupels, F., Kuruthukulangarakoola,
G. T., and Durner, J. (2011).
Upstream and downstream sig-
nals of nitric oxide in pathogen
defence. Curr. Opin. Plant Biol. 14,
707–714. doi: 10.1016/j.pbi.2011.
07.005

Gonugunta, V. K., Srivastava, N.,
and Raghavendra, A. S. (2009).
Cytosolic alkalinization is a com-
mon and early messenger preceding
the production of ROS and NO
during stomatal closure by variable
signals, including abscisic acid,
methyl jasmonate and chitosan.

Plant Signal. Behav. 4, 561–564. doi:
10.4161/psb.4.6.8847

Gonugunta, V. K., Srivastava, N., Puli,
M. R., and Raghavendra, A. S.
(2008). Nitric oxide production
occurs after cytosolic alkalinization
during stomatal closure induced by
abscisic acid. Plant Cell Environ.
31, 1717–1724. doi: 10.1111/j.1365-
3040.2008.01872.x

Guillas, I., Puyaubert, J., and Baudouin,
E. (2013). Nitric oxide sphingolipid
interplays in plant signalling: a
new enigma from the sphinx.
Front. Plant Sci. 4:341. doi:
10.3389/fpls.2013.00341

Gupta, K. J., Fernie, A. R., Kaiser, W.
M., and van Dongen, J. T. (2011a).
On the origins of nitric oxide.
Trends Plant Sci. 16, 160–168. doi:
10.1016/j.tplants.2010.11.007

Gupta, K. J., Igamberdiev, A. U.,
Manjunatha, G., Segu, S., Moran,
J. F., Neelawarne, B., et al. (2011b).
The emerging roles of nitric
oxide (NO) in plant mitochon-
dria. Plant Sci. 181, 520–526. doi:
10.1016/j.plantsci.2011.03.018

Hancock, J. T., Neill, S. J., and Wilson,
I. D. (2011). Nitric oxide and
ABA in the control of plant func-
tion. Plant Sci. 181, 555–559. doi:
10.1016/j.plantsci.2011.03.017

Hao, F., Zhao, S., Dong, H., Zhang, H.,
Sun, L., and Miao, C. (2010). Nia1
and Nia2 are involved in exogenous
salicylic acid-induced nitric oxide
generation and stomatal closure in
Arabidopsis. J. Integr. Plant Biol.
52, 298–307. doi: 10.1111/j.1744-
7909.2010.00920.x

He, J.-M., Ma, X.-G., Zhang, Y.,
Sun, T.-F., Xu, F.-F., Chen, Y.-P.,
et al. (2013). Role and inter-
relationship of Gα protein,
hydrogen peroxide, and nitric
oxide in ultraviolet B-induced
stomatal closure in Arabidopsis
leaves. Plant Physiol. 161,
1570–1583. doi: 10.1104/pp.112.
211623

He, J.-M., Xu, H., She, X.-P., Song,
X.-G., and Zhao, W.-M. (2005).
The role and the interrelation-
ship of hydrogen peroxide and
nitric oxide in the UV-B-induced
stomatal closure in broad bean.
Funct. Plant Biol. 32, 237–247. doi:
10.1071/FP04185

Islam, M. M., Munemasa, S., Hossain,
M. A., Nakamura, Y., Mori, I. C.,
and Murata, Y. (2010). Roles of
AtTPC1, vacuolar two pore channel
1, in Arabidopsis stomatal closure.
Plant Cell Physiol. 51, 302–311. doi:
10.1093/pcp/pcq001

Jacob, T., Ritchie, S., Assmann, S.
M., and Gilroy, S. (1999). Abscisic
acid signal transduction in guard

Frontiers in Plant Science | Plant Physiology October 2013 | Volume 4 | Article 425 | 8

http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology/archive


Gayatri et al. Nitric oxide and guard cells

cells is mediated by phospholi-
pase D activity. Proc. Natl. Acad.
Sci. U.S.A. 96, 12192–12197. doi:
10.1073/pnas.96.21.12192

Jing, L., GuoHua, L., LiXia, H., and Xin,
L. (2010). Ethylene-induced nitric
oxide production and stomatal clo-
sure in Arabidopsis thaliana depend-
ing on changes in cytosolic pH.
Chinese Sci. Bull. 55, 2403–2409.
doi: 10.1007/s11434-010-4033-3

