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Abstract Land use and land cover (LULC) classification of a satellite image is one of the prereq-

uisites and plays an indispensable role in many land use inventories and environmental modeling.

Many studies viz., forest inventories, hydrology and biodiversity studies, etc., are in demand to

account the dynamics of land use and phenology of vegetation. Multi-temporal land use classifica-

tion accounts the phenology of vegetation and land use dynamics of the study area. In this study, a

hybrid classification scheme was developed to prepare a multi-temporal land use classification data

set of Sawantwadi taluka of Maharashtra state in India. Parametric classification methods like max-

imum likelihood and ISODATA clustering methods are combined with the non-parametric decision

tree approach to generate the multi-temporal LULC dataset. The accuracy assessment results have

shown very promising results with a 93% overall accuracy with a kappa of 0.92.
� 2015 Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.V. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Classification is a process of segregating the information or
data into a useful form. Classification of satellite imagery is
based on placing pixels with similar values into groups and

identifying the common characteristics of the items repre-
sented by these pixels (Purkis and Klemas, 2011). Hence, a cor-
rectly classified image will represent areas on the ground that

share particular characteristics as specified in the classification
scheme (Lillesand et al., 2008). The land use and land cover

inventories are very important for many planning and manage-
ment activities. Remote sensing data is a primary source and
used extensively for land use classification. The LULC classifi-
cation process itself tends to be subjective and in fact, there is

no logical reason to expect that one detailed inventory should
be adequate for more than a short time, since land use and
land cover patterns change in keeping with demands for natu-

ral resources (Anderson, 1976). In practice, several land use
and land cover classification (LULC) techniques/algorithms
are available, viz., supervised, unsupervised, decision tree or

knowledge based, object oriented, artificial neural network
and support vector machines classification techniques. How-
ever, no one ideal classification technique/algorithm exists

and is unlikely that one could ever be developed (Anderson,
1976). Multi-temporal land use classification accounts the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejrs.2015.09.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Lakshmikanth@bvieer.edu.in
http://ieer.bharatividyapeeth.edu
http://dx.doi.org/10.1016/j.ejrs.2015.09.003
http://www.sciencedirect.com/science/journal/11109823
http://dx.doi.org/10.1016/j.ejrs.2015.09.003
http://creativecommons.org/licenses/by-nc-nd/4.0/


290 L.N. Kantakumar, P. Neelamsetti
seasonal variation of the study area, such as seasonal vegeta-
tion differences, which is very useful to understand the impact
of land use dynamic on the natural resources (Wolter et al.,

1995). In the present study, a hybrid approach has been
designed in combination of maximum likelihood supervised
classification technique, decision tree approach and unsuper-

vised classification method to derive the multi-temporal land
use classification of Sawantwadi taluka for the year 2013.
The Landsat-8 imageries belonging to dry and wet seasons

are used to account the phenological changes of the vegetation
in the study area over a year.

2. Study area

Sawantwadi taluka (Fig. 1) of Sindhudurg district is located at
the South West corner of the Maharashtra state of India. The

study area is bounded between 15� 430–16� 30 latitudes in
northern hemisphere and 73� 410–74� 50 longitudes lies east
of Greenwich. The study area is known for wooden crafts
and a major tourist attraction in Maharashtra. The study area

elevation ranges from 1 m to 1029 m above sea level. It can be
divided into two parts based on the topography, a low-lying
flat terrain in western region and elevated, undulating terrain

in eastern region of the study area. The low-lying region is
mainly dominated by agriculture, mango gardens and built-
up land uses, whereas the forest and shrub land cover domi-

nates the high-lying region.
Figure 1 Study area map with elevation showing geographic location

2, METI of Japan and NASA).
3. Datasets

For multi-temporal land use and land Cover (LULC) classifi-
cation Landsat-8’s April 2013 (dry period) and December 2013

(wet period) terrain corrected level 1 data were obtained from
the public domain service of USGS EROS data center, Sioux
Falls, USA. ASTER GDEM is a product of METI and NASA

has been used as a reference vertical surface throughout the
study. Open Map Series (OSM) toposheets of 1:50,000 scale
surveyed in the year of 2005 have been collected from the Sur-
vey of India and rectified to the WGS84 datum and further

projected on UTM-43 north zone based on WGS84. The
toposheet mosaic is used as ancillary data at the time of super-
vised classification and for assessment of accuracy. ENVI 5.3 is

used for the image processing purpose in the study.

