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§1. INTRODUCTION

THE COHOMOLOGY H(A) of the mod 2 Steenrod algebra A is isomorphic to the E, term of
the mod 2 Adams spectral sequence {E,(S%} [2]. In this paper we extend the results of [5]
in relating cup-i products in H(A) to the structure of the Adams spectral sequence.

The main result of the paper is contained in

THEOREM (1.1). Suppose that « € E;**** (S°) is a permanent cycle and that both
@O k+D)<pit+k+1)and
(i) (t+Kk) =21 — L mod 21+, i=0,1,2 or 3.
Then Sq.« is a permanent cycle and Sqy o« survives to E,i,(S°) where
0204 1(8Qu+ 20 %) = h(Sq, ).
(1.1) occurs in this paper as Theorems (5.1) and (5.4). In the statement of (1.1),

p((Qa+ 1)2¢+44) = 2¢ 4 84 where 0 < ¢ < 4. Also, Sq, o = « {J «. (Sq, « should not be con-
fused with Sqa.)

For k =0, the differentials given in (1.1) correspond to identities in 7,5(S°%) = G,.
For example, if @ € G,, then 2% = 0 if ¢ is even and na® = 0 if ¢ = 3(4). Identities such as
these are proved using the quadratic construction which is also the main tool in the present
study. The quadratic construction is a functor from pointed spaces to filtered spaces which
has been studied by J. F. Adams, M. G. Barratt and M. Mahowald (unpublished). Theorem
(4.4), our main technical result, was an early conjecture in the study of the quadratic con-
struction. The author is indebted to J. F. Adams, M. G. Barratt and M. Mahowald for con-
versations and correspondence which were helpful in the present work.

This paper is organized as follows:
§2 recalls the construction of the cup-i products in the cohomology of the Steenrod algebra.
§3 outlines the quadratic construction. The main technical results are proved in §4, and the
applications of Theorem (4.4) to the Adams spectral sequence are carried out in §5. The quad-
ratic construction can also be used to define cup-i products in G, . §6 discusses the relation
of some of these homotopy operations to the cup-i products in H(A).

1 This research was supported in part by NSF GP-5591.

1 A preliminary announcement of this research appeared in: D. S. Kann, Squaring operations in
the Adams spectral sequence, Bull. Am. math. Soc., to appear.

1


https://core.ac.uk/display/82832084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 DANIEL S. KAHN

§2. CUP-i PRODUCTS IN H(A)

In this section, we recall the definition of squaring operations in the cohomology of A,
the mod 2 Steenrod algebra {6; Chapt. II, §3]. The construction itself applies to any connac-
ted co-commutative Hopf algebra over Z,, but our only concern is with the Steenrod
algebra.

The cohomology of A may be calculated from the bar construction B(4){l, p. 32].
Thus, H**(4) is a subquotient of Hom (B,(4), Z,). B(4) ® B(4) is made into an A-module
via the diagonal map ¥ : 4 > 4 ® A. Since B(4) ® B(A) is acyclic, 3 an A-map D, : B(4)
— B(A4) ® B(A) commuting with the augmentation. D, may be used to compute cup pro-
ducts in H(A).

Since A is co-commutative, the twisting map p : B(4) ® B(4) — B(4) ® B(4) given by
x®y—~y®xis an A homomorphism commuting with augmentation. Again using the
acyclicity of B(4) ® B(A), there exists a chain homotopy

D, : B(A) - B(4) ® B4

such that 6D, + D, d = pDy + D,. (No signs are needed since we are working mod 2.)
Continuing as in the definition of the Steenrod operations in ordinary topology {8; ¥, §9],
we obtain a sequence of 4 homomorphisms

D;: B,(A) — (B(4) ® B(4))

n+j
such that
(2.1) Dy commutes with augmentation, and
(2.2) forj > 0, aDJ + Dja + Dj—]. + ij—l =0
If {D;} and {D;'} are any two such sequences, there exists a sequence of 4 maps

