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Suppose a point Trocess is attempting to operate asclosely as possible to a deterministic rate p, in 
the sense of aiming to produce pt points during the interval (0, t] for all t. This can be modelled by 
making the instantaneous rate of t of the process a suitable function of n - pt, n being the number of 
points in [O, t]. This paper studies such a self-correcting point process in two cases; when the point 
process is Markovian and the rate function is very general, and when the point procesrj is arbitrary 
and the rate function is exponential. In each case it is shown that as t +m the mean number of 
points occurring in (0, t] is pt +0(l) while the variance is bounded: further, in the Markov case all 
the absolute central moments are bounded. An application to the outputs of stationary D/M/s 
queues is given. 

Comparison method 
controlled variability 
count-conditionaf intensity 

Markov 
point process 
self-correcting 

1. introduction 

Consider a point process IV(-) on [O,(Q). Denote by N(r) the number of points in 
(0, t], with N(0) = 0, and let h(t) and V(t) represent its mean and variance, 
respectively. 

Initially, suppose N( l ) is also Markoviun so that, in more usual language, it is a 
pure birth process. Assume it has an instantaneous birth rate h,(t) at time t, given 
N(t j = n. 

In this paper, we study the case 

A,(t)=p&V--pt) (n =0,1,2, *. *; taq, (1) 

where p is a positive finite constant and 4( .) has the following properties: 

(AU O~~(x)<oo (XE , the real line), 

(A2j (3cu > 0)&n) 2 Q (x CO), 

(A3) li$Ef dl:x)>l,limsup9(Xj<l. 
x-++cD 
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Informally, we may describe the situation as follows. There is a target for N( - 1, 

namely that it operates at a rate p in the strong sense of aiming to produce pt points 
over (0, t]. (The weaker aim of merely operating at an instantaneous birth rate p can 
always be achieved by a suitable change of time scale). The process is self-correcting 
in that if the difference between N(t) and the target pt strays too far from zero the 
birth rate automatically compensates to force this difference back towards zero; 
mathematically, this is contained in (A3). Property (A2) serves to ensure that N( l J 

does not get stranded below pt. A simple vivid special case is & - ) nonconstant and 
nonincreasing over R with d(O) = 1. 

Because of the strong nature of the correction mechanism it seems almost certain 
that p(t) is approximately pt. It is also plausible that the variability of the procless 
about its mean, as exemplified by the absolute central moments of N(t), is bounded 
as t increases. We prove these results in Section 2 of the paper, thus establishing in 
particular that .N( *) is a point process of controlled variability [9]. 

In Section 3 we no longer assume N( * ) to be Markovian. Let its complete intensity 
function be d\. (t IF,), where F, is the g-field generated by {N(s),0 B s < t} ([J]; A ( . 1 - ) 

is aiso known as the conditional intensity function j. Following Snyder 113 j we define 
the count-conditional intensity i,,(t) by 

X,(t)=E{h(tIF,)IN(t)=n}, 

where the expectation is over the history of N( - ) to the left of t. It is now an exercise 
in conditional probability to show, under obvious regularity conditions, that the 
probabilities p,, (t) = P{N( t) = n} satisfy the usual Kolmogorov forward equations for 
a birth process with birth rate X,(t), the boundary condition being PO(O) = 1 [13, 
‘Theorem 5.2.11. That is, the marginal counting distributions over [0, t) of the 
non-hlerkov point process and the “corresponding” (Markov) birth process, given 
the initial conditions, are identical. Were N( - ) in fact Markov then clearly i,( * ) = 

L(-). 

Although this perspective may be unfamiliar the idea is extensively used by 
Snyder. Of course, in general A,( B) does not help us to determine other properties of 
N( . ) and it may be very difficult to calculate in any particular case. However, it was 
‘consideration of situations where A,( .) itself might have a simple and meaningful 
form which led to the present investigation, since it is reasonable that a self- 
correlating mechanism with the target considered in this paper should operate purely 
from the current value of N(t) even for a non-Markov point process (we owe this 
remark to Professor D.R. COY) 

