literature, there is little if any attempt to quantify it. We aim to quantify the difference in efficacy and effectiveness of Metformin in terms of reducing HbA1c in patients with type-2 diabetes. METHODS: First, a systematic review was carried out to identify relevant randomized controlled trials (RCTs) and non-interventional studies (NIS). CENTRAL, MEDLINE (via PubMed) and clinicaltrials.gov were searched for relevant articles published within the last 20 years. RCTs and NIS which evaluated the treatment effects of Metformin in adult patients with type-2 diabetes and analyzed glycemic control by means of change in HbA1c value were included. Studies in which Metformin was substituted for an antidiabetic, studies with a study period of less than three months and studies analyzing subpopulations were excluded from further research. Only German and English papers were eligible. Second, mean values of HbA1c reduction were aggregated in a meta-analysis using a random-effects model. Study heterogeneity was evaluated by the I² parameter. To test for publication bias we used funnel plots. RESULTS: In total 1151 articles were identified. 21 RCTs and 6 NIS were included in the quantitative analysis. Overall HbA1c was reduced by 0.79% (95%CI: -1.186%, -0.403%). I² was 99.91% (RCTs: 99.932; NIS: 97.769) indicating high heterogeneity. The comparison of the two settings resulted in a small difference of 0.130% in HbA1c decrease between RCTs (0.935%; 95%CL: -1.186%, -0.717%) and NIS (1.083%; 95% CL: -1.34%, 0.857%). The estimated difference in HbA1c change in most patients. The objective of the study was to assess the consumption of oral antidiabetic drugs of Ukrainian production while 7 patients were taking medicine of foreign manufacture. The cost of pharmacotherapy with foreign medicines was 125% higher as compared to NIS (-1.083%; 95% CI: -1.34%, 0.857%). The estimated difference in HbA1c change is 0.130% in HbA1c decrease between RCTs (0.935%; 95%CL: -1.186%, -0.717%) and NIS (1.083%; 95% CL: -1.34%, 0.857%). The estimated difference in HbA1c change between RCTs and NIS was 0.130% in HbA1c decrease (95%CI: -0.953%, -1.188%, -0.717%). The mean (SD) annual number of sick days due to diabetes for the same regions were 4.6 (2.9), 8.2 (4.1), 0.6 (1.9), 0.3 (1.2) and 1.3 (2.7) hospitalizations (18 countries) was collected as part of the 5th wave of the IDMPS (2011–2012). Mean (SD) annual levels of different types of HCRU were estimated and negative binomial regression was undertaken to identify drivers of HCRU by region and country. RESULTS: Estimated HCRU showed that patients in South Asia (n=1,195), Nauru (n=1,843), Africa (n=2,220), Middle East (n=2,065), and Turkey (n=842) experienced a mean (SD) of 0.4 (1.3), 1.7 (4.1), 0.6 (1.9), 0.3 (1.2) and 1.3 (2.7) hospitalisations (18 countries) was collected as part of the 5th wave of the IDMPS (2011–2012). Mean (SD) annual number of different types of HCRU were estimated and negative binomial regression was undertaken to identify drivers of HCRU by region and country. RESULTS: Estimated HCRU showed that patients in South Asia (n=1,195), Nauru (n=1,843), Africa (n=2,220), Middle East (n=2,065), and Turkey (n=842) experienced a mean (SD) of 0.4 (1.3), 1.7 (4.1), 0.6 (1.9), 0.3 (1.2) and 1.3 (2.7) hospitalisations (18 countries) was collected as part of the 5th wave of the IDMPS (2011–2012). Mean (SD) annual number of different types of HCRU were estimated and negative binomial regression was undertaken to identify drivers of HCRU by region and country. RESULTS: Estimated HCRU showed that patients in South Asia (n=1,195), Nauru (n=1,843), Africa (n=2,220), Middle East (n=2,065), and Turkey (n=842) experienced a mean (SD) of 0.4 (1.3), 1.7 (4.1), 0.6 (1.9), 0.3 (1.2) and 1.3 (2.7) hospitalisations (18 countries) was collected as part of the 5th wave of the IDMPS (2011–2012). Mean (SD) annual number of different types of HCRU were estimated and negative binomial regression was undertaken to identify drivers of HCRU by region and country. RESULTS: Estimated HCRU showed that patients in South Asia (n=1,195), Nauru (n=1,843), Africa (n=2,220), Middle East (n=2,065), and Turkey (n=842) experienced a mean (SD) of 0.4 (1.3), 1.7 (4.1), 0.6 (1.9), 0.3 (1.2) and 1.3 (2.7) hospitalisations (18 countries) was collected as part of the 5th wave of the IDMPS (2011–2012). Mean (SD) annual number of different types of HCRU were estimated and negative binomial regression was undertaken to identify drivers of HCRU by region and country. RESULTS: Estimated HCRU showed that patients in South Asia (n=1,195), Nauru (n=1,843), Africa (n=2,220), Middle East (n=2,065), and Turkey (n=842) experienced a mean (SD) of 0.4 (1.3), 1.7 (4.1), 0.6 (1.9), 0.3 (1.2) and 1.3 (2.7) hospitalisations (18 countries) was collected as part of the 5th wave of the IDMPS (2011–2012). Mean (SD) annual number of different types of HCRU were estimated and negative binomial regression was undertaken to identify drivers of HCRU by region and country. RESULTS: Estimated HCRU showed that patients in South Asia (n=1,195), Nauru (n=1,843), Africa (n=2,220), Middle East (n=2,065), and Turkey (n=842) experienced a mean (SD) of 0.4 (1.3), 1.7 (4.1), 0.6 (1.9), 0.3 (1.2) and 1.3 (2.7) hospitalisations (18 countries) was collected as part of the 5th wave of the IDMPS (2011–2012).
