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CUP-i PRODUCTS AND THE ADAMS 
SPECTRAL SEQUENCET$ 

DANIEL S. KAHN 

(Received 28 October 1968) 

$1. LNlXODlJClION 

THE COHOMOLOGY H(A) of the mod 2 Steenrod algebra A is isomorphic to the E2 term of 

the mod 2 Adams spectral sequence {E,(S’)} [2]. In this paper we extend the results of [5] 

in relating cup-i products in H(A) to the structure of the Adams spectral sequence. 

The main result of the paper is contained in 

THEOREM (1.1). Suppose that c( E EZJsSCf (So) is a permanent cycle and that both 

(i) (k + 1) I p(t + k + 1) and 

(ii) (t+k)~2if’-1mod2if’,i=0,1,20r3. 

Then Sqkx is a permanent cycle and Sqk+21cI survives to E2r+l(So) where 

(1.1) occurs in this paper as Theorems (5.1) and (5.4). In the statement of (l.l), 

p((2af 1)2cf4d) = 2’ + 8d where 0 I c < 4. Also, Sq, CC = CL lJk CL (Sq,cl should not be con- 

fused with Sq’a.) 

For k = 0, the differentials given in (1.1) correspond to identities in x,~(S’) = G, . 

For example, if a E G,, then 2~~ = 0 if t is even and vu2 = 0 if t E 3(4). Identities such as 

these are proved using the quadratic construction which is also the main tool in the present 

study. The quadratic construction is a functor from pointed spaces to filtered spaces which 

has been studied by J. F. Adams, M. G. Barratt and M. Mahowald (unpublished). Theorem 

(4.4), our main technical result, was an early conjecture in the study of the quadratic con- 

struction. The author is indebted to J. F. Adams, M. G. Barratt and M. Mahowald for con- 

versations and correspondence which were helpful in the present work. 

This paper is organized as follows: 

92 recalls the construction of the cup-i products in the cohomology of the Steenrod algebra. 

$3 outlines the quadratic construction. The main technical results are proved in $4, and the 

applications of Theorem (4.4) to the Adams spectral sequence are carried out in $5. The quad- 

ratic construction can also be used to define cup-i products in G, . 96 discusses the relation 

of some of these homotopy operations to the cup-i products in H(A). 

t This research was supported in part by NSF GP-5591. 
$ A preliminary announcement of this research appeared in: D. S. KM, Squaring operations in 

the Adams spectral sequence, Bull. Am. math. Sot., to appear. 
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$2. CUP-i PRODUCTS IS H(A) 

In this section, we recall the definition of squaring operations in the cohomology of A, 

the mod 2 Steenrod algebra [6; Chapt. II, $51. The construction itself applies to any connec- 

ted co-commutative Hopf algebra over Z1, but our only concern is with the Steenrod 

algebra. 

The cohomology of A may be calculated from the bar construction B(A)[l, p. 321. 

Thus, H’*‘(A) is a subquotient of Hom,*(B,(A), Z,). B(il) @ B(rt) is made into an A-module 

via the diagonal map $ : A --f A 0 A. Since B(A) 0 B(A) is acyclic, 2 an A-map D, : B(A) 

+ B(A) @B(A) commuting with the augmentation. D, may be used to compute cup pro- 

ducts in H(A). 

Since A is co-commutative, the twisting map p : B(A) 0 B(A) -+ B(A) 0 B(A) given by 

x 0 y --* y @ x is an A homomorphism commuting with augmentation. Again using the 

acyclicity of B(A) @ B(A), there exists a chain homotopy 

D, : B(A) -+ B(A) @ B.4 

such that aD, + D, C? = pD, i- D,. (No signs are needed since we are working mod 2.) 

Continuing as in the definition of the Steenrod operations in ordinary topology [8; v’, $91, 

we obtain a sequence of A homomorphisms 

Dj : ‘n(A) + (‘(A) 0 B(A))” + j 

such that 

(2.1) D, commutes with augmentation, and 

(2.2) forj > 0, 8Dj + D, 8 + Dj-1 + PDj-1 = 0. 

