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Abstract The assembly of the Sm-class of uridine-rich small
nuclear ribonucleoproteins (U snRNPs), albeit spontaneous
in vitro, has recently been shown to be dependent on the aid of
a large number of assisting factors in vivo. These factors are or-
ganized in two interacting units termed survival motor neuron
(SMN)- and protein arginine methyltransferase 5 (PRMT5)-
complexes, respectively. While the PRMT5-complex acts early
in the assembly pathway by activating common proteins of U
snRNPs, the SMN-complex functions to join proteins and
RNA in a highly ordered, apparently regulated manner. Here,
we summarize recent progress in the understanding of this pro-
cess and discuss the influence exerted by the aforementioned
trans-acting factors.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Assembly of RNA–protein complexes in the cellular

environment

The ability to reconstitute macromolecular complexes from

purified single components in vitro has fostered the concept of

self-assembly, one of the central principles of molecular

biology. From a theoretical, ‘‘in vitro’’ point of view, the for-

mation of macromolecular complexes depends on diffusion-

driven, random, and reversible encounters of the cognate

subunits [1,2]. The stability of the resulting entities is deter-

mined by the ratio of the respective association and dissocia-

tion rate constants. While these considerations hold true for

idealized, aqueous solutions, the situation in vivo is markedly

different. In cells, the local concentration of individual compo-

nents of macromolecular complexes and other proteins is usu-
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ally relatively low, yet as a whole they occupy a significant

fraction of the total volume. Hence, the possibility for unspe-

cific interactions arises, which hinder the assembly pathway.

Individual molecules therefore need to be directed to the site

of complex assembly, in order to increase their local concen-

tration and protect them against unfavorable interactions.

Furthermore, a separation of both the site of assembly and

the site of function should help to prevent assembly intermedi-

ates from adversely affecting the function of fully assembled

macromolecular complexes. Taking these considerations into

account, it is not surprising that cells have evolved strategies

to ensure the faithful generation of macromolecular assemblies

[1]. Among others, three features seem to predominate: (1) the

segregation of biosynthesis of individual components and their

assembly into higher-order structures into different subcellular

compartments; (2) the evolution of molecular chaperones,

which promote formation of intermediates, shielding these

intermediates from adverse, premature interactions with sub-

strate molecules of the finally assembled macromolecular com-

plexes; and (3) trans-acting factors, working as scaffolds to

coordinate several processes of the assembly reaction. A num-

ber of biological processes follow, at least in part, these prin-

ciples and well known examples are the assembly of

proteasomes and nucleosomes [3,4].

In this review, we summarize recent experimental advances

in the understanding of the in vivo biogenesis pathway of mac-

romolecular RNA–protein complexes found in the spliceo-

some uridine-rich small nuclear ribonucleoproteins (U

snRNPs). We speculate that many aspects of this pathway

have evolved as a consequence of the theoretical consider-

ations outlined above.
2. Biogenesis of snRNPs

The spliceosome is a macromolecular machine comprising

several RNP subunits that catalyzes the removal of intervening

(non-coding) sequences from pre-mRNA (pre-messenger

RNA). U snRNPs of the major spliceosome (responsible for

splicing the majority of pre-mRNA introns) consist of either

one (U1, U2, U5) or two (U4/U6) small nuclear RNAs (snR-

NAs), and a large number of proteins [5,6]. As individual clas-

ses of U snRNPs perform distinct functions in the spliceosome,

it is not surprising that each is characterized by a specific set of

proteins. However, all U snRNPs also contain a set of seven

common, so-called Sm proteins B/B 0, D1, D2, D3, E, F and

G (B 0 is a splicing variant of B). These evolutionarily related

proteins form a heptameric ring around a conserved sequence
blished by Elsevier B.V. All rights reserved.

https://core.ac.uk/display/82832035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1998 N. Neuenkirchen et al. / FEBS Letters 582 (2008) 1997–2003
motif (PuAU4–6GPu) on the snRNA termed the ‘‘Sm-site’’ [7],

which is a structural hallmark of these particles [8,9]. The bio-

chemical composition of the minor spliceosome, specialized for

processing of a small group of introns (so-called ATAC in-

trons), requires a different set of U snRNPs (termed U11,

U12, U4atac and U6atac; U5 appears to be identical in both

the major and the minor spliceosome) [10]. However, the gen-

eral architecture and hence the biogenesis of the U snRNPs of

the major and minor spliceosome is believed to be very similar.

