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size of H. We identify a class of graphs C such that for every fixed H € C, there exists a
linear-time algorithm deciding whether a given planar graph G can be contracted to H. The
class C is the closure of planar triangulated graphs under taking of contractions. In fact, we
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Dual graph of C in terms of minimal forbidden contractions.
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Topological minor
Fixed parameter tractable

1. Introduction

We consider simple graphs without loops and multiple edges. For a graph G, let V (G) be its vertex set and E(G) its edge
set. For notions not defined here, we refer the reader to the monograph on graph theory by Diestel [6].

1.1. Planar graphs

All graphs in this paper are planar. Plane graphs are always assumed to be drawn on the unit sphere and their edges are
arbitrary polygonal arcs (not necessarily straight line segments).

Embeddings. In this work, we only need to distinguish between essentially different embeddings of a planar graph. This
motivates the following definition. Two plane graphs G and H are combinatorially equivalent (G ~ H) if there exists a homeo-
morphism of the unit sphere (in which they are embedded) that transforms one into the other. The relation of being
combinatorially equivalent is reflexive, symmetric and transitive, and thus an equivalence relation. Let G be the class of all
plane graphs isomorphic to a planar graph G, and let us consider the quotient set G/ ~. The equivalence classes (i.e., the
elements of the quotient set) can be thought of as embeddings. In fact, we will work with embeddings but for simplicity, we
will pick a plane graph representative for each embedding.
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Fig. 1. Graphs Mg and [, respectively.

Dual. The dual of a plane graph G will be denoted by G*. Note that there is a one-to-one correspondence between the
edges of G and the edges of G*. We keep the convention that e* is the edge of G* corresponding to edge e of G.

Triangulation. A planar graph is called triangulated if it has an embedding in which every face is incident with exactly three
vertices. Let us recall two useful facts related to planar 3-connected graphs that we will need later.

Lemma 1.1. Triangulated planar graphs are 3-connected.
Lemma 1.2. A 3-connected planar graph has a unique embedding.

For proofs of these lemmas, see for instance the monograph of Mohar and Thomassen [16], Lemma 2.3.3, p. 31 and
Lemma 2.5.1, p. 39, respectively. From these two lemmas, every triangulated graph has a unique embedding.

Grids and walls. The k x k grid M) has as its vertex set all pairs (i, j) for i, j=0,1,...,k — 1, and two vertices (i, j) and
(', j)) are joined by an edge if and only if |i —i'| +|j — j/| =1.

For k > 2, let I, denote the graph obtained from M, by triangulating its faces as follows: add an edge between vertices
(i,j) and (i, j) ifi—i’=1and j/— j=1, and add an edge between corner vertex (k— 1,k — 1) and every external vertex
that is not already adjacent to (k— 1,k —1), i.e., every vertex (i, j) with i € {0,k —1} or j € {0, k — 1}, apart from the vertices
(k—2,k—1) and (k — 1,k — 2). The graph I} is called a triangulated grid. See Fig. 1 for graphs Mg and I5. The dual I3} of
a triangulated grid is called a wall.

Treewidth and MSOL. The fragment of second-order logic where quantified relation symbols must have arity 1 is called
monadic second-order logic (MSOL). A seminal result of Courcelle [4] is that on any class of graphs of bounded treewidth,
every problem definable in monadic second-order logic can be solved in time linear in the number of vertices of the graph.
Moreover, Courcelle’s result holds not just when graphs are given in terms of their edge relation, but also when the domain
of a structure encoding a graph G consists of the disjoint union of the set of vertices and the set of edges, as well as
unary relations V and E to distinguish the vertices and the edges, respectively, and also a binary incidence relation I which
denotes when a particular vertex is incident with a particular edge (thus, I C V x E). The reader is referred to Courcelle [4]
for more details and also for the definition of treewidth.

Lemma 1.3. (See [4].) For every fixed k and every problem P expressible in MSOL, there exists a linear-time algorithm for P in the
class of graphs of treewidth at most k.

