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A b s t r a c t - - A p p r o x i m a t e  solutions of a partial differential equation become inaccurate if they are 
computed on a fixed grid that is not sufficiently fine in regions of the domain where the variables 
change rapidly. For time dependent problems, special features of a partial differential equation and 
their location could change in time as well. Thus, adaptive grid methods are necessary. 

In this paper, we develop an adaptive deformation method based on the least-squares finite-element 
method (LSFEM). A main advantage of this method as compared to the existing deformation method 
is its ability to generate adaptive grids on domains with moving boundary. It computes the node 
velocity from a div-curl system according to an error indicator (monitor function), and then moves 
the nodes to new locations so that the size of the new grid cells can be directly controlled. In this 
method, the connectivity of the nodes is unchanged if the grid quality is acceptable. Otherwise, 
various optimization procedures can be applied after node movements to improve grid quality. The 
grid formed becomes refined in regions where the solution error is large. (~) 2004 Elsevier Ltd. All 
rights reserved. 

K e y w o r d s - - L e a s t - s q u a r e s  finite elements, Grid deformation, 

1. I N T R O D U C T I O N  

Grid  g e n e r a t i o n  m e t h o d s  can  be  classified into  s t r u c t u r e d  and  u n s t r u c t u r e d  me thods .  A ve ry  

popu l a r  a p p r o a c h  in s t r u c t u r e d  m e t h o d s  is to  use an  a lgebra ic  m e t h o d  to  g e n e r a t e  an  in i t ia l  gr id  

and t h e n  use an e l l ip t ic  different ial  sy s t em to  improve  t h e  gr id  qual i ty .  

Var ia t iona l  m e t h o d s  are  also v e r y  successful  in gene ra t i ng  gr ids  by o p t i m i z i n g  a c o m b i n a t i o n  

of t]he func t iona l s  r ep re sen t ing  grid smoothness ,  cell skewness,  and  cell  size. See [1-3]. 
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The  above methods  lead to nonlinear differential systems tha t  are solved on a uniform grid 
of a simple computa t ional  domain (such as a cube in 3D). For domains of complex geometry,  
mult iblock methods  are developed. 

For finite-element methods,  unst ructured grids are used due to their  flexibility in discretizing 
domains of complex geometry. We refer to [4] for more information in this area. 

The  method  described in this paper  can be used to generate adapt ive  (s t ructured or unstruc- 
tured) grids on the physical domain by solving a linear, first-order differential sys tem (div-curl). 
Since the div-curl sys tem is solved by the LSFEM, the method can be used to deform an un- 
s t ructured grid directly on the physical domain. In this paper,  the me thod  is formulated in 
Sections 2-4. Numerical  examples are given in Section 5. 

2. T H E  D E F O R M A T I O N  M E T H O D  

A prel iminary version of this method appeared in [5], which is formulated and demons t ra ted  
for adapta t ion  towards s teady features on fixed domains. The  version developed in the current  
paper  is capable  of adapt ing the grids according to t ime dependent  features on domains with 
moving boundaries.  

The  deformation method has its origin in differential geometry  [6]. I t  was reformulated for grid 
generation in [7]. The  method generates a t ime-dependent  nodal mapping  from a domain f~(t0) 
to another  domain f~(T). A monitor  function is used to obtain a vector field t ha t  moves the grid 
nodes to desired locations. 

Assuming tha t  we formed a monitor  function 

f ( x , t )  > 0, for x E ft(t)  and t in [t0, T] (2.1) 

(e.g., / ( x ,  t) = C/5(x,  t) for some C > 0 where 5(x, t) is an error est imator) ,  such tha t  
£ 1 

(~) f (w ,  t------~ d~  = If~(t0)l. (2.2) 

We look for a t ime-dependent  mapping  ¢(., t) : ft(t0) --* t2(t) such tha t  

det V¢(x ,  t) = f ( ¢ ( x ,  t), t), for to < t < T. (2.3) 

Also we require tha t  ¢(x,  t) E oa(t) for all x E 0a(t0). 
The mapping  can be calculated in two steps. First, find a vector field u(x ,  t) t ha t  satisfies 

div  u (x ,  t) = - N , x E a ( t ) ,  (2.4a) 

cur lu (x ,  t) = 0, x E ft(t) ,  (2.4b) 

u (x ,  t ) . n  = 0 or  u ( x ,  t) = g (x ,  t), x ~ 0 a ( t ) ,  (2.4c) 

for to _< t < T, where n is the outward normal  to Oft(t) and g is a boundary  vector field 
determined by the boundary  movement.  