E;: B(A4) ~ (B(4) ® B(4))y+;,/ =0

such that
(2.3) E; =0, and
(2.4) forj=0,0E;,y +E;4; 0+ E;+pE; + D;+ D/ =0

We now define, for u € Hom (B, (4), Z,), an element u {J; u € Hom *(B,,_(A), Z,)
by

(u Ui u)0) = (u x u)(D; 0),

where ¢ € B,,_(A4). Using (2.1) and (2.2), we see that if u is cocycle, so also is u | J; u and
that the cohomology class of u {J; # depends only on the cohomology class of u. Using
(2.3) and (2.4) we see that the cohomology class of u | }; # does not depend on the choice of
the sequence {D,} satisfying (2.1) and (2.2). Thus we have defined « (J; 2 € H**~»?'(4) for
o € H**(A4). We will also write

2s—i

Sq;a=Sq* ' =« J;«.

Remark (2.5). In order to define « |J; «, it suffices to define D satisfying (2.1) and (2.2)
only forj< i
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§3. THE QUADRATIC CONSTRUCTION

We describe here the quadratic construction, a functor from pointed spaces to filtered
spaces which has been studied by Adams, Barratt and Mahowald (unpublished). The results
of this section are well known to these authors. For convenience, we shall only discuss the
construction for finite CW complexes with base point.

Let X be a finite CW complex with base point. Denote by Q"(X) the space S"|x
(X A X). (If B is a space with base point by, A {x B shall mean (4 x B)/(4 x b;).) Define
the involution T: Q"(X) - Q"(X) by T(x, y, z) =(—x, z, y), where —x is the point
of S™ antipodal to x. This defines an action of Z, on Q(X) and we define Q"(X) =
Q"(X)/Z,. Q(X) shall mean Q*(X) and is called the quadratic construction on X. Q(X)
is naturally filtered by the subspaces {Q"(X)}.

If f/: X - Y is a map of pointed complexes, then Q'(f): Q'(X)— Q'(Y) defined by
(x, y, D= (x f(»), f(z)) induces a map O(f): Q(X)— Q(Y) and Q(f)|Q"(X) =
O"(f) : Q(X) - Q"(Y). Thus each Q" is a functor and if n < m, Q" is a subfunctor of Q™.

Example (3.1). Q"(S™) is homeomorphic with S™ A P,™*" = £mP, ™*" (By P )’ we mean
the stunted projective space RP?/RP*™1)

Proof. Q"(S™) may also be described as the one point compactification of (S" x R™
x R™/Z, where the action of Z, on S" x R™ x R™ is given by T'(x, y, 2) =(—x, 2, ¥).
Now S™ A P,™*" can be described as the one point compactification of (S" x R™ x R™)/Z,
where the action of Z, on S* x R™ x R™is given by T"(x, y, z) = (—x, y, —2)[4, p. 205].
Since, as is easily seen, (§" x R™ x R™, T'yand (S" x R™ x R™,T") are equivariantly homeo-
morphic, the result follows.

We leave it to the reader to verify the following three elementary properties of the quad-
ratic construction.

ProrosiTION (3.2). If f, g : X — Y are homotopic relative base points, then there exists
a homotopy H : Q(X) x I - Q(Y) of Q(f) to Q(g) such that H| Q*(X) x I gives a homo-
topy of 0"(f) to Q%(g)-

CoROLLARY (3.3). If X and Y have the same homotopy type as poinied spaces, then
Q(X) and Q(Y) have the same homotopy type, preserving filtration.

PROPOSITION (3.4). "(X)/Q" (X))~ S"AX AX and QO (F)/ Q" W)= S " AfAS

§4. THE MAIN THEOREM

Our discussion of the Adams spectral sequence will follow the exposition given in [2],
with the exception that we will use the smash product rather than the join in treating pro-
ducts. Finite CW approximations through the stable range respecting base points will be
used. We will omit specific mention of the skeletons on which various stable constructions
may be carried out.