Thus, although we will concentrate on the description of bio-

genesis of the components of the major spliceosome, the same

principles will most likely also apply for the minor snRNPs.

A large number of studies performed mainly in Xenopus lae-

vis oocytes but also in somatic cells have contributed to the

understanding of the transport pathways enabling the biogen-

esis of spliceosomal U snRNPs [6]. Due to these studies the

biogenesis of U snRNPs could be divided into several steps,

some of which may actually be coupled. Initially, the RNA

polymerase II (pol II) transcribes precursor snRNAs (pre-snR-

NAs) of U1, U2, U4 and U5 in the nucleus that are co-trans-

criptionally m7G-capped (Fig. 1, step 1). Transcriptional

termination was recently shown to be dependent on a mega-

dalton complex termed Integrator [11]. In the mechanistic

model, the Integrator complex is assumed to interact with

RNA polymerase II at the promoter of the snRNA genes.

Remaining attached to RNA polymerase during transcription,

the Integrator complex endonucleolytically cleaves the pre-

snRNA upon interaction with the 3 0-box; a cis-acting element

of 13–16 nucleotides that is required for efficient pre-snRNA

formation. The m7G-cap of the pre-snRNA is specifically rec-

ognized by the cap-binding complex (CBC), which itself asso-

ciates with phosphorylated adaptor for RNA export (PHAX),

chromosome region maintenance 1 (CRM1) and Ras-related

nuclear protein bound to GTP (RanGTP) to form the nuclear

export complex [12]. After transport through the nuclear pore

complex (NPC) (step 2), GTP hydrolysis of Ran and dephos-

phorylation of PHAX cause the transport factors to dissociate

from the snRNA [13,14] (step 3). U6 RNA (and also U6atac)

differ from other snRNAs in that they are transcribed by RNA

polymerase III, acquire a c-monomethyl cap and appear not to

leave the nucleus post-transcriptionally [15,16].

In the cytoplasm, the survival motor neuron complex (SMN-

complex) facilitates the transfer of seven Sm proteins onto the

snRNA�s ‘‘Sm-site’’, which results in the formation of the Sm

core domain (step 4; see next paragraph for a detailed descrip-

tion). Recent evidence suggests that the U snRNP remains

bound to the SMN-complex even after assembly is completed

[17]. The Sm core domain and the SMN-complex then cooper-

ate to recruit the cap-hypermethylase trimethylguanosine

synthetase1 (Tgs1) [18]. This leads to the conversion of the

m7G-cap of the snRNA to its hypermethylated form, the

2,2,7-trimethylguanosine-cap (m3G, also termed TMG) (step

5). At an as yet to be defined step in the cytoplasm, the mature

3 0-end of U snRNAs is generated by unknown (exo)ribonucle-

ase(s) in a process referred to as 3 0-trimming [19,20].

The assembled and processed particle is then imported into

the nucleus by means of a bipartite nuclear localization signal

(NLS) on the U snRNP and at least two specific transport fac-

tors. One part of the NLS is the m3G-cap that is recognized by

the protein snurportin-1 (SPN1) [21]. This interaction alone is

not sufficient for import of U snRNPs but requires assistance

of importin b [22]. It is believed that importin b has a docking
site on the Sm core-bound SMN-complex [23] and hence may

constitute the second part of the bipartite NLS, which has

long-since been suspected to lie on the Sm core domain [24].

Once both transport factors have bound to their respective sig-

nals, nuclear import can be effected (step 6). Within the nu-

cleus, the import complex dissociates and the transport

factors are recycled to the cytoplasm (step 7). The U snRNPs,

presumably still attached to the SMN-complex, transiently

accumulate in subnuclear domains termed Cajal bodies (step

8). Within these domains, small Cajal body RNAs (scaRNAs)