Below we recall some other results related to treewidth that we will need later in the paper.
Lemma 1.4. (See (6.2) in [18].) Let m > 1 be an integer. Every planar graph with no m x m grid minor has treewidth < 6m — 5.
Lemma 1.5. (See (1.5)in [18].) If H is a planar graph with |V (H)| 4+ 2|E(H)| < n, then H is isomorphic to a minor of the 2n x 2n grid.
Lemma 1.6. (See Theorem 6 in [2].) For any plane graph G and its dual G*, tw(G)* < tw(G) + 1.

Lemma 1.7. (See Theorem 1.1 in [1].) For every fixed k, there exists a linear-time algorithm deciding whether the input graph has
treewidth at most k.

Pasting along vertices and edges. Let G be a graph with induced subgraphs G; and G, such that V(G) =V (G1) U V(G3)
and E(G) = E(G1) U E(G3). Let G1 N G, denote the subgraph of G induced by V(G1) N V(G3). Then we say that G arises
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from Gq and G, by pasting along G, N G». In this paper, we only paste along vertices and edges (that is, if G1 N Gy is a
vertex or an edge). We note that pasting planar graphs along vertices and edges creates planar graphs.

1.2. Containment relations

An edge contraction of an edge e in a graph is the graph obtained by removing e, identifying its two endpoints, and
eliminating parallel edges that may appear. Some basic properties of contractions are collected by Wolle and Bodlaen-
der [20]. Formally, for an edge e with endpoints u and w, the contraction of e, denoted by G/e, is the graph with vertex
set V(G/e) =V (G) \ {u, w}U {v,w} and edge set

EG/e)=E\{{x,y} € E: xe{u,w},y e VIU{{vuw.x}: {x,u} € EVv {x,w} € E}.

A graph H is a contraction of a graph G (or G is contractible to H) if H can be obtained from G by a sequence of edge
contractions. We denote it by H <. G.

A dissolution of a vertex v of degree 2 in a plane graph G is a contraction of one of the two edges to which v is incident
in G. A graph H that can be obtained from G be a sequence of dissolutions and edge/vertex deletions is called a topological
minor of G (H <, G). Finally, a graph H that is a contraction of a subgraph of G is called its minor (H <p, G).

In the paper, when we speak about different containment relations like contraction or topological minor, the graph H
will be called a pattern.

1.3. Parameterized complexity

Parameterized complexity is a paradigm in computational complexity and analysis of algorithms that has received a lot
of attention in the last 20 years. The idea is to evaluate the efficiency of an algorithm not only in terms of the size n of
an input I, but also by some parameter k that is assumed to be natural for the problem under consideration. A decision
problem is called fixed parameter tractable if an instance (I, k) can be solved by an algorithm that runs in time f(k) - n©®
where f is a computable function that only depends on k, thus independent of n. Such an algorithm is considered efficient
from the parameterized point of view. The class FPT is the class of all fixed-parameter tractable decision problems. For
more information on parameterized complexity we refer to monographs of Downey and Fellows [7], Flum and Grohe [8],
and Niedermeier [17].

2. Previous work

The problem of checking whether a graph is a contraction of another has already attracted some attention. In this section
we briefly survey known results. Let P,, C, and K, denote the path, cycle and complete graph on n vertices, respectively.
Let K}, 4 denote the complete bipartite graph with partition classes of size p and g, respectively. The graph Ky, for m > 1
is also called a star.

Perhaps the first systematic study of contractions was undertaken by Brouwer and Veldman [3]. The two main results
from their paper are as follows.

Theorem 2.1. (See Theorem 3 in [3].) A graph G is contractible to K1 n if and only if G is connected and contains an independent set S
of m vertices such that G — S is connected.