Let W, > W, o ... be a realization for B(A) with W, having the homotopy type of
S?" Let Y, o Y; = ... be a realization for B(4) with Y, having the homotopy type of S™
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Then Z, = Y, A ¥, with the product filtration is a realization for B(4) ® B(4). The switching
map 7: Y AY Y A Yis a realization of p: B(4) ® B(4) » B(A) ® B(4), the switching
map for B(4) ® B(A).

LemMa (4.1): If n = 2% where q >¢(r) (3], S" = P," is a retract of P,"*".

Proof. 3, 4].

Let ¢, :3"P"*" = Q"(S") » S*" be the n-fold suspension of such a retraction. Since
0'(Yy) =~ Q'(S™), there exists a map @, : Q"(Y,) - W, equivalent to ¢,.

Let 0,: S*[x (Y, A Y5) = QX(Y,) be the identification map. Denote by E.' (E_") the
upper (lower) hemisphere of S°. Let

Y (B Ix (Yo A o) = S'[x (Yo A Yp)
be the inclusion map.

PROPOSITION (4.2). Let n=2% g > ¢ (r). Then there exists a map ©,: S"1x (Y, A Yo)
— W, such that

A) 0,-T=0,,

B) there is an equivariant homotopy H' of ©, to ® o8, (yielding ©./Z,~®,: Q"
(Yy) — W), and

C) OS |xZ)YcW,_,fort<r.

Proof. We proceed by induction, denoting by A,, B,, C, conditions A, B, C of (4.2)
forr=1t.

Since @ : Q°(Y,) = Y, A Yy — W, is equivalent to the identity map S** — S%", we may
use Lemma 3.4 of [2] to obtain a map

O Y TEL XY AY) R Yo A Yo W,
such that @,y *(E.°| x Z)) = W, and such that there is a homotopy H.° of ©,* with

®,. Define Oy 1o (EL° X (Yo A Y)W, by ©Op” =0y* o Toyy,”. This defines
©,. We define H_° by the composite

Yo (E-"x1(Yo A YD X TZH > 4 (B2 Ix (% A Vo)) 25 7,
This defines H®. Conditions 4,, B, and C, are readily verified.

Assume now that ©, is defined satisfying A4,, B, and C, where t < r. Now since ¢t < r,
0,/Z,: Q'(Y,) » W, extends to a map « : Q'*!(Y,) - W, with H/Z, extending to a homo-
topy K of « with @, ,. Consider the composite

aobpyod TESTH X (Yo A Yo) o W

Using an argument similar to one given in Lemma 3.5 of [2], we see that wo 8,,, o ¥},
is homotopic relative to S*|x (Y, A Y,) to 2 map ©/,, such that B} (E!|x Z)c
< W._(s+1)- Define ©/, by the equation ©,,, =0/, o ¥{, . This also yields a homotopy
H,**! extending H'|S'|x (Yo A Y) of ©}Y, to ®,,,0°0,,,. Now set ©;,; =0} T
and H_**!' = H_'*! o (T x| 1). One checks that conditions 4, ., B,,; and C,,, are satis-
fied. This completes the induction.
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Identifying H*(W,, W, .,) with B,(4d) and H*(Z,,, Z,, - ;) with (B(4) ® B(A)),,, we define
homomorphisms D;: B,(4) = (B(4) ® B(4)),+;, 0<j<r as follows: Let ©@=0,:
ST[x (Yo A Yy) > W, be a map given by Proposition (4.2). The Kiinneth Theorem yields
an isomorphism

Zi: : H*((Etj’ Sjvl)l X (Zm’ Zm+1)) ~ H*-j(zm) Zm+1) = (B(A) ® B(A))m

Consider the composites

. Wit @
(Etjr Sj—l |)< (Zm ’ Zm+ 1) - (S], Sj—l) ] X (Zm s Zm+1) - (Wm-—j ’ Wm—j+1) =~ Bm—j(A)'
Then we define D;: B,,_ (4) = (B(A) ® B(4)),, by
D;=y.o0 (‘//j+)* o @*.
LemMA (4.3). The homomorphisms D; satisfy (2.1) and (2.2) for j < r.
Proof. Since we are working mod 2, it follows by (4.2A) that
pDj=yo (7)o O
The result now follows from the cell structure of S”.
In the following theorem, we retain the notation of this section.