4. Methodology

A satellite image of one point in time does not incorporate the
sufficient information about the phenology of the vegetation
and the temporal characteristics of land use classes. A mini-

mum of two satellite images at different points in time (In gen-
eral, dry and wet periods) over a year are required to address
the temporal characteristics of land use features. Since multi-

temporal classification involves two or more images, it is
always advisable to carry out the atmospheric correction to
the satellite imageries (Coppin et al., 2004). MODTRAN4
of Sawantwadi taluka (elevation source: ASTER GDEM version
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based FLAASH module is used to carry out the atmospheric
corrections of the study area. The atmospherically corrected
imageries further processed by using hybrid classification

approach are as described in the flow chart (Fig. 2).

4.1. Atmospheric corrections

Earth atmosphere consists of a mixture of gases, liquid and
solid particles, most of these are optically active causing
absorption, diffusion and scattering. Signal measured at the

satellite is the emergent radiation from the Earth surface–
atmosphere system in the sensor observation direction
(Camps and Camps-Valls, 2011). The radiance measured at

sensor is known as Top of Atmosphere (TOA) radiance
(Chander et al., 2009), atmospheric corrections aim to convert
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Figure 2 Flow chart of
the TOA radiance of the objects into the near earth reflectance.
In this study, MODTRAN4 based FLAASH module in ENVI
5.3 was applied to carry out the atmospheric corrections of the

satellite images. FLAASH is an acronym of Fast Line of sight
Atmospheric Analysis of Spectral Hyper cubes with a capabil-
ity of correcting the wavelengths in the visible through

near-infrared and shortwave infrared regions, up to 3 lm. It
includes correction for the adjacency effect, cirrus and opaque
cloud classification and adjustable spectral polishing for arti-

fact suppression. FLAASH provides additional flexibility
when compared to the other widely used atmospheric correc-
tion programs, i.e., Atmospheric REMoval program
(ATREM), Atmospheric CORrection Now (ACORN), it

allows custom radiative transfer calculations for a wider range
of conditions including off-nadir viewing and all MODTRAN
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standard aerosol models (Kruse, 2004). Tropical atmosphere
module, maritime aerosol model with 2-Band (K–T) aerosol
retrieval method has been used to perform the atmospheric

corrections of the study area satellite images. The 2-Band
(K–T) aerosol retrial method uses the initial visibility value if
the aerosol cannot be retrieved. Fig. 3 shows the spectral pro-

files of a forest pixel located at 15� 550 3500N and 73� 580 3000E
before and after atmospheric correction in both wet and dry
seasons.

4.2. Multi-temporal classification

A hybrid approach combines maximum likelihood supervised,

decision tree and ISODATA clustering technique has been
applied to prepare the multi-temporal classified image. Firstly,
maximum likelihood supervised classification approach is used
to classify the atmospherically corrected individual satellite

images to map the land use classes of a particular point (dry
and wet periods) in time. The outputs further are refined and
are combined by using knowledge based decision tree

approach into a multi-temporal classified image. An unsuper-
vised classification approach further applied to identify various
forest cover types.

4.2.1. Maximum likelihood classification

Supervised classification requires the analyst to select training
samples from the data which represents the themes to be clas-

sified (Jensen, 1996). The training sites are geographical areas
previously identified using ground-truth to represent a specific
thematic class (Purkis and Klemas, 2011). Then the statistics of

the Digital Number (DN) associated with the training sites are
used to classify each pixel in the satellite imagery into the cor-
responding LULC classes. Several algorithms of supervised
approach are available viz., Parallelepiped, Minimum Distance

to Mean (MDM), maximum likelihood (ML), Mahalanobis
Distance, The Jeffries–Matusita (J–M) Distance, Linear
Discriminant Analysis, Spectral Angular Mapping (SAM)

and Spectral Information Divergence (SID). In this study,
widely used maximum likelihood classification technique is
adopted for LULC classification.

The main advantage of the maximum likelihood classifier
is, it not only considers the mean vector of the pixels in one
Figure 3 Spectral profiles of a forest pixel located at 15� 550 350 0N
atmospheric corrections.
class, but also takes into account the spread or variability of
these pixels in multispectral feature space. The maximum like-
lihood classification assumes that the statistics for each class in

each band are normally distributed and calculates the proba-
bility that a given pixel belongs to a specific class (Jensen,
1996). Unless a probability threshold is selected, all pixels will

be classified and each pixel is assigned to the class that has the
highest probability (Lein, 2011).