Jing, L., Zhi-hui, H., Guo-hua, L.,
Li-xia, H., and Xin, L. (2012).
Hydrogen sulfide may function
downstream of nitric oxide in
ethylene-induced stomatal clo-
sure in Vicia faba L. J. Integr.
Agric. 11, 1644–1653. doi:
10.1016/S2095-3119(12)60167-1

Katagiri, T., Ishiyama, K., Kato, T.,
Tabata, S., Kobayashi, M., and
Shinozaki, K. (2005). An impor-
tant role of phosphatidic acid in
ABA signalling during germination
in Arabidopsis thaliana. Plant J.
43, 107–117. doi: 10.1111/j.1365-
313X.2005.02431.x

Khokon, M. A. R., Hossain, M.
A., Munemasa, S., Uraji, M.,
Nakamura, Y., Mori, I. C.,
et al. (2010a). Yeast elicitor-
induced stomatal closure and
peroxidase-mediated ROS pro-
duction in Arabidopsis. Plant
Cell Physiol. 51, 1915–1921. doi:
10.1093/pcp/pcq145

Khokon, M. A. R., Uraji, M.,
Munemasa, S., Okuma, E.,
Nakamura, Y., Mori, I. C., et al.
(2010b). Chitosan-induced stom-
atal closure accompanied by
peroxidase-mediated reactive
oxygen species production in
Arabidopsis. Biosci. Biotechnol.
Biochem. 74, 2313–2315. doi:
10.1271/bbb.100340

Khokon, M. A. R., Okuma, E., Hossain,
M. A., Munemasa, S., Uraji,
M., Nakamura, Y., et al. (2011).
Involvement of extracellular oxida-
tive burst in salicylic acid-induced
stomatal closure in Arabidopsis.
Plant Cell Environ. 34, 434–443. doi:
10.1111/j.1365-3040.2010.02253.x

Kolla, V. A., and Raghavendra, A.
S. (2007). Nitric oxide is a sig-
nalling intermediate during
bicarbonate-induced stom-
atal closure in Pisum sativum.
Physiol. Plant. 130, 91–98. doi:
10.1111/j.1399-3054.2007.00887.x

Kusano, T., Berberich, T., Tateda,
C., and Takahashi, Y. (2008).
Polyamines: essential fac-
tors for growth and survival.
Planta 228, 367–381. doi:
10.1007/s00425-008-0772-7

Lamattina, L., Garcia-Mata, C.,
Graziano, M., and Pagnussat, G.

(2003). Nitric oxide: the versatility
of an extensive signal molecule.
Annu. Rev. Plant Biol. 54, 109–136.
doi: 10.1146/annurev.arplant.54.
031902.134752

Lamotte, O., Courtois, C., Barnavon,
L., Pugin, A., and Wendehenne,
D. (2005). Nitric oxide in plants:
the biosynthesis and cell sig-
nalling properties of a fascinating
molecule. Planta 221, 1–4. doi:
10.1007/s00425-005-1494-8

Lee, and Joon-Sang. (1998). The mech-
anism of stomatal closing by sali-
cylic acid in Commelina communis
L. J. Plant. Biol. 41, 97–102. doi:
10.1007/BF03030395

Lee, S., Choi, H., Suh, S., Doo, I.-S.,
Oh, K.-Y., Choi, E. J., et al. (1999).
Oligogalacturonic acid and chitosan
reduce stomatal aperture by induc-
ing the evolution of reactive oxy-
gen species from guard cells of
tomato and Commelina communis.
Plant Physiol. 121, 147–152. doi:
10.1104/pp.121.1.147

Leitner, M., Vandelle, E., Gaupels,
F., Bellin, D., and Delledonne,
M. (2009). NO signals in the
haze: nitric oxide signalling
in plant defence. Curr. Opin.
Plant Biol. 12, 451–458. doi:
10.1016/j.pbi.2009.05.012

Li, J.-H., Liu, Y.-Q., Lü, P., Lin,
H.-F., Bai, Y., Wang, X.-C., et al.
(2009a). A signalling pathway
linking nitric oxide production
to heterotrimeric G protein and
hydrogen peroxide regulates extra-
cellular calmodulin induction of
stomatal closure in Arabidopsis.
Plant Physiol. 150, 114–124. doi:
10.1104/pp.109.137067