If {DjJ and {Dj’) are any two such sequences, there exists a sequence of A maps 

Ej : B”(A) * (B(A) 0 B(A))n+j > i 2 0 

such that 

(2.3) E. = 0, and 

(2.4) forj 2 0, dEj+l + Ej+l a + Ej + PEj + Dj + Dj’ = 0 

We now define, for zl E Hom,‘(B,(A), Z,), an element II U i II E HomAzz(E&_ i(A), Z,) 

by 

(U Ui u)(a) = (U X J-‘)(Di a), 

where G E B,,_i(A). Using (2.1) and (2.2), we see that if II is cocycle, so also is 11 Ui u and 

that the cohomology class of u ui zl depends only on the cohomology class of u. Using 

(2.3) and (2.4) we see that the cohomology class of II ui zi does not depend on the choice of 

the sequence {Dj} satisfying (2.1) and (2.2). Thus we have defined Q Ui x E Hz‘-‘*“(A) for 

t( E H”*‘(A). We will also write 

Sqir = Sq zs-iu = r UiX. 

Remark (2.5). In order to define r U i t(, it suffices to define Dj satisfying (2.1) and (2.2) 

only for j I i. 
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$3. THE QUMlRVl-IC COSSTRUCTION 

We describe here the quadratic construction, a functor from pointed spaces to filtered 

spaces which has been studied by Adams, Barratt and 1Mahowald (unpublished). The results 

of this section are well known to these authors. For convenience, we shall only discuss the 

construction for finite CW complexes with base point. 

Let X be a finite CIY complex with base point. Denote by Q’“(X) the space S” Ix 

(X A X). (If B is a space with base point 6,, A Ix B shall mean (A x B)/(A x b,).) Define 

the involution T: Q’“(X) -+ Q’“(X) by T(x, y, z) = (-x, z, y), where --x is the point 

of S” antipodal to x. This defines an action of Z, on Q’“(X) and we define p(X) = 

Q’“(X)/Z, . Q(X) shall mean Q”(X) and is called the quadratic construction on X. Q(X) 

is naturally filtered by the subspaces {Q”(X)}. 

If f: X -+ Y is a map of pointed complexes, then Q’(J) : Q’(X) -+ Q’(Y) defined by 

(x, y, z) --+ (x, I, f(s)) induces a map Q(f) : Q(X) -+ Q(Y) and Qcr> I Q”(X) = 

Q”(f) : Q”(X) -+ Q”(Y). Thus each Q” is a functor and if n < m, Q” is a subfunctor of Q”. 

Example (3.1). Qn(Sm) is homeomorphic with S” A P,,,m+n = CmP,mf”. (By P Bb we mean 

the stunted projective space R PhIRPY- ‘.) 

Proof. Q”(F) may also be described as the one point compactification of (S” x R” 

x Rm)/Z2 where the action of Z, on S” x R” x R” is given by T’(x, y, z) = (-x, z, JJ). 

Now S” A Pmm+” can be described as the one point compactification of (S” x R” x R”)/Z, 

where the action of 2, on S” x R” x R” is given by T”(x, y, r) = (-x, y, -z)[4, p. 2051. 

Since, as is easily seen, (S” x R” x R”, T’) and (S” x R” x R”, T”) are equivariantly homeo- 

morphic, the result follows. 

We leave it to the reader to verify the following three elementary properties of the quad- 

ratic construction. 

PROPOSITION (3.2). If f, g : X -+ Y are homotopic relative base points, then there exists 

a homotopy H : Q(X) x I + Q(Y) of QCf) to Q(g) such that H ] p(X) x I gives a homo- 

toPY ofQY_f-> to Q"w 
COROLLARY (3.3). If X and Y have the same homotopy type as pointed spaces, then 

Q(X) and Q(Y) have the same homotopy type, preservin,ofiItration. 

PROPOSITION (3.4). Q”(X)/Q”-l(X) E S” A X A X and Q”(‘_f)/Q”-l(f) z s” A f AJ 

$4. THE MAPi THEOREM 

Our discussion of the Adams spectral sequence will follow the exposition given in 121, 

with the exception that we will use the smash product rather than the join in treating pro- 

ducts, Finite CW approximations through the stable range respecting base points will be 

used. We will omit specific mention of the skeletons on which various stable constructions 

may be carried out. 

Let W, 3 W, =J be a realization for B(A) with W, having the homotopy type of 
‘II S- . Let Y, 3 Y, 2 be a realization for B(A) with Y0 having the homotopy type of S”. 
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Then Z, = Y, A Y, with the product filtration is a realization for B(A) 0 B(A). The switching 
map 7 : Y A Y * Y A Y is a realization of p : B(A) @ B(A) -+ B(A) 0 B(A), the switching 
map for B(A) @ B(A). 

LEMMA (4.1): Ifn = 2q where q 24(r) [?I], S” = P,” is Q retract ofPnntr. 

Proof. [3,4]. 