THEOREM (4.4). Let o € E,****(S°) be a permanent cycle and r an integer. Then there is
an integer n and a mapping © : TP 5 W, such that

A) BE P e Wy, 0< k<, and

B) the composite
(El(n+t)+k, Sz(n+t)+k—1)_0_’(zn+tP::;+k’ Zn+‘P:i:+k—1)9*(Wzs—k1 WZs—k+1) represents a
cycle of E;27%25*9(S% whose image in E,*~*C+(S%) is a , Jx. (8 denotes the character-

istic map of the top cell of T**'PLLTR)

Remark (4.5). The integer n may be chosen to be as large as one likes. In fact, there is
an integer M so that we may choose n =27, g > M.

Proof. Choose n = 2? where ¢ > ¢ (r). We also choose 4 large enough so that the rele-
vant portion of B(A) is realizable. Then we may find a map ©: 8" [x (Y, A Y,)) > W,
which satisfies conditions 4, B and C of (4.2).

Now, since « is a permanent cycle, it may be represented by a mapping f: §*** > Y,.
We define the map © to be the composite (©/Z,) - Q'(f): Q(S"*) —» W,.

By (3.1), Q(S"*") is homeomorphic with T"*!Pri!*r Proposition (4.2C) implies
(4.4A). Note that f A f: S""* A S"** 5 (Z,,, Z,,-,) represents a x «. (4.4B) now follows
from (3.4) and (4.3).

§5. SOME DIFFERENTIALS IN THE ADAMS SPECTRAL SEQUENCE

In this section, we use information concerning the cell structure of P,"** and Theorem
(4.4) to relate the differential in the Adams spectral sequence to some of the squaring opera-
tions on permanent cycles. The results for Sq, were obtained earlier in [5].
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THEOREM (5.1). Let acE3*'(S®) be a permanent cycle. Then if k+1 < p(t +k + 1),
Sq, x is also a permanent cycle.

Proof. Recall that if m = (2a + 1)2°%*%, 0 < ¢ < 3, then p(m) = 2° + 84. Observe that
ift+k+1=20Rb+1Dandg>r, then pRT+t+ k+ D) =p(t + k + 1).

It follows from (4.4) and (4.5) that we need only show P3;fi™* is stably reducible if
q is large enough. But it is known that this is true if and only if (k + 1) < p2'+ t + kK + 1)
=p(t+ k+ 1) [3]

We shall use the symbols &y, hy, i, and iy to denote any elements in G, which corres-
pond to the elements 4, , 4, A, and &, in E5(S°), respectively. This means that /; is a gener-
ator of the 2-component of G,i_,.

Now let f;: STEi+2°=1 _, pr+t+2i=1 denote the attaching map of the top cell of Piii+ 2.
Letg:S"" = Prii Prti*2~! denote the inclusion map.

LEMMA (5.2). Let n = 2%, q large enough, and i =0, 1, 2 or 3. Then [fil=g.h; if t =
2841 _ | mod 211,

Proof. This follows from the fact that Sq?' is non-zero in P21¢*2' and that P21!}1" is
S-reducible under the hypothesis of (5.2).

Notation. 5, denotes the differential in E,(S°).

THEOREM (5.3). Let i =0, 1, 2 or 3. If a € E,**%(8%) is a permanent cycle and t =
207t — | mod 2!, then Sq,.x survives to Ejy (S°) and

85041(Sqze %) = hy’.