Li, Y., Yin, H., Wang, Q., Zhao, X., Du,
Y., and Li, F. (2009b). Oligochitosan
induced Brassica napus L. pro-
duction of NO and H2O2 and
their physiological function.
Carbohydr. Polym. 75, 612–617. doi:
10.1016/j.carbpol.2008.09.005

Li, S., Assmann, S. M., and Albert,
R. (2006). Predicting essential
components of signal transduc-
tion networks: a dynamic model
of guard cell abscisic acid sig-
nalling. PLoS Biol. 4:e312. doi:
10.1371/journal.pbio.0040312

Lindermayr, C., Saalbach, G., and
Durner, J. (2005). Proteomic
identification of S-nitrosylated
proteins in Arabidopsis. Plant
Physiol. 137, 921–930. doi:
10.1104/pp.104.058719

Lisjak, M., Srivastava, N., Teklic,
T., Civale, L., Lewandowski, K.,
Wilson, I., et al. (2010). A novel
hydrogen sulfide donor causes
stomatal opening and reduces
nitric oxide accumulation. Plant

Physiol. Biochem. 48, 931-935. doi:
10.1016/j.plaphy.2010.09.016

Liu, J., Hou, Z., Liu, G., Hou, L.,
and Liu, X. (2012). Hydrogen sul-
fide may function downstream of
nitric oxide in ethylene-induced
stomatal closure in Vicia faba L.
J. Integr. Agric. 11, 1644–1653. doi:
10.1016/S2095-3119(12)60167-1

Loake, G., and Grant, M. (2007).
Salicylic acid in plant defence-
the players and protagonists. Curr.
Opin. Plant Biol. 10, 466–472. doi:
10.1016/j.pbi.2007.08.008

Lozano-Juste, J., and León, J.
(2010). Nitric oxide modu-
lates sensitivity to ABA. Plant
Signal. Behav. 5, 314–316. doi:
10.4161/psb.5.3.11235

Lu, D., Dong, J., Jin, H., Sun, L.,
Xu, X., Zhou, T., et al. (2011).
Nitrate reductase-mediated
nitric oxide generation is essen-
tial for fungal elicitor-induced
camptothecin accumulation of
Camptotheca acuminata suspen-
sion cell cultures. Appl. Microbiol.
Biotechnol. 90, 1073–1081. doi:
10.1007/s00253-011-3146-1

Manthe, B., Schulz, M., and Schnabl,
H. (1992). Effects of salicylic acid
on growth and stomatal move-
ments of Vicia faba L: evidence
for salicylic acid metabolization.
J. Chem. Ecol. 18, 1525–1539. doi:
10.1007/BF00993226

Martínez-Ruiz, A., Cadenas, S., and
Lamas, S. (2011). Nitric oxide
signalling: classical, less classical,
and nonclassical mechanisms.
Free Radic. Biol. Med. 51, 17–29.
doi: 10.1016/j.freeradbiomed.2011.
04.010

Meijer, H. J. G., and Munnik, T. (2003).
Phospholipid-based signalling in
plants. Annu. Rev. Plant Biol. 54,
265–306. doi: 10.1146/annurev.
arplant.54.031902.134748

Melotto, M., Underwood, W., and He,
S. Y. (2008). Role of stomata in plant
innate immunity and foliar bacte-
rial diseases. Annu. Rev. Phytopathol.
46, 101–122. doi: 10.1146/annurev.
phyto.121107.104959

Melotto, M., Underwood, W., Koczan,
J., Nomura, K., and He, S. Y.
(2006). Plant stomata function
in innate immunity against
bacterial invasion. Cell 126,
969–980. doi: 10.1016/j.cell.2006.
06.054

Moreau, M., Lindermayr, C., Durner,
J., and Klessig, D. F. (2010). NO
synthesis and signalling in plants-
where do we stand? Physiol. Plant.
138, 372–383. doi: 10.1111/j.1399-
3054.2009.01308.x

Mori, I. C., Pinontoan, R., Kawano, T.,
and Muto, S. (2001). Involvement

of superoxide generation in sal-
icylic acid-induced stomatal
closure in Vicia faba. Plant Cell
Physiol. 42, 1383–1388. doi:
10.1093/pcp/pce176

Munemasa, S., Hossain, M. A.,
Nakamura, Y., Mori, I. C.,
and Murata, Y. (2011a). The
Arabidopsis calcium-dependent
protein kinase, CPK6, functions
as a positive regulator of methyl
jasmonate signalling in guard cells.
Plant Physiol. 155, 553–561. doi:
10.1104/pp.110.162750