In particular, a graph is contractible to P3 if and only if it is connected and is neither a cycle nor a complete graph.
Theorem 2.1 also allows us to detect, in polynomial time, if a graph is contractible to K; , for a fixed integer m. It suffices
to enumerate over all sets S with m independent vertices and check if the graph G — S is connected. This gives a |V (G)|€™
algorithm, which is polynomial for every fixed integer m.

Theorem 2.2. (See Theorem 9in [3].) If H is a connected triangle-free graph other than a star, then contractibility to H is NP-complete.

Hence, checking if a graph is contractible to P4 or C4 is NP-complete. More generally, it is NP-complete for every
bipartite graph with at least one connected component that is not a star.

The research direction initiated by Brouwer and Veldman was continued by Levin, Paulusma, and Woeginger [13,14].
Here is the main result established in these two papers.

Theorem 2.3. (See Theorem 3 in [13].) Let H be a connected graph on at most 5 vertices. If H has a dominating vertex, then con-
tractibility to H can be decided in polynomial time. If H does not have a dominating vertex, then contractibility to H is NP-complete.

However, the existence of a dominating vertex in the pattern H is not enough to ensure that contractibility to H can be
decided in polynomial time. A pattern on 69 vertices for which contractibility to H is NP-complete was exhibited by van 't
Hof et al. [19].
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Looking at contractions to fixed pattern graphs is justified by the following theorems proved by MatouSek and
Thomas [15].

Theorem 2.4. (See Theorem 4.1 in [15].) The problem of deciding, given two input graphs G and H, whether G is contractible to H is
NP-complete even if we impose one of the following restrictions on G and H:

(i) H and G are trees of bounded diameter,
(ii) H and G are trees with at most one vertex of degree more than 5.

Theorem 2.5. (See Theorem 4.3 in [15].) For every fixed k, the problem of deciding, given two input graphs G and H, whether G is
contractible to H is NP-complete even if we restrict G to partial k-trees and H to k-connected graphs.

The authors also proved a positive result.

Theorem 2.6. (See Theorem 5.14 in [15].) For every fixed A, k, there exists an O(|V (H)|¥*1 .|V (G)|) algorithm to decide, given two
input graphs G and H, whether G is contractible to H, when the maximum degree of H is at most A and G is a partial k-tree.

In a previous paper [11], we studied the problem of deciding whether a given planar graph can be contracted to a fixed
pattern. Here, we will need some of the definitions and results of that paper.

An embedded contraction of an edge e of a plane graph G is a plane graph G’ that is obtained by homeomorphically
mapping the endpoints of e in G to a single vertex without any edge crossings and recursively removing one of the two
parallel edges bounding a 2-face, if a graph has such a pair. Note that there are many embedded contractions of an edge of
a plane graph G but they are all combinatorially equivalent.

An embedded dissolution of a vertex v of degree 2 in a plane graph G is an embedded contraction of one of the two
edges to which v is incident in G.

Let G and H be two plane graphs. We say that H is an embedded contraction of G (H <: G), if H is combinatorially
equivalent to a graph that can be obtained from G by a series of embedded contractions. We say that H is an embedded
topological minor of G (H <e¢m G), if H is combinatorially equivalent to a graph that can be obtained from G by a series of
vertex and edge deletions, and embedded dissolutions of vertices of degree 2.

The main technical result of [11] is an equivalence between embedded contractions in a planar graph and embedded
topological minors in its dual. A multigraph is called thin if it has no two parallel edges bounding a 2-face. Simple graphs
are in particular thin.

Lemma 2.7. (See Lemma 2 in [11].) Let H and G be two thin planar graphs and H*, G* their respective duals. Then
H<eeG & H" <etm G*.

This equivalence is used to reduce the problem of finding a contraction in a planar graph G to finding an embedded
topological minor in its dual graph G*. This consequently leads to the main result of that paper.

Theorem 2.8. (See Theorem 12 in [11].) For every graph H, there exists a polynomial-time algorithm that given a planar graph G
decides whether H is a contraction of G, and if so finds a series of contractions transforming G into H.