Proof. Let © : TrEtPrEt¥ 2, W be a map given by (4.4) with n = 2°, ¢ large. Then by
(5.2) it follows that Squa is represented by a map (EX+9+2 g2rto2i-i) /,
(Way_2i, Wa,) such that £ | S2"*9*+2~1 = " is homotopic in W, to the composite of h;
with a map representing «2. It follows that f’ is homotopic through W, to a map f":
S2m+n+2i=1_, . which represents A;«*. (For i =0, this is Lemma (2.2) of [5]. The
proof of this statement for i = 1, 2 and 3 is similar.)

A specific homotopy through W, of f’ to f” can be used to alter fso as to obtain a
mapping

g: (Ez(n+t)+2" SZ(HHHZI_I)_’(Wzs——zi, W25+1)
so that g represents Sqqia and g | S2**9+2'~1 represents 4. This completes the proof
of (5.3).

THEOREM (5.4). Suppose that o € E;***(S°) is a permanent cycle and that both

0 k+1<pi+k+1)and

(i) £+ k=2 —1mod2i*1,i=0,1,20r3.

Then SQqy. 5i0 survives to E,i,,(S%) and
8314 1(8q+ 20 %) = hi(Sq, ).

Proof. Let n =24, q large enough. Condition (i) implies that (stably) PriitE has the

same homotopy type as PiHitE~1yv SPHi+e Tet

f .Sn+:+k+2‘—1 = Pu+t+k+2‘-—1

n+t
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denote the attaching map of the top cell of P1*:*%*2' Lemma (3.2) implies that £ is homo-
topic to a map g: S"TI Tl prEitk Now
nsrns 2o tPRL ) R sy ihe 2001 (8707
@ nn+t+k+2"—-1(P:i:-k—l .
Using this decomposition write [ g] = ([¢,], [g:]). Condition (ii) implies that [g,] = k;.
We proceed as in the proof of (5.3). Let © : Z"F*P*1{*%*2' L W, be a map given by
(4.4) with n=2% g large. Then, as in (5.3), 6,4Sqy.,:%) is represented by ©,[Z""'g,]
+04[Z"9,] € t(Wy_1). Now O,[Z"*"'g,] is homotopic in W,,_; to an element of
To(Wys_x+1) Which represents /,(Sqx). Because Oy Z""'PiIT* "YY< W, iy
B, (" 1g,)(S¥+9+2' 1y is contained in W,,_x.,, and since H*(g,;Z,) =0, it
follows by Lemma (3.3) of [2] that &,X""'g, is homotopic in W,,_;., to a map carrying
SZ(n+l)+k+2"—l into W”s-k+’ .
Again as in the proof of (5.3), it follows that
0204 1(SQx 4+ 2:%) = h(Sq, ).
We conclude this section by observing that the differentials given in (5.3) are ““honest ™.
More precisely:

Definition (5.5). Let f§ € n(W,,) such that the image of § in n,.(W,) is zero. Denote by
B’ the image of f in E,™*(S°). Then a relation 8,7’ = 8’ is called honest rel. f if ' can be
represented by an element y € n (W,,_,, W,) such that ¢,y = f, ¢, being the boundary
homomorphism of the pair (W,,_,, W,).

The condition of honesty of relations occurs in the problem of relating Toda brackets
to Massey products. See, for example, the work of Moss {7]. It is clear that the relations of
(5.3) are honest.

We shall need another criterion of honesty in the next section.
Definition (5.6). A relation
5rs—r,r+ 1+S—r?l — BI € E,S'S+r
is called visibly honest rel. B if
ikt ttsrk —Ofork>0,/> 1
and B is represented by an element § € 7, (W,) whose image in n.(W,) is zero.
The nomenclature of (5.6) is justified by the following:

LeMMA (5.7). If 6,y = f’ is visibly honest rel. ', it is honest rel. B, for any B € n (W,)
which maps to zero in n,(W,) and to =’ in f3,.

Proof. [7].