Munemasa, S., Mori, I. C., and Murata,
Y. (2011b). Methyl jasmonate
signalling and signal crosstalk
between methyl jasmonate and
abscisic acid in guard cells. Plant
Signal. Behav. 6, 939–941. doi:
10.4161/psb.6.7.15439

Munemasa, S., Oda, K., Watanabe-
Sugimoto, M., Nakamura, Y.,
Shimoishi, Y., and Murata, Y.
(2007). The coronatine-insensitive
1 mutation reveals the hormonal
signalling interaction between
abscisic acid and methyl jas-
monate in Arabidopsis guard
cells. Specific impairment of ion
channel activation and second
messenger production. Plant
Physiol. 143, 1398–1407. doi:
10.1104/pp.106.091298

Mur, L. A. J., Mandon, J., Cristescu,
S. M., Harren, F. J. M., and
Prats, E. (2011). Methods of
nitric oxide detection in plants:
a commentary. Plant Sci. 181,
509–519. doi: 10.1016/j.plantsci.
2011.04.003

Neill, S., Barros, R., Bright, J., Desikan,
R., Hancock, J., Harrison, J.,
et al. (2008). Nitric oxide, stom-
atal closure, and abiotic stress.
J. Exp. Bot. 59, 165–176. doi:
10.1093/jxb/erm293

Neill, S. J., Desikan, R., and Hancock,
J. T. (2003). Nitric oxide sig-
nalling in plants. New Phytol. 159,
11–35. doi: 10.1046/j.1469-8137.
2003.00804.x

Perazzolli, M., Dominici, P., Romero-
Puertas, M. C., Zago, E., Zeier,
J., Sonoda, M., et al. (2004).
Arabidopsis nonsymbiotic
hemoglobin AHb1 modu-
lates nitric oxide bioactivity.
Plant Cell 16, 2785–2794. doi:
10.1105/tpc.104.025379

Planchet, E., Gupta, K. J., Sonoda,
M., and Kaiser, W. M. (2005).
Nitric oxide emission from tobacco
leaves and cell suspensions: rate
limiting factors and evidence for
the involvement of mitochondrial
electron transport. Plant J. 41,
732–743. doi: 10.1111/j.1365-313X.
2005.02335.x

www.frontiersin.org October 2013 | Volume 4 | Article 425 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Physiology/archive


Gayatri et al. Nitric oxide and guard cells

Poór, P., and Tari, I. (2012). Regulation
of stomatal movement and photo-
synthetic activity in guard cells of
tomato abaxial epidermal peels by
salicylic acid. Funct. Plant Biol. 39,
1028–1037. doi: 10.1071/FP12187

Raghavendra, A. S., Gonugunta,
V. K., Christmann, A., and
Grill, E. (2010). ABA percep-
tion and signalling. Trends
Plant Sci. 15, 395–401. doi:
10.1016/j.tplants.2010.04.006

Romero-Puertas, M. C., Perazzolli, M.,
Zago, E. D., and Delledonne,
M. (2004). Nitric oxide
signalling functions in plant-
pathogen interactions. Cell.
Microbiol. 6, 795–803. doi:
10.1111/j.1462-5822.2004.00428.x

Saito, N., Munemasa, S., Nakamura,
Y., Shimoishi, Y., Mori, I. C.,
and Murata, Y. (2008). Roles
of RCN1, regulatory A subunit
of protein phosphatase 2A, in
methyl jasmonate signalling and
signal crosstalk between methyl
jasmonate and abscisic acid. Plant
Cell Physiol. 49, 1396–1401. doi:
10.1093/pcp/pcn106

Saito, N., Nakamura, Y., Mori, I. C.,
and Murata, Y. (2009). Nitric oxide
functions in both methyl jasmonate
signalling and abscisic acid sig-
nalling in Arabidopsis guard cells.
Plant Signal. Behav. 4, 119–120. doi:
10.4161/psb.4.2.7537

Santa-Catarina, C., Tun, N. N., Silveira,
V., Handro, W., Floh, E. I. S., and
Scherer, G. F. E. (2007). Rapid nitric
oxide (NO) release induced by PAs
in tobacco BY-2 cells and Ocotea
catharinensis somatic embryos.
Plant Cell Tiss. Org. 90, 93–101. doi:
10.1007/s11240-007-9259-7