Second, find q5 by solving the t ranspor t  equation (the deformation ODE) for each fixed x E 

ft( t0) ,  

~ t  ¢(x,  t) = f (C(x ,  t), t )u(C(x,  t), t), to < t < Z. (2.5) for 

These steps imply (2.3) which in turn  ensures tha t  the grid becomes more refined on regions 
of large error. The  mathemat ica l  foundation of this method  is established from the following. 

THEOREM. The mapping ~ obtained from (2.4) and (2.5) satisfies 

( J (¢ )  :=) det VC(x,  t) = / ( ¢ ( x ,  t), t) (2.6) 

for each x E ft(to) and each t in [to, T]. 

The  theorem is proved by showing tha t  d ( J ( C ) / f ( C , t ) )  = 0, and therefore J f  = 1 if J (¢ ) /  
f(C,t)lt=to = 1. Details of the proof can be found in [8]. 

This method  has been applied to calculations of flows in [9] and [10]. A version of the method 
is developed in [11] with the use of a level set method.  
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3. L E A S T - S Q U A R E S  F I N I T E - E L E M E N T  M E T H O D  

The least-squares finite-element method (LSFEM) is based on the minimization of the residual 

in a least-squares sense. In this method a vector field u tha t  minimizes the functional 

I (v )  = / a  [Av - f[2 dw (3.1) 

is sought within the constraint of a given boundary  condition. For more information on LSFEM, 

we refer to [12-17]. 
Consider the linear boundary-value problem 

Au  = f, in D, (3.2a) 

B u  = g, on F, (3.2b) 

where 

i=1 

and x = (X l ,X2 , . . .  ,xn,t) for nd= 1,2 or 3, 

n,L Ou 
A u  = ~-" Ai-z--  + A 0 u ,  

f ~  
U2 

U ~ 

for m = number  of variables at each node. 

B is a boundary  operator,  

and . g = g2 

(3.3) 

where 

[[RH0 2 = 3f a [Av - f[2 dw, 

and hence, 

IIvll0 2 = ~ IIv, ll~ = v 2dW = v . v d ~ .  (3.5) 
i = 1  i = 1  

Since R is not zero we have [IRU0 2 _> o, and the equality holds only if v is the exact solution 
in (3.2). The solution u to (3.2) can be viewed as an element of )2 tha t  minimizes the L2 distance 
between A v  and f, 

I (v )  = t I A v  - fH0 2 = (Av - f, Av  - f), on V. (3.6) 

A necessary condition for u E ]2 to minimize I (v )  is the vanishing of its first variation, tha t  is, 

lira d ~fl t-,0 ~-~I(u + tv) = 2 (Av) .  (Au - f) dw = 0, V v  e )2, (3.7) 

/aAu. Avdw=~f .  Avdw, Vv e )2. (3.8) 

Assuming tha t  A is bounded below, a discretization of (3.8) leads to a symmetr ic  positive- 
definite matrix. Subdividing the domain into a union of finite elements we use the expansion 
of uh in each element 

u~(x) = ~ ¢ j ( x )  = | ~2j... , (3.9) 
j=l \ Umj 

(3.4) 

Wi thout  loss of generality, we assume g = 0. Let R = Av  - f in ~t for an arbi t rary  test function 
v c ~' C L2(~)  = [L2(~)] m. The distance between Av  and f is given by 
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where u~j is the nodal value of u/ at the jth node, Cjs are the shape functions, and N~ is the 
number of nodes in an element. Using (3.9) in (3.8), we obtain a linear system of algebraic 
equations 

K U  = F, (3.10) 

where K and F are assembled from element matrices 

Ke = / a  (A~bl, A~b2,..., A~Nn )T (A¢1, A~b2,..., A¢N,~) dw, 
e 

Fe = / a  (A~bl, A~2 , . . . ,  A~g,~)Tfdw. 