introduce site-specific pseudouridylation (W) and 2 0-O-methyl-

ation (m) in the snRNAs [25,26] and thereby complete process-

ing of U snRNAs (step 9). For most snRNP-specific proteins it

remains unknown whether they join the particle already in the

cytoplasm, as is the case for Sm proteins, or only after re-im-

port into the nucleus. Ultimately, the mature spliceosomal

snRNPs accumulate in interchromatin regions in structures re-

ferred to as splicing speckles (step 10). The SMN-complex,

which is dissociated from the U snRNP at a yet to be identified

stage in the nucleus, is then believed to return into the cyto-

plasm (step 11), where it can re-enter the biogenesis cycle (step

12).
3. Trans-acting factors mediate the assembly of spliceosomal U

snRNPs

When isolated Sm proteins are incubated with U snRNA un-

der appropriate conditions in vitro, efficient Sm core formation

can be observed. This process takes place in an apparently or-

dered and defined manner. Prior to RNA-binding, Sm proteins

form heterooligomeric complexes composed of D1–D2, B/B 0–

D3, and E–F–G [27,28]. RNP-binding occurs in two steps,

first, the so-called subcore particle is formed by interaction

of D1–D2 and E–F–G, which is then transformed by the addi-

tion of B/B 0–D3 into the core particle [28]. These observations

have led to the conclusion that all structural information re-

quired for the formation of this core-RNP is encoded within

these components (i.e. RNA and proteins). But the fact that

these structures form in vitro does not necessarily prove that

it is also the case in vivo, in particular if the deliberations of

the first paragraph are taken into account. Indeed, a body of

recent evidence indicates that formation of the Sm core do-

main of U snRNPs requires ATP and assisting factors, the

number of which exceeds that of proteins actually assembled

onto the U snRNA [29,30].

The first factor implicated in the biogenesis of U snRNPs

was the survival motor neuron (SMN) protein. This factor,

whose reduced expression elicits the neuromuscular disease

spinal muscular atrophy (SMA), was found to transiently

interact with U snRNAs in the cytoplasm but was not an

integral part of mature U snRNPs [31]. As detailed bio-

chemical studies further revealed, SMN is a constituent of

a macromolecular complex consisting of at least eight key

subunits (termed Gemins2–8 and unrip; Fig. 2) [29,30,32–

34]. In addition to these integral components, spliceosomal

Sm proteins and U snRNAs can be found transiently asso-

ciated with the SMN-complex. Initial insights into the func-

tion of the SMN-complex in U snRNP biogenesis were

gained by the biochemical reconstitution of the in vivo

assembly reaction from isolated components [29]. These

studies have revealed that Sm proteins must first bind to



Fig. 1. Biogenesis pathway of spliceosomal U snRNPs. Pre-U snRNA is transcribed by RNA polymerase II (pol II) and m7G-capped in the nucleus
(step 1). After the export complex, consisting of pre-U snRNA, CBC, PHAX, CRM1 and RanGTP, has formed, it is actively transported into the
cytoplasm via the NPC (step 2). There, export factors and pre-U snRNA dissociate from each other (step 3) and Sm proteins provided by the SMN-
complex are assembled onto the ‘‘Sm-site’’ of pre-U snRNA (step 4). Following recruitment by the SMN-complex and Sm core domain, the
hypermethylase Tgs1 modifies the m7G-cap to m3G (step 5), before the import factors SPN1 and importin b mediate translocation into the nucleus
(step 6). There, both factors dissociate and are recycled into the cytoplasm (step 7), and U snRNPs associated with the SMN-complex enrich in Cajal
bodies (step 8). After scaRNA guided pseudouridylation (W) and 2 0-O-methylation (m; step 9), the mature U snRNP is directed to the spliceosome,
(step 10), whereas the SMN-complex is believed to be exported into the cytoplasm (step 11), where it can re-enter the biogenesis cycle (step 12).
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the SMN-complex before they can be transferred onto U

snRNA. Thus, unlike in vitro, Sm proteins cannot be di-

rectly delivered onto U snRNA within the context of a liv-

ing cell and hence the assembly reaction does not strictly

follow a ‘‘self-assembly route’’ (see Fig. 1, step 4).
Although the SMN-complex loaded with all Sm proteins is

alone necessary and sufficient for U snRNP assembly, this

process is influenced by another complex, whose name-giving

constituent is the methyltransferase protein arginine methyl-

transferase 5 (PRMT5) [35–37]. This enzyme, in conjunction



Fig. 2. Interaction map of the human SMN-complex. Schematic of
protein interactions within the human SMN-complex as described in
[34]. The SMN protein together with Gemin8 and Gemin7 form a core
scaffold of the SMN-complex by which the remaining components are
recruited. SMN is directly connected to Gemin2, which itself is
associated with Gemin5. Furthermore, both Gemin6 and unrip are
recruited by Gemin7, whereas Gemin3 and Gemin4 are cooperatively
bound by SMN and Gemin8, respectively.
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with its interaction partners WD repeat domain 45 (WD45),