Because in principle the moments of N(t) are determined by the f;,,(t) we could 
hope to study them quite generally by solving the forward equatiors when A,,( - ) 
takes the form ( 1) to get an explicit expression for these moments. Wnfortunately the 
e&ati\>ns do not typically have a closed-form solution then; the only exception of 
which wt gre avrare is when 4(x I = e-” ). The main result of Section 3 is 
that the correspond.ing point process is one of controlled variability, thus demon- 
strating that the Markovian theorem is still valid, in one case at leas:, even for 
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non-Markov self-correcting point processes. However, the method of proof, a direct 
analytical attack on the variance formula, is in marked contrast to the technique for 
the earlier result which relies essentially on the Markov property. A similar 
conclusion is no doubt trl\e for the higher absolute central moments, but the algebra 
seems prohibitively complicated and in any case the variance is of principal interest 
for most purposes. 

Finally, in Section 4 we briefly discuss the necessity of the assumptions (Al)-(A3) 
and give an application to the outputs of stationary D/M/s queues. 

2. The Markov case 

In this section we assume that the point process ,Iv( - ) described in the Introduction 
is Markovian. Denote its jump times by {Sj} v = 1, 2, . . .), with So = 0. Clearly ($1 is a 
nonhomogeneous Markov chain. We also define Y(t) = N(r) - t, a homogeneous 
jump-linear Markov process with unit jumps upwards, at {S}, and a linear deter- 
ministic drift downwards between jumps. Its instantaneous jump rate at t, given 
Y(r) = y, is 4(y). Note that henceforth we take p = 1 without loss of generality. 

Theorem 1. If Nt -) is a Murkov point process on [0, 00) with birth rate given by (l), 
then as t +m, 

(i) limsup]p(t)-t]<oo, 
(ii) lim sup El/V(t)--b(t)]‘<oo (r>O). 

Note. It will llecome clear during the proof why neither quantity actually converges. 

Proof. This is conveniently divided into the following sequence of lemmas. 

Lemma 1. Y( + ) is regenerative, one set of regeneration points being those at which 
Y(t) = 0. The associated renewal process is periodic, with period 1. 

The definition of a regenerative stochastic process may be found in [ 11,121. Given 
this, the lemma is obvious and needs no proof. Note that Y( - ) regenerates during a 
downward drift, i.e. reaches 0 from above, with probability one. 

Let the mean interval between regeneration points of Y( - ) be po. 

Lemma 2. We havp prj < a~, whence 

C& P{ Y(n) E A 1 Y(0) = 0) = _!- T B(Y(n)EA, Y(t)#O(O<t~nn)j Y(,O)=O) 
/Jo ?I=0 

= W(A), say, 

for any Bore1 set A on 
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Prwf. Because the process regenerates during a downward drift, i? is necessary to 
show po< a3 in two stages; first prove that the expected time until Y( l ) fxrst enters 
(0, CIO) is finite, then do the same for the time until next Y(t) = 0. Both results are very 
intuitive, since from (A3) the average “drift” of Y ( * ) is eventually towards the axis, 
and formally they are consequences of Theorems 4 and 4’ of Tweedie and Westcott 
[IJ]; see Section 3.3 of that paper for a detailed treatment. Note that the persistence 
of the regeneration points follows from the finite mean. 

Having established p. c 00 the rest of the lemma is Theorem 3 of Smith [ 1 I]. 

Lemma 3. For any r > 0 Cm,_+, E{IY(n)lr}<@ ifandonlyif~~haprcrbaisilirydisrribu- 
tica induced by W( - ) has finite rgh moment. 

Clearly { Y(n )) is an irreducible ergodic Markov chain on (ti, I, . . . } so the 
result follows f;om Theorem 2.1 and Remark 2.2(2) of Holewijn and Hordijk [S]. 

For the next two lemmas, note that from (A3) we may find k >O, PI> 1, @ZC 1 
such tirat 

+gwqih Lx<--k), t$(x;s& (X>k‘L 

Lemma 4. P(Y(n) s -y, Y(u)=cO (O<UWZ) 1 Y(0)=O}wza,e-‘y (y>O), 
n = 1,2, . . .), where 5 is a posirive constanf, a, 3 0 and Ef a, < a. 