3. Our motivation and results

Theorem 2.8 tells us that for every graph H, one can decide in polynomial time if a planar graph can be contracted to H.
However, the running time of the algorithm, as mentioned in [11], is bounded by a polynomial whose degree depends on
the size of H. Therefore, this is not an FPT algorithm, when parameterized by |H]|.

Recently, Grohe et al. [10] announced that topological minor testing is FPT. We emphasize that due to the difference
between embedded topological minors and topological minors their result does not imply that contraction testing is FPT in
planar graphs.

In this paper, given the duality of Theorem 2.8, we focus on contractions in planar graphs and identify a class of patterns
for which an FPT algorithm exists. We show that the problem of testing whether a planar graph G can be contracted
to a triangulated planar graph H is equivalent to testing whether the dual of G contains the dual of H as a topological
minor; so for such cases embedded topological minors and topological minors coincide. This means that we could use the
result of Grohe et al. to immediately find that contraction testing is FPT in planar graphs as long as the pattern graphs are
triangulated. However, we aim for a stronger result. Let C be the closure of the class of triangulated planar graphs with
respect to taking of contractions. We present an FPT algorithm running in time linear in n, that tests if a given n-vertex
planar graph can be contracted to a pattern graph H € C.
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Our approach is as follows. We prove that for every graph H € C, there is a constant cy such that if tw(G) > cy, then G
contains H as a contraction. Our algorithm first checks if the treewidth of the input graph is large enough. If so, then the
input graph contains H as a contraction. Otherwise, we use the celebrated result by Courcelle [4] to solve the problem on
the class of graphs with bounded treewidth.

We also study properties of C and provide a characterization of the class in terms of forbidden contractions.

4. Algorithm

Definition 4.1. Let 7 be the class of triangulated planar graphs and C be the minimal contraction-closed class containing 7.

We note that C is well-defined. It is the set of all graphs that can be obtained as a contraction of a graph in 7. Because
contraction is transitive, C is closed under contractions.

In order to illustrate that C is a proper superclass of 7 we consider the diamond, which is the graph D given by vertices
u,v,w,x and edges uv,uw, vw, vx, wx. We observe that D is a planar graph that is not triangulated. Hence, D does not
belong to 7. However, D does belong to C, because it is a contraction of the triangulated planar graph in 7 that is obtained
from D by adding a new vertex y adjacent to u, v, w, x. We generalize this observation in Lemma 4.2.

Lemma 4.2. C is the closure of 7 U {K,} with respect to pasting along vertices and edges.

Proof. For the forward implication, let us note that triangulated planar graphs are 3-connected by Lemma 1.1. All cut-sets
of a triangulated planar graph are isomorphic to the clique on 3 vertices. Let us observe that contractions of a graph whose
cut-sets are cliques are graphs with clique cut-sets. Also, the size of a cut-set will not increase after contraction.

Let G € C. By definition, G is a contraction of a triangulated planar graph. The maximal 3-connected components of G
are triangulated, and the minimal cut-sets of size less than 3 are isomorphic to complete graphs. Hence, G can be obtained
from triangulated graphs by pasting along vertices and edges.

For the backward implication, let G be a minimal graph that belongs to the closure of 7 with respect to pasting along
vertices and edges but that is not a contraction of a triangulated planar graph.

First, suppose that G has a cut-vertex v. Let Cq,...,Cr denote the connected components of G — v after restoring v
in each of them. Let C},...,C} be triangulated planar graphs such that Cy,..., Cy are their contractions respectively. Let
us consider drawings of C1, ..., C; such that v belongs to the outerface in each of these drawings (clearly, such drawings
exist). Let x;, y; be the other two vertices of C;, for i =1,...,k, besides v, incident with the outerface. Now let us identify
v from different drawings of C, ..., C,/C in such a way that the cyclic order of vertices around v is x1, y1,..., Xk, Y. Let us
then add new vertices w1, ..., wy to the drawing and make them all adjacent to v and each w; adjacent to y; and x;,1, for
k=1,...,k—1, and wy adjacent to y; and x;. At the last step, we add a vertex u adjacent to all x;, y;, w;, fori=1,... k.
It is easy to verify that the graph we have created is planar and triangulated, and that G is a contraction of that graph;
a contradiction.