(3.11) 

(3.12) 

The boundary conditions (3.2b) can also be included into (3.6). The discretization by LSFEM 
always leads to symmetric positive-definite matrices which can be efficiently solved. 

In the deformation method for fixed domains the Neumann boundary condition (i.e., V - u  = 0 
on Ogt) is used, which ensures that  boundary nodes move along the boundary. For free surface 
or moving boundary, inflow conditions should be enforced. The LSFEM scheme can be used to 
solve the main PDEs (governing the underlying physical phenomenon) and the div-curl system 
used to move the grid nodes. 

4. M O V I N G  G R I D  B A S E D  O N  

LEAST-SQUARES F I N I T E - E L E M E N T  M E T H O D  

In this section, we formulate a deformation method which is based on the LSFEM. This work 
further develops the ideas that  first appeared in [5] and gives numerical examples on domains 
with moving boundaries. The method consists of the following steps. 

STEP 1. Define monitor function f and form the right-hand side of the div equation. 

STEP 2. Solve div-curl system (2.4) by LSFEM at each time step. 

STEP 3. Solve for the new node location from the deformation ODE (2.5). 

T h e  M o n i t o r  F u n c t i o n  

For refinement based on the solution errors by LSFEM, a monitor function can be constructed 
from the residual. This construction will be demonstrated in another paper on adaptive LSFEM 
for PDEs. 

For movement towards an interface or a boundary I (on a fixed or moving domain), we first 
construct a function / such that  

small, near interface, (4.1) 

f = 1, far from it. 

Figure 1. Refinement towards an interface. 

[ -  . . . .  
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f(x, t-dt) = dV__2 dV 

f(x, t) = fl normalized 

@ ~  t++ 

Figure 2. Monitor function for moving domains. 

Then we let a t ime-dependent  function f l  be defined by 

f l : = l - t + t f ,  f o r t o = O < t < l = T ,  

i.e.~ 
f l  := (1 - t ) ( 1 - f )  + f ,  

or, we may  take, for faster adjus tment  towards f ,  

fo r to  = 0 < t  < 1 = T ,  

f l  := (1 - t) 2 (1 - f-) + f ,  for to = 0 < t < 1 = T. 

(4.2) 

(4.3) 

(4.4) 

If f~ is a fixed domain,  then the monitor  function f is defined to be equal to f l  (i.e., f = f l ) .  
If  ft has a moving boundary  (see Figure 2), then the monitor  function at  t ime t - d t  is defined by 

dV I 
f ( x , t  - dt)  - d V '  (4.5) 

where dV, dW are the element volumes at  to and t - dr, respectively (assuming tha t  they have 
been calculated already).  At t ime t, it is defined by 

f ( x ,  t) = f l  normalized according to (2.2). (4.6) 

T h e  R H S  o f  t h e  D i v  E q u a t i o n  

Now the r ight-hand side of (2.4a) can be calculated 

RHS = - ~ 

S o l v i n g  t h e  T r a n s p o r t  O D E  

i.e., 

where 

( l / f  (x, t) - l / f  (x, t - d t ) )  

dt 

The deformat ion ODE in (2.5) is solved by Euler 's  method.  
For each x E ft(t0), 

¢(x,  t + dt)  = ¢(x,  t) + f ( ¢ ( x ,  t), t )u (¢ (x ,  t) ,  t )  dr, 

Xnew : Xold q- f(Xold, t)U(Xold, t) dr, 

(4.7) 

(4.8) 

(4.9) 

Xn~w E f~(t  + dt) and Xold E f~(t). (4.10) 
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Figure 3. Grid adapted to a circle at (0.6, 0.6) with radius 0.1. 

5. N U M E R I C A L  E X A M P L E S  

EXAMPLE 5.1. Let ~t be the domain inside the unit square and outside the circle centered at 
(0.6, 0.6) with radius 0.1. An unstructured quadrilateral grid on ~ is deformed according to 

0.05 0.95d 
- 0.---~' - 0 . 4 _ < d < 0 ,  

0.95___~d 
f =  0 . 0 5 +  0.4 ' 0 < d < 0 . 4 ,  

1, Idl > 0.4, 

(5.1) 

where d = 5(x - 0.6)2(y - 0.6) 2. See Figure 3. 