Itrtwf. Correspocding to N(. 1, define a new point process N*( * 1 on 10, OQ) by its 
jump times {Sr}G = I, 2,. . . ), where Sg ~0 and 

SE. =max($, i) <Si*-I >1;-- l), 

=sF k 
v = 1,2, * . . ); (2) 

~~therwi~e~ 

so (ST} is also a Markov chain. Not{; that Y*( - ) “explodes” to +OO instantaneously as 
soon as it becomes nonnegative. 

Let the transition functions for Si bt 

gi(x;z)=P{S+zIST-l =x} u=l,2,...;x,z~R); 

note that pj( +, - ) is a distribution function in its second argument. Then 

pi(x;r)=l-exp - 
I I 

‘&ij.-l-t)dr 
X 1 

(XI+--l,Zbj,XbZ), 

=H(z-x) (X+-l), (3) 

= 0 otherwise, 

where W( * ) is the Heaviside unit function. Further, for each fixed t and i, 

&(X; z&g;(,l; 2) (y G.w). (4) 
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If now we have another self-correcting point process NI( . ) with jump times {q} 
and 

denote the transition functions of the corresponding (TT ), defined as in (2), by 
l ) thus takes the form (3) with 41 instead of 4. Then from (5) and (4), for 

each fixed t and j, 

We take 

O>X .3-k, 

xc-k. (71 

We may now apply a comparison technique due to O’Brien [ 1 OJ to conclude that 

(Strictly, O’Brien’s results are al1 for homogeneous chains, but as he points out the 
modifications required to extend them to the nonhomogeneous case are straight- 
forward and are left to the reader. Our (6) is t:.e nonhomogeneous analogue of 
O’Brien’s (3.2)). Then the fundamental duality between intervals and counts in a 
point process let us deduce from (8) that 

P(Y”(n)s -y, Y*~~)<o(o<~~~)~Y*(o)=o)~ 

cP(YT(n>s -y, YT(U)<o(o<UBn)J YT(O>=O} (9) 

( #2=1,2,...,y>O)* 
The point of this manoeuvre is that the right side of (9) effectively involves only a 

Poisson process IV? ( 0 ), rate either cu or PI, which is easier to handle. For consider a 
last-exit decomposition [3, p. 461 for Y 7 ( l ) based on a downward passage across -k. 

Clearly this is a delayed recurrent event and by Lemma 2 it is transient, so the 
associated renewal sequence {U,) satisfies C’p U, < 00. The decomposition gives, if 

Y=A 

P(Y? (n)G -y, Y~(u)<O(O<ucn)j YT(O)=O)= 

n+k-y 

= m;k U,P{YT(n)+y, Y~(u~~O(O~uQzn)l 

last exit. from E-k, 0) at m, YT (0) = O}. 

(10) 

Since in (10) we only consider events in the Y:’ ( * ) process before 11 ‘.z+?~s”, 
the same equation holds for Y1( * ). Further, by the construction of rV,( *), it may be 
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treated as a Poisson process of rate @r for the event whose probability is sought in 
(10). Since the Poisson process has independent increments, we find 

m+k -y 

RHS of (10)~ ,c=k U,,,P(Nr(n -m)-(IZ-m)<-y+kJN,(O)=O) 

n+k-y 

s ,C-k urn e 
CC-y+k+n-m) e&(n-m)(e-c-l) 

U>W, 

from the elementary inequality P(X G x) G ezx E(ewix)(& x > 0) for any normgative 
random variable X, 

G “i, U,C eecy e-y(n-mt, 

where 0 < C < 00, 5 > 0, ‘J! > 0; we may make y = @I( 1 -e-&i - C positive by suitable 
choice of 5, 

=a, eeby, 

say, where a, = C &k u, e-v(n-m’. As 

!E a, SC f 2 U, e-y(n-m’ 
n=l n=l m=l 

the lemma is provpci when y > k. For 0 < y s k, take 

a,=e~kP{Y(u)<O(O<uSn)~Y(0)=O}; 

then eeck ‘,T a, is the mean first-passage time across zero which is finite by Lemma 2. 

Lemma% P{Y(n)>y, Y(u)#O(O~:u en)] Y(0)=O}aa~e-CY(y)O,fl = 1,2,...), 
where t is a positive constant, al, 2 0 md C? a; < CO. 