OBJECTIVES: The aim of this study was to assess the burden of peripheral arterial
teropathy (PA) in diabetic patients. METHODS: Eligible patients were identified through a
data warehouse (DENALI), which matches clinical and economic data of about 8 million individuals of Lombardy, a northern Italian region where it is known that 16.4% of the Italian population is affected by diabetes. The study population was made of all individuals over 40 with a diagnosis of diabetes who were already treated with diabetes medications at the end of 2008 and 2009. The identified individuals were followed-up from the index event to a maximum of 7 years. We evaluated demographic characteristics of the study population and costs (hospitalizations, drugs and outpatient examinations/visits) from the National Health Service's perspective. RESULTS: On the basis of 18,344 subjects (% of the diabetic source population) had at least one hospital admission of interest. Median age (min-max) at the index date was 72(40-102) and 31% of the study population had a Charlson comorbidity index higher than 3. The overall mortality was 11.3 deaths every 100 patient-years (95%CI, 11.1-11.6). Forty-four percent of the study population had at least one procedure among vascularization, minor and major amputation. Mean cost and corresponding 95% C.I. is €32,745 (€30,212-€35,317) per patient-year for PA diabetic patients was 14,085(12,346-15,800) per patient-year and around 7,000 in the following periods of observation. Hospitalizations represented the driver of total costs. CONCLUSIONS: This study attempted to describe the epidemiologic and economic burden of diabetes patients with PA complications, showing the relevance of related epidemiologic and economic aspects.

PDB128 EXAMINING THE SOCIOPROFESSIONAL INFLUENCES ON PHYSICIANS’ PRESCRIBING BEHAVIOR OF TWO DIABETIC MEDICATIONS IN US OUTPATIENT SETTING
Giannina C1, Mieczyslaw C2, Coreen C2, Lunch C2, Clarisa C2, Jason C2
1SafarPlex University, Birmingham, AL, USA, 2The University of Texas at Austin, Austin, TX, USA
OBJECTIVES: Dipeptidyl peptidase-4 (DPP-4) inhibitors were recently approved in the US. The objective is to evaluate the prescribing behavior of traditionally used diabetic medications and the newer DPP-4 inhibitors. METHODS: This cross-sectional study used data from the 2006-2010 National Ambulatory Medical Care Survey (NAMCS) and employed the Eisenberg model of physician’s decision making. The dependent variable was the use of DPP-4 inhibitors. The following independent variables were determined based on the Eisenberg model: age, gender, race/ethnicity, insurance type, primary care physician, practice region, metropolitan status, practice setting, previous physician office visits, and the type of diabetes medications and surgeries. Logistic regressions were used for analyses. RESULTS: The estimated population size was 535,158,796 patients with type 2 diabetes, and 3.85% of them were prescribed DPP-4 inhibitors. The most frequently used diabetic medication group was biguanides (metformin) (26.1%), followed by sulfonylurea (17.8%). The use of other diabetes medication was highly associated with the likelihood of the use of DPP-4 inhibitors. Patients who were prescribed sulfonylurea (OR = 1.39, 95% CI: 1.38-1.40) were approximately twice as likely to be prescribed DPP-4 inhibitors (OR = 1.62, p = 0.009 and OR = 2.96, p = 0.001, respectively). The likelihood of the use of DPP-4 inhibitors was also increased with a patient’s employment status (p = 0.001), level of education (p = 0.001), employment status (p = 0.03) and monthly income (p < 0.001). CONCLUSIONS: Diabetes treatment and management requires compliance to effective therapies at early stages. Healthcare providers should engage diabetics in an open non-judgmental dialogue to ascertain better understanding of diabetes and its management options.