EXAMPLE 5.2. Let ~( t )  be the image of the unit square [0, 1] x [0, 1] as the top boundary  oscillates 
according to 

y(x, t )  = 1 + 0.1sin(27rx) sin ~Trt . (5.2) 

A hybrid grid on f~(0) is deformed into a grid on Ft(t). An inflow condition is imposed on the 
top boundary. A slippery wall condition is imposed on the rest of the boundary. See Figure 4. 
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EXAMPLE 5.3. A uniform grid (except at the corners where modifications were made) on ~t(0) = 
[0, 1] x [0, 1] is deformed to a grid of uniform size on a circle and adapted to the ellipse 

(+ ~ . ~  / + ~ . ~  / =1. 

Inflow condition is imposed on the whole boundary. See Figure 5. 

6. C O N C L U S I O N  A N D  R E M A R K S  

For a chosen monitor function f ,  the deformation method controls the cell size by making the 
Jacobian determinant J(¢) = f.  Thus, it generates grids of desirable cell sizes. Moreover, since 
f > 0, the deformed grid is nonfolding, even in 3D. 

Various boundary conditions can be directly enforced with LSFEM. A nonslippery wall condi- 
tion is used for fixed boundaries, which ensures that boundary nodes move along the boundary. 
Other boundary conditions such as inflow conditions may be enforced for free surface and moving 
boundary problems. 

The deformation method can be used in 3D problems as well. Results in 3D will be presented 
in a forthcoming paper. 

The LSFEM always leads to symmetric positive-definite matrices which can be efficiently 
solved. Parallelization of LSFEM is straightforward. Thus, large scale grids on 3D domains of 
complex boundaries can be efficiently adapted according to an error indicator. In fact, LSFEM 
can be used to solve many different types of PDEs and the residuals can be used to construct 
the monitor function. Thus, it is ideal to use LSFEM to solve both the host PDEs (governing 
the underlying physical phenomenon) and the div-curl system for deformation of the grid. 

The existing deformation method is based on solving a potential ~ from a Poisson equation. 
The node velocity then is chosen to be f V ¢ .  This method can only be used in fixed domains due 
to the inability of imposing Dirichlet boundary condition on V¢ .  In fact, the Neumann boundary 
condition for Poisson equation is used on a fixed domain, and consequently, V ¢ .  n = 0, where n 
is the outward unit normal vector to the boundary. Thus, boundary nodes will remain on the 
boundary. If the Dirichlet boundary condition is used for the Poisson equation, we will still have 
no control of V ¢  on the boundary. This explains why the method based on the Poisson equation 
works on fixed domains only. The method described in this paper is based on solving directly a 
vector field v from a div-curl system by LSFEM. A main benefit of this method is that it allows 
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us 1~o impose  var ious  b o u n d a r y  condi t ions  inc lud ing  s l ippery  wall  cond i t i on  (which is equ iva len t  

to  t he  ex i s t ing  Poisson  e q u a t i o n  m e t h o d  wi th  t he  N e u m a n n  b o u n d a r y  cond i t ion)  and inflow 

condi t ion ,  which  al lows the  m e t h o d  to  be  used on doma ins  w i t h  m o v i n g  boundar ies .  Indeed,  an  

ini t ia l  gr id on t h e  in i t ia l  d o m a i n  will  be  de fo rmed  into  a m o v i n g  grid on t h e  subsequen t  d o m a i n  at 

any t i m e  t, once  t h e  new loca t ion  of  t h e  b o u n d a r y  nodes  are  known.  A n o t h e r  a d v a n t a g e  is t h a t  t h e  

ve loc i ty  c o m p o n e n t s  a re  c o m p u t e d  d i rec t ly  f rom the  d iv-cur l  sys tem,  i n s t ead  of  o b t a i n i n g  t h e m  

by a numer i ca l  d i f fe ren t ia t ion  of  t he  po t en t i a l  f rom the  Poisson equa t ion ,  which  m a y  decrease  

t he  o rde r  of  accuracy.  
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