Let b, r : yp,n+r = Qr(S”) --f S’” be the n-fold suspension of such a retraction. Since 

Q’(Y,J N- g(S”), there exists a map @‘, : o_‘(Y,) --i IV, equivalent to 4,. 

Let 0, : S’ [x (Y, A YO) --) Q’(YO) be the identification map. Denote by E+’ (E_‘) the 
upper (lower) hemisphere of S’. Let 

&*: @*‘lx (Yo A Y,) 3 S’IX (Y() A Y,) 

be the inclusion map. 

PROPOSITION (4.2). Let n = 2q, q 2 C#I (r). Then there exists a map 0, : s’ 1 x (Y, A Y,,) 
--) W, such that 

A) O,o T= O,, 
3) there is an eqztiuuriunt homotopy H’ of 0, to D 0 Br (yielding 0,/Z, N CD, : Q’ 

(Y,) --) KJ, and 
C) O,(S’ 1 x Z,) c W,_, for t I r. 

Proof: We proceed by induction, denoting by A,, B,, C, conditions A, B, C of (4.2) 
for r = t. 

Since @ : Q’(Y,) = Y, A Y, --) W, is equivalent to the identity map S”’ --) SZn, we may 
use Lemma 3.4 of [2] to obtain a map 

oo+ : $o+@+~ 1 X(yo A yo>> = r, A yo + wo 

such that Oo+$o+(E+o I x Z,) c W, and such that there is a homotopy H,’ of Oo+ with 
a,. Define Oo- : $o-(E_o I x (Y. A Yo)) 4 W. by O,- = Oaf 0 To tjo-. This defines 
0,. We define H_’ by the composite 

Il/o-(E_o x I(Yo A Y,)) x I I?2 > I,&__@: Ix (Y. A Yo)) “5 W,. 

This defines Ho. Conditions A,, B, and Co are readily verified. 

Assume now that 0, is defined satisfying A,, B, and C, where t < r. Now since t c r, 

0,/Z, : Q’(Y,) --, IV, extends to a map a : Q’+‘(Y,) + W, with H’/Zz extending to a homo- 
topy K of z with @t+I. Consider the composite 

a~61t+,~$~+,:E+‘+‘~x(YoAYo)-,W0. 

Using an argument similar to one given in Lemma 3.5 of [2], we see that a 0 O,+, 0 $:+ 1 
is homotopic relative to SIX (Y, A Yo) to a map a:+, such that 8:+,(E:f’ Ix 2,)~ 

c Ws_Ct+lj. Define O:+, by the equation Or+l =a:+, 0 I/I:+ 1. This also yields a homotopy 

Hct+’ extending H' IS'lx (Y. A Y) of O:+, to iD,+1 0 f?t+l. Now set OF+, = O:+, 0 T 

and H_‘+’ = H+‘+’ 0 (T x I 1). One checks that conditions A,+z, B,+z and Ct+1 are satis- 
fied. This completes the induction. 
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THEOREM (5.1). Let a6EIi’(So) be (I permanent cycle. Then if k f 1 < ~(t + k + 1), 

Sq, r is also a permanent cycle. 

Proof. Recall that if m = (2a + l)2c’4d? 0 2 c 2 3, then p(m) = 2’ f 8d. Observe that 

if t + k + 1 = 2’(2b + 1) and q > r, then ~(2~ + t + k + 1) = ~(t + k +- I). 

It follows from (4.4) and (4.5) that we need only show Piqct “+Itk is stably reducible if 

q is large enough. But it is known that this is true if and only if (k + 1) I ~(2“ + t + k + 1) 

= p(t + k + 1) [3]. 

We shall use the symbols ho, hl, ii2 and fiJ to denote any elements in G, which corres- 

pond to the elements h,, h,, h, and h, in Er(So), respectively. This means that lri is a gener- 

ator of the 2-component of Gzi_,. 

Now letfi : .p;+zi-l --* pnCtfZ’-1 denote the attaching map of the top cell of Pi::’ 2’. 

Let g : Snf f = Pi:: + PEz:+2i-’ denote the inclusion map. 

LEMMA (5.2). Let n = 2¶, q large enough, a/zd i = 0, 1, 2 or 3. The/r lfi] = g* hi if‘ t 3 
2iCl 

- 1 mod2’+‘. 

Proof. This follows from the fact that Sq2’ is non-zero in P”,::“’ and that P~~:~~’ is 

S-reducible under the hypothesis of (5.2). 

Notation. 6, denotes the differential in E,(.S’). 