Siddiqui, M. H., Al-Whaibi, M. H.,
and Basalah, M. O. (2011). Role of
nitric oxide in tolerance of plants
to abiotic stress. Protoplasma 248,
447–455. doi: 10.1007/s00709-010-
0206-9

Simontacchi, M., García-Mata, C.,
Bartoli, C. G., Santa-María, G.
E., and Lamattina, L. (2013).
Nitric oxide as a key component
in hormone-regulated processes.
Plant Cell Rep. 32, 853–866. doi:
10.1007/s00299-013-1434-1

Sirichandra, C., Wasilewska, A., Vlad,
F., Valon, C., and Leung, J. (2009).
The guard cell as a single-cell model
towards understanding drought tol-
erance and abscisic acid action.
J. Exp. Bot. 60, 1439–1463. doi:
10.1093/jxb/ern340

Sokolovski, S., and Blatt, M. R.
(2004). Nitric oxide block of
outward-rectifying K+ channels
indicates direct control by pro-
tein nitrosylation in guard cells.

Plant Physiol. 136, 4275–4284. doi:
10.1104/pp.104.050344

Sokolovski, S., Hills, A., Gay, R., Garcia-
Mata, C., Lamattina, L., and Blatt,
M. R. (2005). Protein phosphory-
lation is a prerequisite for intracel-
lular Ca2+ release and ion chan-
nel control by nitric oxide and
abscisic acid in guard cells. Plant
J. 43, 520–529. doi: 10.1111/j.1365-
313X.2005.02471.x

Srivastava, N., Gonugunta, V. K., Puli,
M. R., and Raghavendra, A. S.
(2009). Nitric oxide production
occurs downstream of reactive oxy-
gen species in guard cells during
stomatal closure induced by chi-
tosan in abaxial epidermis of Pisum
sativum. Planta 229, 757–765. doi:
10.1007/s00425-008-0855-5

Stöhr, C., and Stremlau, S. (2006).
Formation and possible roles
of nitric oxide in plant roots.
J. Exp. Bot. 57, 463–470. doi:
10.1093/jxb/erj058

Suhita, D., Raghavendra, A. S., Kwak,
J. M., and Vavasseur, A. (2004).
Cytoplasmic alkalization precedes
reactive oxygen species produc-
tion during methyl jasmonate- and
abscisic acid-induced stomatal clo-
sure. Plant Physiol. 134, 1536–1545.
doi: 10.1104/pp.103.032250

Sun, L. R., Hao, F. S., Lu, B. S., and
Ma, L. Y. (2010). AtNOA1 modu-
lates nitric oxide accumulation and
stomatal closure induced by sal-
icylic acid in Arabidopsis. Plant
Signal. Behav. 5, 1022–1024. doi:
10.4161/psb.5.8.12293

Testerink, C., and Munnik, T.
(2005). Phosphatidic acid:
a multifunctional stress sig-
nalling lipid in plants. Trends
Plant Sci. 10, 368–375. doi:
10.1016/j.tplants.2005.06.002

Tun, N. N., Santa-Catarina, C., Begum,
T., Silveira, V., Handro, W., Floh,
E. I. S., et al. (2006). Polyamines
induce rapid biosynthesis of nitric
oxide (NO) in Arabidopsis thaliana
seedlings. Plant Cell Physiol. 47,
346–354. doi: 10.1093/pcp/pci252

Umezawa, T., Nakashima, K.,
Miyakawa, T., Kuromori, T.,
Tanokura, M., Shinozaki, K.,
et al. (2010). Molecular basis
of the core regulatory network
in ABA responses: sensing, sig-
nalling and transport. Plant
Cell Physiol. 51, 1821–1839. doi:
10.1093/pcp/pcq156

Underwood, W., Melotto, M., and He,
S. Y. (2007). Role of plant stomata
in bacterial invasion. Cell. Microbiol.
9, 1621–1629. doi: 10.1111/j.1462-
5822.2007.00938.x

Uraji, M., Katagiri, T., Okuma, E.,
Ye, W., Hossain, M. A., Masuda,

C., et al. (2012). Cooperative
function of PLDδ and PLDα1
in abscisic acid-induced stom-
atal closure in Arabidopsis.
Plant Physiol. 159, 450–460.
doi: 10.1104/pp.112.195578