also termed Mep50, and chloride conductance regulatory pro-

tein (pICln), catalyzes the formation of symmetrical dimethy-

larginines within the C-terminal tails of the Sm proteins B/

B 0, D1 and D3. Since these modifications increase the affinity

of the Sm proteins for the SMN protein in vitro, it is assumed

that one function of the PRMT5-complex is the stimulation of

the assembly process [35,38]. Recently, evidence for yet an-

other arginine methyltransferase protein arginine methyltrans-

ferase 7 involved in Sm protein activation has been reported in

HeLa cells which acts in a non-redundant fashion on Sm pro-

tein modification [39]. Interestingly, however, genetic inactiva-

tion of PRMT5 in Drosophila melanogaster has no

recognizable influence on U snRNP biogenesis [40]. Therefore,

the question arises whether the symmetric dimethylation of Sm

proteins is an absolute prerequisite or whether it is only an

accessory function in snRNP biogenesis. SMN- and

PRMT5-complexes directly interact with each other in a high-

er-order structure [41]. The cooperating SMN- and PRMT5-

complexes can be hence envisaged as the functional unit that

promotes and regulates the assembly of spliceosomal U

snRNPs.
4. A model for the assisted assembly of spliceosomal U snRNPs

Based on reported data from several laboratories, a model

for the assisted U snRNP assembly process can be proposed

[42,43]. Sm proteins, synthesized in the cytoplasm, are initially

sequestered by the PRMT5-complex (Fig. 3). PICln is likely to

play an important role in complex formation as it directly

binds to Sm proteins and PRMT5 [35–37]. These initial steps

commit Sm proteins to the SMN-mediated assembly pathway.

Once recruited onto the PRMT5-complex, Sm proteins B/B 0,

D1 and D3 are symmetrically dimethylated on arginine resi-

dues and may hence become ‘‘activated’’ for subsequent steps

(Fig. 3, step 1). We speculate that the PRMT5-complex (or

parts thereof) facilitate(s) additional events in the assembly

pathway, such as organization of specific Sm protein sub-com-
plexes. In this context, it is noteworthy that each Sm protein

occupies a specific spatial position within the Sm core domain

of the assembled U snRNP [8]. PRMT5- and SMN-complexes

then join to form the SMN-/PRMT5-complex, in which the

complete set of Sm proteins is first transferred onto the

SMN-complex (step 2), and then passed onto U snRNA (step

3). Ultimately, the assembled U snRNP is transferred along

with the SMN-complex to the nucleus, where the U snRNP

is further processed and targeted to its site of function. The

SMN-complex is then exported into the cytoplasm to engage

in another assisted U snRNP biogenesis cycle (step 4, see also

Fig. 1, step 12).
5. Open questions and future directions

Some questions need to be addressed to understand the

mechanism of this unique assembly system. One of them is

how the flow of Sm proteins through the assembly machinery

onto U snRNA is facilitated and regulated. We favor a model,

in which Sm proteins are pre-assembled on the PRMT5-com-

plex to form the heterooligomers B/B 0–D3, D1–D2 and E–F–

G, as a prerequisite for the transfer onto the SMN-complex.

This model implies that Sm proteins on the PRMT5-complex

do not have the propensity of binding to U snRNA, a situation

that obviously changes upon transition to the SMN-complex

associated state. What could be the switch to turn it from an

assembly incompetent into an assembly active state? The an-

swer may lie within the architecture of the components that

make up the Sm core domain of U snRNPs, with the RNA

being tightly surrounded by seven Sm proteins. Two obvious

scenarios could explain formation of such a structure: In one

scenario, the Sm protein ring is formed on the SMN-complex

and subsequently the RNA threaded through the central hole.

Considering the spatial organization of the U snRNP, this

mechanism appears to be rather unlikely. A more probable

scenario may be a clamp-loading like mechanism. In this pro-

cess, the Sm proteins are kept on the SMN-complex in an

‘‘open ring’’ configuration. Upon binding of the U snRNA,

the SMN-complex may undergo structural rearrangements

leading to the closure of the Sm protein ring around the

‘‘Sm-site’’. Therefore, such an ‘‘open ring’’ conformation

should be induced by the topology of the SMN-complex. In

preceding steps of the assembly line, however, it should be dis-

allowed. This model implies a conformational switch of the

SMN-complex and a step in which the RNA is identified

and bound onto the open Sm ring. Gemin3 and Gemin5

may play crucial roles in these postulated events. The Gemin3

protein belongs to the DEAD-box family of RNA helicases

and may explain why assembly is dependent on the hydrolysis

of ATP. Gemin5, in contrast, has been shown to specifically

recognize ‘‘Sm-site’’ containing RNAs and may hence guide

the U snRNA to the ‘‘Sm-site’’ [44]. Further studies are re-

quired to clarify, whether this scenario holds true, or another

yet to be discovered mechanism, accounts for the formation

of the Sm core domain.