THEOREM (5.3). Let i = 0, 1, 2 or 3. If r E Ez s*sft(So) is a permanent cycle and t = 

2 if1 
- 1 mod 2’+‘, then Sqzl 5~ survives to E2,+ t(S”) and 

5,,+ i(sq,i z) = hi z2. 

Proof. Let B : .X;~:P~~:+” -+ W, be a map given by (4.4) with n = 2”, q large. Then by 

(5.2) it follows that Sqzrcc is represented by a map (E2(n+t)f2’, S2(nf1)+2’-1)~-+ 

(Wzs-2’9 W2J such thatf ( S2(nfr)+2’-1 =f’ is homotopic in W,, to the composite of pi 

with a map representing u2. It follows that f’ is homotopic through IV,, to a map f” : 
sZ(n+t)+2’-1_) w2s+l which represents hiuz. (For i = 0, this is Lemma (2.2) of [5]. The 

proof of this statement for i = 1, 2 and 3 is similar.) 

A specific homotopy through W,, off’ to f' can be used to alter f so as to obtain a 

mapping 

9 : (E 2(n+O+2~, p+r)+y + (kv;s_2’, W2,+,) 

so that g represents Sq,,cr and g I S2(n+1)+21-1 represents /~,a’. This completes the proof 

of (5.3). 

THEOREM (5.4). Suppose that CI E E,‘*““(S’) is a permanent cycle and that both 

(i) k+ 1 I p(t + k + 1) and 

(ii) t+k=2’+‘-lmod2’+‘,i=O, 1,2or3. 

Then Sqk,2ru survives to E2,+l(So) and 

62f+ l(%k+ 2’ r> = hi(Sqk a>’ 

Proof. Let n = 24, q large enough. Condition (i) implies that (stably) Plz:‘” has the 

same homotopy type as PEz:fk-’ v Sn+t+k. Let 
f :p+t+k+Z’-1 ~ p;11;'"+2'- 1 
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denote the attaching map of the top cell of P!t :’ ki “. Lemma (5.2) implies thatfis homo- 
topic to a map 9 : Sn+r’ktZ’-l -_* p~,‘:Ck. how 

~n+t+k+2’-,(P;:;+k) N” ~,;~+k+21-~(Snrr-i) 

@ ~,i,+k+2i_I(P~=:-“-‘). 

Using this decomposition write [g] = ([gi], [gJ). Condition (ii) implies that [gi] = hi. 

We proceed as in the proof of (5.3). Let B : CnirP~~~+k~“+ FVo be a map given by 

(4.4) with n = 2¶, q large. Then, as in (5.3), 62i(Sqk+Zix) is represented by @,[Z”+‘gi] 

+ai,[c”+‘g,] E n*(WZs-k). Now a,[E”+‘g,] is homotopic in Wzs_k to an element of 

dW2s-k+l) which represents hi(Sqk y). Because ~jo(,nir~~;ik-‘) c wzs_k+,, 
Bo(C”+Igz)(S2(“+r)+2i--l) is contained in WZs_k+i, and since g*(g, ; Z,) = 0, it 

follows by Lemma (3.3) of [2] that goCnf1g2 is homotopic in WZs_k_i to a map carrying 

S2(n+r)+k+“-1 into WZs_k+2. 

Again as in the proof of (5.3), it follows that 

62f+ 1(Sqk+2ia) = hi(Sqkr). 

We conclude this section by observing that the differentials given in (5.3) are “honest “. 

More precisely: 

Definition (5.5). Let p E rc,(I+Q such that the image of fi in rr,(FVJ is zero. Denote by 

/3’ the image of p in E,“**(S’). Then a relation 6,~’ = ,F is called honest rel. p if y’ can be 

represented by an element y E TI*(W~_.~, W,) such that d,r = p, Z* being the boundary 

homomorphism of the pair (W,_, , W,). 

The condition of honesty of relations occurs in the problem of relating Toda brackets 

to Massey products. See, for example, the work of Moss [7]. It is clear that the relations of 

(5.3) are honest. 

We shall need another criterion of honesty in the next section. 

Definition (5.6). A relation 

a,“- r.r+ 1 +s-r I y = B’E E,“J+’ 

is called visibly honest rel. fl if 

8:;;;~,‘+i+s-r-k = 0 for k 2 0, I> 1 

and p is represented by an element fl E 7r*( W,) whose image in rr,( WO) is zero. 