Proof. This is in many respects similar to the previous proof so will only be sketched. 
The principal difference is that, as in Ltzrma 2, we must consider the sojourns of 
Y( .) brtlow and above the axis separately. We have 

P(Y(,)>y, Y(u)fO(O<az~n)~Y(O)=0}= 

” 
=: 

II 

0 
P{ Y(S) =x, Y(U) cx) (0 < v Ss) 1 Y(0) =0)4$(x) 

0 -1 

(Y(n)>y, Y(u)fO(s<u~n)tY(st)=x+l)~ds 
(11) 

{Y(n)>y, Y(u)#O(s~u~n)~Y(s+)=x+l}dxds, 

where M = sup XE(--l.n~&)<a, by (Al), and t/i(s) = 
Lemma 2, 5,” 9(s) ds < 00. 

(Y(U)~O,O<USS). By 
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Now exactly as in Lemma 4 we can construct a process Y2( * ) which is “more 
extreme” than Y( s) in (0,~) and is based on a point process Nz( .) which is Poisson 
of rate & < 1 whenever Yz > k. Then in (11) we again use a last-exit (from (0, k]) 
decomposition, this inducing a delayed renewal process in continuous time. Let its 
renewal function be H(. ); since the process is transient we have H(m) < 00 The 
decompositior, gives, eventually, if y > k, 

P{Yz(tt)3y, Y2(U)it0(SeU~n)lY~(s+i)=x+l}c 

n k+1 
S 

II 
P{ Yz(n) > y, Yz(u) # (! (s < u s n) 1 last exit from (0, k] at u, 

s k 

Y2(v+) = z, Y2(s+) =x + I} dz dH(u) 

s “P{&(n-v)>n-u+y-(k+l)/N~(O)=O}dH(v), 
I S 

where N2( - ) is Poisson, rate 02 c 1, 

s c e-b 
I 

n e-v’(n-o’ &f(o), (12) 
s 

using the same sort of inequalities as before, where 0 < C e OD, C > 0, y' I=- 0. From 
(11) and (12), if y > k, 

P(Y(n)>y, Y(u)#O(Oa.4~n)] Y(O)=O& 

” <MC eeZY 
II 

” J/(s) e-“(“-“) dH(u) ds 
0 S 

= a k e+, say. 

And 

!a: cl/(s) e-v’(n-vf dH(v) ds 

SC’ Irn #(s)ds g l’+l e-Y”‘-“‘dH(v) 
0 j=O j 

d C" 
I 

00 

CL(S) ds - H(m) e 00, 
0 

as required. For 0 < y s k, the argument is as before. 

To complete the proof of the theorem, we have the identity 

~clxlr>=r J=ir-l P{/X(x)dx (c-0). 
0 

(13) 

So from Lemmas 2,4,5 and (13), the absolute rth moment of W( - ) is bounded by 
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which is finite. Thus lim,,, E{I Y(n)l’)< 00 by Lemma 3. Now if n s t C n + 1 (n an 
integer) we get, by repeated USI: of Irr + b]’ s 2’flaI’ + lbl’), 

IEC: W)l’) -%I Yb)l’N d 27 ww- mrl+ 
(N(n+l)-N(n))“+l+ 

624r[E(IY(n +l)lr~+~~~Y~~~~r~~ I] 

which remains bounde:d by the convergence of E(/ Y(n)(‘). Hence, for all I* > 0, 

which implies 

lim sup lE( Y (#I’ C W. 
r-+dll 

Results (i) and (ii) now follow readily. 

ov case with d)(x) = evclx 

As described in Section 1 we now consider I?( l ) to be a general point process with 
a rather specific ifi( 

Theorem 2. If N( - > is a point process on [O, Co) with count-conditional intensity 
i”(t) = ,-@cn-o (t :*O; n = 0, I, 2,. . . ), where 0 > 0 is constant, then as t -, 00, 

6) 

(ii) 

Proof. 

lim sup/h (I) - tic 00, 

lfrn sup V(t) C 00. 