As a first step in the supervised classification, one should

select the training sites. In this study the training sites are
selected based on the field sampling data done during Nov–
Dec 2013, Survey of India toposheets and visual interpretation
techniques. The dry and wet period datasets are separately

classified into ten land use classes i.e., water, built-up, agricul-
ture, plantation, stone quarry, fallow land, grass land, open
and dense shrub land, and forest.

4.2.2. Decision tree approach

Decision tree approach is very useful, when it is difficult or
insufficient to recognize thematic classes based on spectral

characteristics of remote sensing data (Coppin et al., 2004).
Decision trees have several advantages for remote sensing
applications by virtue of their relatively simple, explicit, and

intuitive classification structure (Friedl and Brodley, 1997)
and can be used for both classification and post classification
refinement. Further, decision tree algorithms are strictly non-

parametric and, therefore, make no assumptions regarding
the distribution of input data, and are flexible and robust with
respect to nonlinear and noisy relations among input features

and class labels (Friedl and Brodley, 1997).
Knowledge or decision is introduced by a set of rules: if a

condition exists, then inference is applied, especially this is very
useful in multi temporal land use classification (Konecny,

2003). Some of the forest pixels on hill slopes were misclassified
as agriculture land use during the maximum likelihood classi-
fication. The agricultural land in the study area is located

along the streams and in the flat terrain. Therefore, the mis-
classification error of forest to agriculture was rectified by
applying a knowledge based decision rule, i.e., the agricultural

pixels having degree slope greater than 10 have been converted
into forest land cover before applying multi-temporal decision
rules. Table 1 shows the accuracy assessment results of land
and 73� 580 300 0E (a) before atmospheric corrections (b) after



Table 1 Accuracy assessment results of individual land use

classification pertaining to dry and wet seasons.

Period Dry Wet

Overall accuracy 84.54% 91.10%

Kappa coefficient 0.81 0.89

Class User acc. (percent) User acc. (percent)

Water 100 99.58

Stone quarry/sand 65.79 66

Forest 95.59 97.6

Open shrub land 78.48 95.18

Grass land 21.18 37.45

Barren land/fallow land 92.26 97.35

Agriculture 39.43 95.67

Plantation 100 75.28

Built-up 59.68 50.56

Shrub land 84.48 91.91

Table 2 Rules used to derive a multi-temporal land use

classification.

Class combinations Multi-temporal result

Forest–shrub land Forest

Forest–grass land Shrub land

Shrub land–grass

land

Open shrub land

Shrub land–open

shrub land

Shrub land

Open shrub land–

grass land

Open shrub land

Grass land–barren

land

Grass land

Agriculture–barren

land

Agriculture

Plantation–

agriculture

Agriculture

Equal land use in two

scenes

Equal land use

No rules apply New classification using both dry and wet

period scenes
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use classifications pertaining to both dry and wet seasons. The
results are showing the classification scheme performed better

in wet season than in dry season.
In order to combine the individual land use classifications

into a single multi-temporal land use image i.e., the represen-

tation of a whole year a multi temporal classification schema
based on decision tree rules has been applied (Wagner et al.,
2013). A hierarchy of the land cover classes based on pheno-

logical characteristics has been formed to derive the rules for
multi-temporal classification. In the natural land classes the
hierarchy is as follows, i.e., forest, shrub, open shrub and
grassland. The main assumption made in the multi-temporal

classification scheme is the later land class will be updated into
the immediate higher category, if there is a potential conflict
existing between the two classes in both dry and wet seasons.

For example, if a pixel is classified as forest in one season
and shrub land in other season, it will be assigned to forest
in the multi-temporal classification. Similarly, if a pixel is clas-

sified as agriculture in one season and either plantation or bar-
ren land in other season, it will be assigned to agriculture class.
Table 2 shows the applied rules to combine the dry and wet
seasons land use maps into a single multi-temporal land use

image.