Second, we suppose that G has a cut-edge vw. Let us consider a planar drawing of G and put a new vertex in every
4-face of G. Next, we make the new vertices adjacent to all 4 vertices incident with that face. It is easy to verify that the
graph we have created is planar and triangulated, and that G is a contraction of that graph; a contradiction. This completes
the proof of Lemma 4.2. O

Lemma 4.3. Let H be a triangulated planar graph and H* be its dual. For every planar graph G and its dual G*,
H<,G & H*<umG*"

Proof. H is a triangulated planar graph and has a unique embedding by Lemmas 1.1 and 1.2. Hence, the contraction and
embedded contraction relations coincide. As the dual of a planar triangulated graph also has a unique embedding, the
embedded topological minor and topological relations minor coincide. Thus, H <¢c G & H < G and H* < G* & H* <t
G*, and the lemma follows from Lemma 2.7. O

Theorem 4.4. Let H be a graph. Then H belongs to C if and only if there exists a constant cy such that for every graph G, iftw(G) > cy
then H <. G.

Proof. Let H be a graph in C. For the forward implication we note that by definition H is a contraction of a triangulated
planar graph. Hence, there exists a triangulated planar graph Hr such that H <. Hr. For a graph G, we have that Hy <,
G & Hj <tm G* by Lemma 4.3.

The graph H7} is cubic, and as the dual of a triangulation it has a unique embedding into the sphere. The minor and
topological minor relations are equivalent for graphs of maximum degree 3 (see Proposition 1.7.2, p. 20, [6]), therefore
Hr <G & H} <m G*.
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However, every planar graph is a minor of some grid by Lemma 1.5. (As explained in [6], “To see this take a drawing of
the graph, fatten its vertices and edges, and superimpose a sufficiently fine plane grid.”) Let My be the minimum size of a
grid that contains H} as a minor and cy > 6mH; — 4. Then, for every graph G of treewidth at least cy, the treewidth of its
dual is at least cy — 1 > 6mpz — 5 by Lemmas 1.4 and 1.6. Therefore, G* contains Hj} as a minor and, as explained before,
G contains H as a contraction.

For the backward implication, we need to prove that if there exists a constant cy such that every planar graph G with
tw(G) > cy contains H as a contraction, for some graph H, then H € C. To see this, choose G to be a triangulated grid with
tw(G) > cy. Then, G contains H as a contraction, so H € C. This completes the proof of Theorem 4.4. 0O

Theorem 4.5. For every fixed graph H € C, there exists a linear-time algorithm deciding whether a given planar graph can be contracted
to H.

Proof. Let H € C. This means that H is a contraction of a graph in 7. The latter graph is planar by definition. Then H is
planar as well, because planar graphs are closed under contractions. Let cy be the constant from Theorem 4.4. Let G be our
planar input graph. First, we test if tw(G) > cy using the linear-time algorithm from Lemma 1.7. If so then G contains H as
a contraction by Theorem 4.4. Otherwise, we use Lemma 1.3. We point out that testing whether a graph can be contracted
to a fixed pattern is expressible in MSOL. We explain this below.

