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Abstract—Approximate solutions of a partial differential equation become inaccurate if they are
computed on a fixed grid that is not sufficiently fine in regions of the domain where the variables
change rapidly. For time dependent problems, special features of a partial differential equation and
their location could change in time as well. Thus, adaptive grid methods are necessary.

In this paper, we develop an adaptive deformation method based on the least-squares finite-element
method (LSFEM). A main advantage of this method as compared to the existing deformation method
is its ability to generate adaptive grids on domains with moving boundary. It computes the node
velocity from a div-curl system according to an error indicator (monitor function), and then moves
the nodes to new locations so that the size of the new grid cells can be directly controlled. In this
method, the connectivity of the nodes is unchanged if the grid quality is acceptable. Otherwise,
various optimization procedures can be applied after node movements to improve grid quality. The
grid formed becomes refined in regions where the solution error is large. © 2004 Elsevier Ltd. All
rights reserved.
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1. INTRODUCTION

Grid generation methods can be classified into structured and unstructured methods. A very
popular approach in structured methods is to use an algebraic method to generate an initial grid
and then use an elliptic differential system to improve the grid quality.

Variational methods are also very successful in generating grids by optimizing a combination
of the functionals representing grid smoothness, cell skewness, and cell size. See [1-3].
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The above methods lead to nonlinear differential systems that are solved on a uniform grid
of a simple computational domain (such as a cube in 3D). For domains of complex geometry,
multiblock methods are developed.

For finite-element methods, unstructured grids are used due to their flexibility in discretizing
domains of complex geometry. We refer to [4] for more information in this area.

The method described in this paper can be used to generate adaptive (structured or unstruc-
tured) grids on the physical domain by solving a linear, first-order differential system (div-curl).
Since the div-curl system is solved by the LSFEM, the method can be used to deform an un-
structured grid directly on the physical domain. In this paper, the method is formulated in
Sections 2-4. Numerical examples are given in Section 5.

2. THE DEFORMATION METHOD

A preliminary version of this method appeared in [5], which is formulated and demonstrated
for adaptation towards steady features on fixed domains. The version developed in the current
paper is capable of adapting the grids according to time dependent features on domains with
moving boundaries.

The deformation method has its origin in differential geometry [6]. It was reformulated for grid
generation in [7]. The method generates a time-dependent nodal mapping from a domain §(t;)
to another domain Q(T"). A monitor function is used to obtain a vector field that moves the grid
nodes to desired locations.

Assuming that we formed a monitor function

f(x,t) >0, for x € Q(t) and t in [to, T) (2.1)
(e.g., f(x,t) = C/d(x,t) for some C > 0 where §(x,t) is an error estimator), such that
1
——— dw = |Qto)|- 2.2
oy T & = 1900 (2.2
We look for a time-dependent mapping ¢(-,t) : Q(to) — §2(t) such that
det Vo(x,t) = f(d(x,1),1), fortg <t <T. (2.3)

Also we require that ¢(x,t) € 9Q(t) for all x € dQ(to).
The mapping can be calculated in two steps. First, find a vector field u(x, ) that satisfies

div u(x,t) = —‘ba—t (Tﬁ)%’—t—)_) , X € Q(t), (243.)
curlu(x,t) =0, x € Q(t), (2.4b)
u(x,t) -n =0 or u(x,t) = g(x,t), x € 90(t), (2.4¢)

for tg < t < T, where n is the outward normal to 9Q(t) and g is a boundary vector field
determined by the boundary movement.
Second, find ¢ by solving the transport equation (the deformation ODE) for each fixed x €

Q(to), P
S9061) = F($(x, 1), udxt).t),  forto StST (2.5)
These steps imply (2.3) which in turn ensures that the grid becomes more refined on regions

of large error. The mathematical foundation of this method is established from the following.