§6. CUP-/ PRODUCTS IN HOMOTOPY

The quadratic construction has been used by Adams, Barratt, B. Gray and Mahowald
to define cup-i products in G, . We do not attempt a systematic discussion of these opera-
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tions. Rather, we just treat some illustrative cases and their relation to the Adams spectral
sequence.

Let f: S"** — S" represent x € G, where n = 29, g large. Then from (4.1) we obtain a

mapping
_@—r : Qr(sn-H) — 2"+rP:i§+r_’ Sln

which is the composition of a retraction ¥ :Z"P,"*" - S** with Q7(f). Denote by g:
Sr¥efr=t_, prti*rol the attaching map of the top cell. Since ¥ » Q" !(f) extends to
¥ Q(f), it follows that ©,_, - "*'g has a null-homotopy H. Now if for “different”
reasons, there exists a null-homotopy K of ©,_, o £"*'g, we define x |J, « to contain the
difference element d(H, K). Thus x {J, = G,,4,.(2 |, = 2%.) We consider a few examples.

Examples (6.1). A)If r + 1 < p(¢ + r + 1), then g itself is null-homotopic. In this case
o |J, a is defined by demanding that the null-homotopy K be the composite of ¥ with a null-
homotopy K’ of £"*’g. The indeterminacy of « {J, x comes from varying the null-homotopy
K’ and the retraction V.

B.) Let t=2"*' — I mod 2"*! and r=2' for i =0, 1, 2 or 3. Then we may suppose
that g : S"**¥2'~1 5 §"** Assume that «? = 0. Let K’ be a null-homotopy of f A f.In this
case, we define « {J, « by demanding that K be the composite of K’ with the cone on g.
The indeterminacy comes from varying the compression of g into S"*¢, varying K’ and again
varying the retraction V.

C.) We retain the hypothesis of (6.1B) with the exception that we replace the condition
2* =0 by the condition that fog is null-homotopic for some choice of compression
g:S"THET1 L, §nH of the attaching map. Let K’ be such a null-homotopy. We define
 |J, o in this case by demanding that K be of the form K’ A f.

THEOREM (6.2). Let & € E,***(S%) and suppose that r + 1 < p(t + r -+ 1). Then there is
an element of %\, & as defined in (6.1A) which corresponds to o ), & € E,27"2%2¢(S0).

Proof. Defining d(H, K) € & |, &, by (4.4) H may be chosen so as to represent a | J, o
and K may be compressed into W,,_, .. Thus d(H, K) represents x |, x in E,*7"2*2(8%).

THEOREM (6.3). Suppose that & € G, corresponds to o € E,***4(8%) and that t = 2°** — 1
mod 2'*Y. Suppose also that &> =0 and that there is a visibly honest differential
8. B = a® rel. u®. Then Sq,: & contains an element which corresponds to Sq,i« ¥ h;p.

Notation. If y € E,>*** and y' € E5**'**, then y T 7’ denotes y, y +7 or y' as s <,
s =s" or s > s’, respectively.

Proof. Let r = 2%, Using (4.4) and the proof of (5.3), we compress ©,_, o« Z"*‘g into
W,,+4 With a null-homotopy into W,,_, representing « J, «. By (5.7), 8,, = a® is honest.
It follows that 8, h;6 = h; o> is honest rel. #;a*. Use a representative K of 4; § which gives
null-homotopy of ©,_; o« Z"*'g into Wi,.;_.. K exists because of the honesty of the
differential. Now d(H, K) represents & |J, @ in G4 and « {J, « ¥ A; B in E,(S°).

THEOREM (6.4). Suppose that @ € G* corresponds to « € E,***%(S°) and that t =2'*' — 1
mod 2'*1. Suppose also that Sq,:a is defined as in (6.1C) and that there is a visibly honest
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differential 6,8 = h;x rel. h;x. Then Sq,.d contains an element which corresponds to
Sqlifx i ﬂ‘x.
The proof is similar to that of (6.3).
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