Vescovi, M., Zaffagnini, V., Festa, V.,
Trost, V., Schiavo, F. L., and Costa,
A. (2013). Nuclear accumulation
of cytosolic glyceraldehyde-3-
Phosphate dehydrogenase in
cadmium-stressed Arabidopsis
roots. Plant Physiol. 162, 333–346.
doi: 10.1104/pp.113.215194

Wang, J. W., and Wu, J. Y. (2004).
Involvement of nitric oxide
in elicitor-induced defense
responses and secondary
metabolism of Taxus chinensis
cells. Nitric Oxide 11, 298–306. doi:
10.1016/j.niox.2004.10.003

Wang, P., and Song, C. P. (2008).
Guard-cell signalling for hydro-
gen peroxide and abscisic acid.
New Phytol. 178, 703–718. doi:
10.1111/j.1469-8137.2008.02431.x

Wang, W.-H., Yi, X.-Q., Han, A.-D.,
Liu, T.-W., Chen, J., Wu, F.-H., et al.
(2012). Calcium-sensing receptor
regulates stomatal closure through
hydrogen peroxide and nitric oxide
in response to extracellular cal-
cium in Arabidopsis. J. Exp. Bot. 63,
177–190. doi: 10.1093/jxb/err259

Wang, X. (2005). Regulatory func-
tions of phospholipase D and
phosphatidic acid in plant growth,
development, and stress responses.
Plant Physiol. 139, 566–573. doi:
10.1104/pp.105.068809

Wendehenne, D., Durner, J., and
Klessig, D. F. (2004). Nitric oxide:
a new player in plant signalling
and defence responses. Curr.
Opin. Plant Biol. 7, 449–455. doi:
10.1016/j.pbi.2004.04.002

Wilson, I. D., Neill, S. J., and Hancock,
J. T. (2008). Nitric oxide synthe-
sis and signalling in plants. Plant
Cell Environ. 31, 622–631. doi:
10.1111/j.1365-3040.2007.01761.x

Wilson, I. D., Ribeiro, D. M., Bright,
J., Confraria, A., Harrison, J.,
Barros, R. S., et al. (2009). Role of
nitric oxide in regulating stomatal
apertures. Plant Signal. Behav.
4, 467–469. doi: 10.4161/psb.
4.5.8545

Xin, L., Shuqiu, Z., and Chenghou,
L. (2003). Involvement of nitric
oxide in the signal transduction
of salicylic acid regulating stom-
atal movement. Chinese Sci. Bull. 48,
449–452.

Xin, L., Wuliang, S., Shuqiu, Z.,
and Chenghou, L. (2005).
Nitric oxide involved in signal
transduction of jasmonic acid-
induced stomatal closure of Vicia

faba L. Chinese Sci. Bull. 50,
520–525.

Yan, J., Tsuichihara, N., Etoh, T.,
and Iwai, S. (2007). Reactive
oxygen species and nitric oxide
are involved in ABA inhibi-
tion of stomatal opening. Plant
Cell Environ. 30, 1320–1325.
doi: 10.1111/j.1365-3040.2007.
01711.x

Ye, W., Hossain, M. A., Munemasa,
S., Nakamura, Y., Mori, I. C., and
Murata, Y. (2013). Endogenous
abscisic acid is involved in methyl
jasmonate-induced reactive oxy-
gen species and nitric oxide
production but not in cytoso-
lic alkalization in Arabidopsis
guard cells. J. Plant Physiol. 170,
1212–1215. doi: 10.1016/j.jplph.
2013.03.011

Yoshioka, H., Mase, K., Yoshioka,
M., Kobayashi, M., and Asai,
S. (2011). Regulatory mecha-
nisms of nitric oxide and reactive
oxygen species generation and
their role in plant immunity.
Nitric Oxide 25, 216–221. doi:
10.1016/j.niox.2010.12.008

Zaffagnini, M., Morisse, S.,
Bedhomme, M., Marchand, C.
H., Festa, M., Rouhier, N., et al.
(2013). Mechanisms of nitro-
sylation and denitrosylation of
cytoplasmic glyceraldehyde-3-
phosphate dehydrogenase from
Arabidopsis thaliana. J. Biol.
Chem. 288, 22777–22789. doi:
10.1074/jbc.M113.475467