The ‘Kolmogorov equation? for p,(t) are 

A ‘(dldOp,W = ‘hnP4(l)fAI-1Pn-I(C)(1~S,.o) (n “0, 1,2,. l l )* (14) 

where A = eve (so 0 <A < 1) and ;Sn,o is the Kronecker delta, with p,, (0) = a,,~. l3ut as 

the coefficient involving time has facLQred out, by changing the time scale to 
r = 6-‘(A-’ - 1) (14) can be made homogeneous. The general solution is now well 
known [l, p. 571 and lieads directly to 

‘1’2)‘ff+1%r~(h)}{ f (1 -e-A~)wi(Aj], (15) 
i-0 

CNWW) - 1H 
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with 

VW= P[23w+d79-P2w 

In these formulae we have written q(A) for mizI (1 -A’)}-‘. 

To aid in the dissection of (IS)-(17) we state: 

NW 6. Consider a sum of the form Cz”=o aj(r)bj, where 

(i) OCbj r basj+m; 

(ii) O<aj(7)tlas7+Wforeachfixedi=0,1,2,...; 

(iii) O<Aj(T) = C{=o al(T) t Am(~) < 00 QS j + a~ for each fixed T. 

E’ten as 7 + 00, 

f aj(T)bj = A,(T)6 - jfo (i t l)(bj+r- bj) sO(l)* 
j=O 

343 

(17) 

(1% 

Lemma 7 

,ir (I- A ‘x) = ,I ( - 1)‘A (1’2)i(i+1)XiWj (A), (19) 

(,i, (l-A'~)}-'=,~o(AX)'~j(A) (O~x<A-‘)* (20) 
e *_ 

Lemma 8. If f( a) is a differentiable function on [O, 00) with derivative f’( . ), then 

where [x] = integer part of x. 

Lemma 6 is proved by routine analysis plus summation by parts; Lemma 7 is just 
algebra (see [7, p. 489]), while Lemma 8 is a version c)f the Euler-Maclaurin . 
summation formula. 

For notatioral convenience let B1 and B2, respectively, represent the firs’t sum in 
each term in (16). Applying Lemma 6 to the second suin in (15) we have b = n,(A) 
so, from (19) with x = 1, B1b = 1. Thus as 7 3 00, 

p(T) = jio (1 -e-“‘p-Br 2 jA’Vj(A)+O(l), (22) 
j=l 

and let Cr = B1~~=, jAjwj(A). But from Lemma 8, 

f (l_e-A’ 
j=O 

?_l,(l_e-Te-e.)dx+l-e-T+ 
0 

(23) 
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say, where R I( - ) represents the final ‘remainder’ term in (2 1). The integral in (23) is 
easily seen to be 

8-l log~+O-l~+O(e-‘) (24) 

as 7 + co, where y is Euler’s constant, and further 

\R1(7)1 =Z Id0 jf’(x)l dx = 1 -e-‘S 1. 

So from (24)-(25), as T + 00, 

p(4) = K’ log 7+0(l) 

and we arrive at (i) by changing back to the original time scale. 

For the variance, use Lemmas 6 and 7 as above on (16) and (17) to get eventually, 
as 7300, 

V(7)= 2 F j(l-em*‘?- 
jl;b 

2 (l-e? ‘+Ci f (l-e-Ai~+O(l), (26) 
j=o I j-0 

where C2 = (2&b + 1 f 2Cr -o({log T)-I)). Apply Lemma 8 to the first sum; the 
resulting integral may be evaluated to give 

z j(] -_e-“’ ‘3 = (2e2)-z log2 7 + @-* log 7 + 
j=O 

+(2e2~-‘(~n”+v2)+R2(t)“t.0(e-*) (27) 

as 7 + ~0, Rz( .) being +h~ ‘?errkxk” term as before. So from (23)-(27), after some 
simplification, as 7 + co, 

V(7)=@ log r(C3-2-2R?:7)}+2R2(7)+0(1), 

where C, = 2&b + 1 + 2Cr. 
To assess the contribution from th 2 “remainder’* terms, consider D(r)= 

~{Rz(T) - 8-l log err}, with r = e”“+’ ( where I is an integer and OS q < 1. We 
find that 

I 
0 

-2 (~+~-[y-t~])e~C~HY(1+6ye~eY~dy 
--(I +V) 
43 

+2 
I 

(~+~-[~~+~J){l-e-e--(lv(l+Bye~~BY)dy 
0 

=8-’ log 7+0(l) 

as T + 00, since clearly the latter two integrals remain bounded. Thus 

v(7’)=6-l lOgT(c~-- 1)+0(l). 
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Finally, differentiation of (20) at x = 1 yields the identity 

that is, CiB;’ + 6’& = 0. Combined with Bib = I this shows C’3 - 1 = 0, and we have 
proved (ii) and the theorem. 