Let G and H be two graphs. Then G contains H as a contraction if and only if there is a partition of V(G) into |V (H)|
sets W (h), called witness sets, such that each W (h) induces a connected subgraph of G and for every two h;,hj € V(H),
witness sets W (h;) and W (h;) are adjacent in G if and only if h; and h; are adjacent in H. Here, two subsets A, B of V (G)
are called adjacent if there is an edge ab € E(G) with a € A and b € B. By contracting all the edges in each of the witness
sets, we obtain the graph H. Due to this alternative definition, we only need to express in MSOL the notions of adjacency
between sets, nonadjacency between sets and connectivity. This can be done by standard techniques as explained in the
survey paper of Grohe [9]. This completes the proof of Theorem 4.5. O

5. Characterizations of C

In this section, we give two equivalent characterizations of C. First, we show that a graph belongs to C if and only if it
is a contraction of a triangulated grid. Then, we provide a characterization of C in terms of minimal forbidden contractions.

5.1. Triangulated grids

Lemma 5.1. G € C if and only if G is a contraction of a triangulated grid.

Proof. For the forward implication, let us recall that by Lemma 1.5, for every planar graph H, there exists a constant my

such that H is a minor of the my x my grid. One can easily see that a grid is a minor of some wall. Hence, for every planar

graph H, there exists a constant m}; such that H is a minor of the Fm*, wall. In particular, every cubic planar graph is a
H

minor of a big enough wall. Since the minor and topological minor relations are equivalent for graphs of maximum degree 3
(see Proposition 1.7.2, p. 20, [6]), every cubic planar graph is a topological minor of a big enough wall.

If G €C, then there exists a triangulated planar graph Hr such that H <. Hr. Let G* be a wall big enough that it
contains H} as a topological minor (H7 is cubic). From Lemma 4.3, Hr <¢ G & H} <m G*. Therefore, Hr is a contraction
of a triangulated grid.

For the backward implication, if G is a contraction of a triangulated graph, then G € C by the definition of C. This
completes the proof of Lemma 5.1. O

5.2. Minimal forbidden contraction

In this subsection, we characterize our class C in terms of minimal forbidden contractions. Such a characterization
already exists for the class of planar graphs as shown by Demaine, Hajiaghayi, and Kawarabayashi [5]. Before we present
their characterization (we need it for ours), we first define some graph terminology. Let {ay, ay,as} and {b1, b, b3} denote

the partition classes of K3 3. Adding edge {ai,ay} leads to the graph ng, adding edges {ai, az}, {az, as} to the graph K§’3

and adding edges {ai, a2}, {az, as}, {a1, az} to the graph Kg’ 3. The 5-vertex wheel Wy is obtained from adding an extra vertex
adjacent to every vertex of a C4.
We are now ready to present the two characterizations; also see Figs. 2 and 3.

Theorem 5.2. (See Corollary 29 in [5].) A connected graph is planar if and only if it does not contain any graph from {K3 3, Kgﬁ, 1@’3,
K3 5. Ks} as a contraction.

Theorem 5.3. A graph belongs to C if and only if it does not contain any graph from {K ; | r > 2} U {K;3, Ks, W4} as a contraction.
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K3,3 K:%,:; Kg,:i Kg,ii

Ks
Fig. 2. The minimal forbidden contractions in Theorem 5.2.
Ks, K3, K; W,

Fig. 3. The minimal forbidden contractions in Theorem 5.3.

Proof. We first prove the forward implication. Suppose H is a graph in C. Because C is contraction-closed and every graph
in {Ky,|r>2}U {K§.3, K5, W4} does not belong to C, we find that H cannot be contracted to such a graph.

We now prove the backward implication. Let H be a graph. Suppose H does not contain any graph from {Ky, |r > 2}
u {I<§’3, Ks, W4} as a contraction. We must show that H € C. In order to derive a contradiction, suppose H ¢ C. We may
without loss of generality assume that H is minimal, i.e., contracting an arbitrary edge in H results in a graph H' € C.

Claim 1. H is planar.

We prove Claim 1 as follows. Suppose H is not planar. Then H can be contracted to a graph F € {K3 3, ng, K32.3, K;’&, Ks}

due to Theorem 5.2. By our assumptions, F ¢ {K§,3, Ks}. Hence, F € {K3 3, K; 3 K§3}. However, in all these three cases, F
contains W4 as a contraction by contracting the edge {ay, b,}. This is not possible. Hence, we have proven Claim 1.