As outlined above, U snRNPs (like other RNPs) can assem-

ble spontaneously in vitro. Therefore, one may ask why trans-

acting assembly factors are required in vivo. Life without this

system is impossible as illustrated by the fact that inactivation

of SMN, Gemin2 and pICln is lethal in several organisms,



Fig. 3. Model of assisted assembly of U snRNPs. Sm proteins are initially translated in the cytoplasm and sequestered by the PRMT5-complex,
consisting of the Type II methyltransferase PRMT5, WD45 (also termed Mep50) and pICln, which promotes symmetric dimethylation of arginines
on Sm proteins B/B 0, D1 and D3 (step 1). Next, the SMN-complex interacts with the PRMT5-complex to form an SMN-PRMT5-complex in which
the Sm proteins are transferred onto the SMN-complex (step 2). These Sm proteins are assembled onto the ‘‘Sm-site’’ of U snRNAs to form U
snRNPs (step 3). Finally, the U snRNP, the SMN-complex and PRMT5-complex dissociate and the latter two engage in a new round of U snRNP
biogenesis (step 4).
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including mice (see [32] for a review). This excludes the possi-

bility that spontaneous assembly is a default pathway in vivo,

which is redundant with assisted RNP formation. We specu-

late that one function of the SMN–PRMT5-system is to serve

as a chaperone system that prevents mis-assembly of Sm pro-

teins to non-target RNA and Sm protein aggregation. Indeed,

first experimental evidence for this activity has been provided

recently [30].

Spliceosomal U snRNPs are certainly the most abundant

class of particles, assembly of which is mediated by the

SMN-PRMT5-system. But are there also other classes of par-

ticles depending on this system? This is true for U snRNPs of

the minor spliceosome (i.e. U11, U12, U4atac), which contain

an Sm core domain indistinguishable from their counterparts

of the major spliceosome. Thus, we are confident to postulate

a common assembly for most, probably all, particles with

‘‘canonical’’ Sm core domains. However, a large number of
RNPs contain core structures composed, at least in part, of

different components. One such case is the U7 snRNP, a par-

ticle involved in 3 0-end processing of histone mRNA. The core

domain of this particle consists of the canonical Sm proteins B,

D3, E, F and G, whereas D1 and D2 are replaced by the ‘‘like

Sm proteins’’ 10 and 11 (termed Lsm10 and 11) [45]. Interest-

ingly, assembly of the Lsm/Sm core of the U7 snRNP has been

shown to be dependent on the SMN-complex charged with the

U7-specific set of core proteins [46]. Thus, also a particle with a

mixed Lsm/Sm core depends on this assembly machinery.

A group of related like Sm proteins (Lsm proteins) has been

identified recently (termed Lsm1–8) which can form heptamer-

ic ring-like structures very similar in shape and size to the

‘‘canonical’’ Sm core domain [47]. Depending on their compo-

sition, they mediate either RNA degradation (Lsm1–7) [48,49],

or function as core components of the spliceosomal snRNAs

U6 and U6atac (Lsm2–8) [50–52]. Interestingly, these
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Lsm-exclusive rings can form in the absence of RNA and

hence behave in this respect markedly different than Sm (and

Lsm10/11) proteins [50]. If the SMN-complex acts exclusively

as a clamp loader onto the respective cognate RNAs, as out-

lined above, assembly of the Lsm rings may occur indepen-

dently of this system. However, SMN (as a single protein)

has been shown to bind to Lsm proteins in vitro, providing

the possibility that at least some proteins of the SMN-complex

also play a role in the biogenesis of Lsm rings [53].

Finally, some nuclear and nucleolar RNAs such as box C/D

small nucleolar RNA, box H/ACA and telomerase RNA have

been shown to associate with distinct subsets of Sm proteins or

other classes of proteins, which are able to interact with SMN

[54–58]. We regard the development of in vitro assembly as-

says, which recapitulate the in vivo situation, an obligate

prerequisite to address the question whether the SMN–

PRMT5-system is indeed a master assembler for a large variety

of different RNPs or whether this system is restricted to a smal-

ler class harboring only specific sets of Sm and Lsm proteins.
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