Two comments on this result are in order. First, it is perhaps not obvious from the 
above proof that I - t and V(t) do not actually converge, though since the proof is 
equally valid in the Markov case we know from Theorem 1 that they cannot. In fact, 
by taking limits of R,(r) down the sequences eerrtr?’ used elsewhere in the argument 
it can be shown that the limits exist but vary with q; that i’s, p(t)- t oscillates 
boundedly for large t, and similarly for V(t). 

Second, if N( 0) is Markovian and &( - ) exponential a simple alternative proof of 
Theorem 2 can be based on recent results of Grimmett [6] about point processes with 
independent intervals having geometrically increasing means. In our notation, he 
shows (on the r-scale) that as r + 00 the lim sup and lim inf of P(N(T) - V(T) 6 u} are 
explicitly calculable distribution functions, where V(T) is a suitable increasing 
function which in our case can be 8-l log T. Taking the interval distributions as 
exponential we thus have Lemma 2 with a specific W( - ) and a direct argument such 
as on p. 682 of Grimmett’s paper easily produces the exponential bounds of Lemmas 
4 and 5, and hence the controlled variability. However since his paper makes crucial 
use of the independence of the intervals it :annot assrst in the: non-Markov case. 
Incidentally, the nonexistence of a unique limit for the above probability is a 
consequence of the periodic nature of the underlying regenera?ive process and not 
for the reason given on p. 676. 

4. Discussion and an application 

The conditions (Al)-(A3) on qfr(. ) are mild and reasonably intuitive for a 
self-controlling process. We now discuss briefly the possibilities for further relax- 
ation. 

The consequence of (A3) that 4( v) eventually stays away from 1 is unlikely to be 
dispensible in general, though in a particular case some weakening may be possible. 
Certainly our proof uses this consequence crucially in Lemmas 4 and 5, but more 
generally it is known that unpleasant things happen to the recurrence properties of a 
state of a Markov chain if the mean “drift” towards that state can become arbitrarily 
close to zero while remaining positive. Thus without this form of lA3) we may not get 
the essential positive recurrence of Y( .) in Lemma 2. 

As mentioned in the Introduction, (A2) is designed to euarantee Y( I ) does not get 
marooned below zero, Clearly weaker versions would suffice-essentially we need 
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only that (b(a) is never zero over an interval of length greater than one-but our 
choice is both simple and convenient. 

The restriction b(x) < a~ in (Al) is also one of convenience and the reader may 
convince himself that, witir some extra argument, it could be removed. Similarly, we 
could allow atoms in the birth rate without affecting the conclusions; in fact, on 
occasions they can make the proof more simple by restricting the range of the 
process! 

Finally, we turn to the following application, su sted by Dr. D.J. DaSey. 
Consider a D/M/s queue (s 3 1) starting idle at time O-, with unit-spaced arrivals at 
0, 1,2,. . . and mean service time a-‘, with as > 1. Because of the exponential 
service distribution the output of the queue is a Markov point process and it is easily 
checked that the departure rate has the form (1) with 

[o (X>O)r , 
tJ++ ja 1 (-~<xc-o’-1);~~1,2,..*,~), 

sa (x a--S). 

Then from Theorem lv.2 have that the variance of the number of departures in [O, I) 
from a non-equilibrium D/M/s queue is bounded. For the stationary queue starting 
at 0 in equilibrium the number of departures in [O, I), N(r). may be represented as 

N(t) = N'(t) t N”(t), 

where N’llf) is the number of departures :n [O, I) during the initial busy p&ad and 
N”(t) is the number durk y pcriatdFl (note that N”(t) will nst 
contribute if the initial busy till rrnning trt I). Now 

jr parlad inltlatod by 
mamsnt nf t 
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