Claim 2. H is 3-connected.

We prove Claim 2 as follows. Suppose H is not 3-connected. Then H either contains a cut-vertex x or a cut-set {x, y} of
size two.

Consider the first case. Because H ¢ C, there exists a component D of H — x such that D + x ¢ C; otherwise H € C
because of Lemma 4.2. We observe that D + x contains no graph from {Ky, |r > 2} U {1@3, Ks, W4} as a contraction,
because otherwise H would contain such a graph as contraction as well, and this is not possible. Hence, we could take
D + x instead of H. This means that H is not minimal, a contradiction.

Now consider the second case. We find that H is not minimal either by the same kind of arguments as in the first case,
unless x and y are not adjacent. However, in that case contracting the connected components of H — {x, ¥} to a single vertex
yields the graph Kj ;, where r denotes the number of such components. This is not possible, and Claim 2 has been proven.

Claim 3. H allows an embedding with an outer face of exactly 4 vertices.

We prove Claim 3 as follows. Because H is 3-connected (by Claim 2) and H ¢ C, we find that H is not triangulated.
This means that H contains a face of at least 4 vertices. Without loss of generality we may assume that this face is the
outer face. If it contains more than 4 vertices, we can contract one of its edges and obtain a graph H’ that contradicts the
minimality of H. This proves Claim 3.

Now let C be the outer face of H. By Claim 3, we may assume that C consists of exactly 4 vertices z1, ..., z4. Because H
is planar by Claim 1, H — C contains at most one connected component adjacent to all four vertices of C. If this is the case
we can contract this component to one single vertex c. We contract the other connected components of H — C to single
vertices as well. This leads to a graph in which the vertices c, z1, ..., z4 induce a W4. We get rid of any remaining vertex
¢’ as follows. If ¢’ is adjacent to ¢ then we contract the edge {c, c¢’}. Otherwise, ¢’ is adjacent to a vertex z; or two vertices
zi,zj of C, and in the latter case z; and z; are adjacent. We contract the edge {c’, z;}. In this way we find that H can be
contracted to Wy4. This is not possible.

If H— C contains no component adjacent to all four vertices of C, then H contains C4 as a contraction by similar
arguments as used above. This completes the proof of Theorem 5.3. O

We observe that none of the graphs {Ky,|r>2}U {K;_,', Ks, W4} is a contraction of another. Thus, Theorem 5.3 charac-
terizes C in terms of minimal forbidden contractions. '
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6. Conclusions

This paper can be read as an introductory study of the class C. We define the class, discover some of its properties
and provide an algorithmic application. The graphs that belong to C are exactly those that are contractions of triangulated
graphs, or equivalently, contractions of triangulated grids. Note that membership in C can be tested in polynomial time.
The input graph should be decomposed along Ki- and Kj-cuts and each component should be tested for being a planar
triangulated graph.

We believe that C is an interesting class of graphs in its own right for the following reasons. First, Lemma 5.1 tells us
that a graph belongs to C if and only if it is a contraction of a triangulated grid. This could be viewed as an analog to
the well-known statement that a graph is planar if and only if it is a minor of a grid. Second, Theorem 4.4 tells us that a
graph H € C if and only if there exists a constant cy such that if the treewidth of a graph is at least cy, it contains H as a
contraction. Third, the well-known theorem by Kruskal states that the set of trees over a well-quasi-ordered set of labels is
itself well-quasi-ordered [12]. The set of triangulated planar graphs is known to be well-quasi-ordered [5]. Every graph in
C can be seen as a tree (a decomposition tree with respect to K1- and Ky-cuts) whose vertices are labeled by triangulated
graphs. Hence, the graphs in C are well-quasi-ordered with respect to contractions.
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