The nomenclature of (5.6) is justified by the following: 

LEMMA (5.7). If 6, y' = /?' is visibly honest rel. fi’, it is hottest rel. ,f?, for any b E 7r.J lo,) 

which maps to zero in x,( W,) and to TC’ in p, . 

Proof [7]. 

56. CUP-i PRODUCTS LY HOkfOTOPY 

The quadratic construction has been used by Adams, Barratt, B. Gray and Mahowald 

to define cup-i products in G, . We do not attempt a systematic discussion of these opera- 
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tions. Rather, we just treat some illustrative cases and their relation to the Adams spectral 

sequence. 

Letf: S”+’ + S” represent z E G, where n = 2q, q large. Then from (4.1) we obtain a 

mapping 

0, : Q’(S”+r) = ~tfp;,f:‘r+ S’” 

which is the composition of a retraction Y :C”P,“” + S’” with o,‘u). Denote by g : 

Sn+l+r-l--) p;;;+r-l the attaching map of the top cell. Since Y 3 Q’-‘(J) extends to 

Y J Q’(f), it follows that 8,_, 1 Cn+t g has a null-homotopy H. Now if for “different” 

reasons, there exists a null-homotopy K of 8,_, 0 Znffg, we define r U? r to contain the 

difference element d(H, K). Thus z UP 3 c G2, + r . (a iJo ‘a = r’.) We consider a few examples. 

Examples (6.1). A.) If r + 1 I ~(t + r + l), then g itself is null-homotopic. In this case 

u U, u is defined by demanding that the null-homotopy K be the composite of Y with a null- 

homotopy K ’ of y+‘g. The indeterminacy of c( Ur x comes from varying the null-homotopy 

K ’ and the retraction Y. 

B.) Let f 3 2’+’ - 1 mod 2i+1 and r = 2’ for i = 0, 1, 2 or 3. Then we may suppose 
thatg: sn+t+2’-1 -_* s”+‘_ Assume that uz = 0. Let K’ be a null-homotopy off AJ In this 

case, we define a U, t( by demanding that K be the composite of K’ with the cone on g. 

The indeterminacy comes from varying the compression of g into .S”+‘, varying K’ and again 

varying the retraction Y. 

C.) We retain the hypothesis of (6.1B) with the exception that we replace the condition 

a2 = 0 by the condition that f 0 g is null-homotopic for some choice of compression 
9: yl+t+2*-I--$ pI+t of the attaching map. Let K’ be such a null-homotopy. We define 

s( lJ, u in this case by demanding that K be of the form K’ A f. 

THEOREM (6.2). Let ti E E,“,“” (So) and suppose that r + 1 I p(t + r + 1). Then there is 

an element of L? Ur Z as defined in (6.1A) which corresponds to rl Ur Q E E, 2s-r.2s+2ySO)~ 

Proof. Defining d(H, K) E 5 Ur Cr, by (4.4) H may be chosen so as to represent u ur c( 

and K may be compressed into W2r_r+l. Thus d(H, K) represents r U, 2 in E22S-‘*2Sf2’(So). 

THEOREM (6.3). Suppose fhat 5 E G, corresponds to r E E2SJSf(So) and that t = 2’+’ - 1 

mod 2”‘. Suppose also that E2 = 0 and that there is a cisibly honest differential 

6, /? = tx2 rel. c?. Then Sq,, CC contains an element which corresponds to Sq,isr r hi /3. 

Notation. If y E ElsvJ+k and y’ EE$,““~, then 7 7 y’ denotes 7, ‘/ + y’ or y’ as s -=z s’, 

s = s’ or s > s’, respectively. 

Proof. Let r = 2’. Using (4.4) and the proof of (5.3), we compress G5,_, 0 Zn+tg into 

W 2s+1 with a null-homotopy into W,,_, representing Q Ur x By (5.7), S,,B = u2 is honest. 
It follows that 6, hi 6 = hiaZ is honest rel. hia’. Use a representative K of bib which gives 

null-homotopy of 8,_, 0 X”+‘g into W2s+l _-m. K exists because of the honesty of the 

differential. Now d(H, K) represents 5 lJr Cr in G, and 51 Ur c( 7: llifl in E2(So>. 

THEOREM (6.4). Suppose that Cc E G’ corresponds to a E E2S*S+‘(So) and that t z 2’+’ - 1 

mod 2’+‘. Suppose also that Sqliji is deJined as in (6.1C) and that there is a cisibly honest 
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differential 6,/l = hir rel. hir. Then Sqzi3 contains an element Ivhich corresponds to 

sq,ir 7 /?r. 

The proof is similar to that of (6.3). 
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