Zeng, W., Melotto, M., and He,
S. Y. (2010). Plant stomata: a
checkpoint of host immunity
and pathogen virulence. Curr.
Opin. Biotechnol. 21, 599–603. doi:
10.1016/j.copbio.2010.05.006

Zhang, B., Zheng, L. P., and Wang,
J. W. (2012a). Nitric oxide elici-
tation for secondary metabolite
production in cultured plant cells.
Appl. Microbiol. Biotechnol. 93,
455–466. doi: 10.1007/s00253-
011-3658-8

Zhang, H., Wang, M., Wang, W., Li,
D., Huang, Q., Wang, Y., et al.
(2012b). Silencing of G proteins
uncovers diversified plant responses
when challenged by three elic-
itors in Nicotiana benthamiana.
Plant Cell Environ. 35, 72–85. doi:
10.1111/j.1365-3040.2011.02417.x

Zhang, H., Dong, S., Wang, M.,
Wang, W., Song, W., Dou, X.,
et al. (2010). The role of vacuolar
processing enzyme (VPE) from
Nicotiana benthamiana in the
elicitor-triggered hypersensitive
response and stomatal closure.
J. Exp. Bot. 61, 3799–3812. doi:
10.1093/jxb/erq189

Frontiers in Plant Science | Plant Physiology October 2013 | Volume 4 | Article 425 | 10

http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology
http://www.frontiersin.org/Plant_Physiology/archive


Gayatri et al. Nitric oxide and guard cells

Zhang, H., Fang, Q., Zhang, Z., Wang,
Y., and Zheng, X. (2009a). The
role of respiratory burst oxidase
homologues in elicitor-induced
stomatal closure and hyper-
sensitive response in Nicotiana
benthamiana. J. Exp. Bot. 60,
3109–3122. doi: 10.1093/jxb/
erp146

Zhang, Y., Zhu, H., Zhang, Q., Li, M.,
Yan, M., Wang, R., et al. (2009b).
Phospholipase Dα1 and phospha-
tidic acid regulate NADPH oxidase
activity and production of reactive
oxygen species in ABA-mediated
stomatal closure in Arabidopsis.
Plant Cell 21, 2357–2377. doi:
10.1105/tpc.108.062992

Zhang, W., Qin, C., Zhao, J., and
Wang, X. (2004). Phospholipase
Dα1-derived phosphatidic acid
interacts with ABI1 phosphatase
2C and regulates abscisic acid
signalling. Proc. Natl. Acad. Sci.
U.S.A. 101, 9508–9513. doi:
10.1073/pnas.0402112101

Zottini, M., Costa, A., Michele,
R. D., Ruzzene, M., Carimi,
F., and Schiavo, F. L. (2007).
Salicylic acid activates nitric
oxide synthesis in Arabidopsis.
J. Exp. Bot. 58, 1397–1405. doi:
10.1093/jxb/erm001

Zweier, J. L., Samouilov, A., and
Kuppusamy, P. (1999). Non-
enzymatic nitric oxide synthesis

in biological systems. Biochim.
Biophys. Acta 1411, 250–262. doi:
10.1016/S0005-2728(99)00018-3

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 17 July 2013; accepted: 08
October 2013; published online: 29
October 2013.
Citation: Gayatri G, Agurla S and
Raghavendra AS (2013) Nitric oxide in
guard cells as an important secondary
messenger during stomatal closure.

Front. Plant Sci. 4:425. doi: 10.3389/fpls.
2013.00425
This article was submitted to Plant
Physiology, a section of the journal
Frontiers in Plant Science.
Copyright © 2013 Gayatri, Agurla and
Raghavendra. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or repro-
duction in other forums is permitted,
provided the original author(s) or licen-
sor are credited and that the original
publication in this journal is cited, in
accordance with accepted academic prac-
tice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

www.frontiersin.org October 2013 | Volume 4 | Article 425 | 11

http://dx.doi.org/10.3389/fpls.2013.00425
http://dx.doi.org/10.3389/fpls.2013.00425
http://dx.doi.org/10.3389/fpls.2013.00425
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Physiology/archive

	Nitric oxide in guard cells as an important secondary messenger during stomatal closure
	Introduction
	Hormones: ABA, Ethylene, Methyl Jasmonate
	Microbial Elicitors
	Salicylic Acid
	Phospholipids
	Polyamines
	Sources of No
	Signaling Components in Guard Cells During no Action
	Concluding Remarks
	Acknowledgments
	References