4.2.3. Unsupervised classification

Unsupervised classification procedure needs no prior knowl-
edge of the study area. This method is objective and entirely
data driven. Even for a well-mapped area, unsupervised classi-
fication may reveal some spectral features which were not

apparent beforehand (Liu and Mason, 2009). In this study,
ISODATA clustering technique was adopted to distinguish
the different forest covers types. ISODATA algorithm calcu-

lates class means evenly distributed in the data space then iter-
atively clusters the remaining pixels using minimum distance
techniques (Melesse and Jordan, 2002). Each iteration recalcu-

lates means and reclassifies pixels with respect to the new
means. This process continues until the number of pixels in
each class changes by less than the selected pixel change

threshold or the maximum number of iterations is reached.
The forest cover in the decision tree output after applying
the multi-temporal rules is used as a mask on both dry and
wet period scenes to segregate the forest cover into 15 different

clusters. The 15 different classes were further analyzed and
combined into 4 forest classes namely evergreen forest, semi-
evergreen forest, moist-deciduous forest and mixed jungle

based on the ground truth data collected during the field visit
in Nov–Dec 2013 and by using visual interpretation techniques
and expert knowledge about the study area. A 3 * 3 majority

analysis window was applied to the output after unsupervised
classification to remove misclassified pixels. Fig. 4, shows the
final output of the multi-temporal land use/land cover of

2013 of study area.

5. Results and discussion

Accuracy assessment involves the comparison of the catego-
rized data to the reference data for the same sites (Jensen,
2007; Lachowski, 1996). The error matrix is the standard
way of presenting results of the accuracy assessment (Story

and Congalton, 1986). Error matrix is also called as confusion
matrix used for characterizing the performance of a classifica-
tion technique (Rees, 1999). Overall accuracy is one of the

common measure of classification accuracy and is the ratio
of sum of the diagonal entries (also called the trace) to the total
number of pixels examined, which gives the proportion of sam-

ples that have been correctly classified (Campbell and Wynne,
2011). Kappa coefficient can be used as another measure of
agreement or accuracy and allows to test whether an individual

land-cover map generated from remotely sensed data is signif-
icantly better than a map generated by randomly assigning
labels to areas (Lunetta and Lyon, 2004).

In this study, ground truth ROIs have been used to assess

the accuracy of the multi-temporal LULC image produced
after majority analysis. A 3 � 3 majority analysis window
removes misclassified and spatially singular pixels within

homogeneous areas (Wagner et al., 2011). Field data, Survey
of India toposheets and Google Earth were used to develop
the ground truth data. The overall accuracy of the 2013

multi-temporal image was recorded as 93% (Table 3). In the
multi-temporal image 13% of evergreen forest was wrongly
classified as semi-evergreen forest and 13% of the plantation



Figure 4 Multi-temporal land use 2013 of the Sawantwadi taluka.
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wrongly attributed as moist deciduous forest and 6% open

shrub land misclassified as barren/fallow land. The mixed jun-
gle class was recorded with less accuracy at about 70%, this
value was reasonable because mixed jungle class is a mixture

of all forest classes.
The Kappa coefficient of the 2013 multi-temporal classified

image which is above 0.92 indicates that the classification

method very well captured the dynamics of the land use and
Table 3 Producers and User accuracies of each land use/cover

of multi-temporal land use classification of 2013.

Overall accuracy 93.22%

Kappa coefficient 0.9225

Class Prod. acc. (percent) User acc. (percent)

Water 100 100

Stone quarry/sand 99.2 96.88

Evergreen forest 86.52 78.97

Open shrub land 94.27 100

Grass land 100 99.32

Barren land/fallow land 100 91.03

Agriculture 99.09 97.32

Plantation 84.57 92.75

Built-up 100 96.3

Shrub land 99.47 75.2

Semi evergreen forest 95.43 86.52

Moist deciduous forest 90.91 90.16

Mixed jungle forest 69.64 100
land cover of the area of interest in that particular study year

(Alexakis et al., 2012; Lunetta and Lyon, 2004).

6. Conclusion

The classification of remote sensing data is subjective and
mainly depends on the purpose of the study. The multi-
temporal land use classification accounts the phenology of

the vegetation and dynamics of the land use. It is often used
as input data in many environmental modeling, hydrological
and biodiversity assessment studies. The hybrid classification

approach developed in this study is a combination of paramet-
ric and non-parametric approaches, hence very useful to
develop the multi-temporal land use datasets by taking the

advantages in both the approaches. The developed approach
includes the post-classification refinement by using threshold
based knowledge approach, which is helpful to rectify the com-
mon misclassification errors. The decision tree approach used

to produce the multi-temporal land use data is strictly non-
parametric and based on the expert knowledge, therefore very
subjective in nature. The accuracy assessment results are very

promising and encouraging for the developed approach. The
results showing, the developed approach captured the impervi-
ous land use classes viz., built-up and stone quarries with user

accuracy not less than 96%. The developed classification
schema is very successful in discriminating the natural
vegetation with accuracy not less than 75%, because natural

vegetation classes overlap each other on feature space and
hard to discriminate.
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