THEOREM. The mapping ¢ obtained from (2.4) and (2.5) satisfies

(J(9) :=) det Vo(x,t) = f(p(x, 1), 1) (2.6)
for each x € Q(tg) and each t in [to, T).
The theorem is proved by showing that £ (J(¢)/f(¢,t)) = 0, and therefore Jf = 1 if J(¢)/
f(@,t)|t=t, = 1. Details of the proof can be found in [8].
This method has been applied to calculations of flows in [9] and [10]. A version of the method
is developed in [11] with the use of a level set method.
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3. LEAST-SQUARES FINITE-ELEMENT METHOD

The least-squares finite-element method (LSFEM) is based on the minimization of the residual
in a least-squares sense. In this method a vector field u that minimizes the functional

I(v):/ﬂ|Av—f|2dw (3.1)

is sought within the constraint of a given boundary condition. For more information on LSFEM,
we refer to {12-17).
Consider the linear boundary-value problem

Au=f, in £, (3.2a)
Bu=g, onl, (3.2b)
where nz
: 3]
Au = Z Ai—u + Agu, B is a boundary operator, (3.3)
i=1 9z;
and x = (T1,Z2,...,Zyn,) for ng =1,2 or 3,
ug f1 g1
0= Ug , £ = fo , and g = 'Siz ’
Um Sm Im

for m = number of variables at each node.
Without loss of generality, we assume g = 0. Let R = Av—f in Q for an arbitrary test function
v eV C Ly() = [La(Q)]™. The distance between Av and f is given by

mw%=4pw—ﬂﬂw, (3.4)

where
m m
IWIg = o tild =Y [ ofdo= [ vevaw (35)
i=1 i=179 Q

Since R is not zero we have ||R||2 > 0, and the equality holds only if v is the exact solution
in (3.2). The solution u to (3.2) can be viewed as an element of V that minimizes the L, distance
between Av and f,

I(v) = |Av — f||2 = (Av - f, Av ~ f), on V. (3.6)
A necessary condition for u € V to minimize I(v) is the vanishing of its first variation, that is,
tli_ir(l)%l(u+tv)=2/Q(Av)-(Au—f)dw=O, VYveV, (3.7

and hence,
/ﬂAu-Avdw:/nf-Avdw, Vv e (3.8)

Assuming that A is bounded below, a discretization of (3.8) leads to a symmetric positive-
definite matrix. Subdividing the domain into a union of finite elements we use the expansion

of uy, in each element
ulj

N" -
uf(x) = > g =| F |, (3.9)
j=1

Umj
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where u;; is the nodal value of u; at the j* node, 1;s are the shape functions, and N, is the
number of nodes in an element. Using (3.9) in (3.8), we obtain a linear systemn of algebraic
equations

KU =F, (3.10)

where K and F are assembled from element matrices
K. = / (A1, A, ..., AUn )T (A, As, ..., AYn,) dw, (3.11)
Qe

F, = / (A1, A, ..., Appy,) £ do, (3.12)

The boundary conditions (3.2b) can also be included into (3.6). The discretization by LSFEM
always leads to symmetric positive-definite matrices which can be efficiently solved.

In the deformation method for fixed domains the Neumann boundary condition (i.e., V-u =0
on 01) is used, which ensures that boundary nodes move along the boundary. For free surface
or moving boundary, inflow conditions should be enforced. The LSFEM scheme can be used to
solve the main PDEs (governing the underlying physical phenomenon) and the div-curl system
used to move the grid nodes.

4. MOVING GRID BASED ON
LEAST-SQUARES FINITE-ELEMENT METHOD

In this section, we formulate a deformation method which is based on the LSFEM. This work
further develops the ideas that first appeared in [5] and gives numerical examples on domains
with moving boundaries. The method consists of the following steps.

STEP 1. Define monitor function f and form the right-hand side of the div equation.
STEP 2. Solve div-curl system (2.4) by LSFEM at each time step.
STEP 3. Solve for the new node location from the deformation ODE (2.5).

The Monitor Function

For refinement based on the solution errors by LSFEM, a monitor function can be constructed
from the residual. This construction will be demonstrated in another paper on adaptive LSFEM
for PDEs.

For movement towards an interface or a boundary I (on a fixed or moving domain), we first
construct a function f such that

_ small, near interface,
= { (4.1)

1, far from it.

I I
|
AR mmunni )
INERRERRAN Y
IR

Figure 1. Refinement towards an interface.
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Figure 2. Monitor function for moving domains.

Then we let a time-dependent function f; be defined by
fii=1—t+tf, fortg =0<t<1="T, (4.2)

ie.,
fi=Q-t)Q-H+F, fortg=0<t<1="T, (4.3)

or, we may take, for faster adjustment towards f,
HA=0-01-+]F fortg=0<t<1="T. (4.4)

If Q is a fixed domain, then the monitor function f is defined to be equal to f; (i.e., f = f1).
If Q has a moving boundary (see Figure 2), then the monitor function at time ¢ — dt is defined by

fx,t—dt) = Eidl

v (4.5)

where dV, dV’ are the element volumes at ¢o and ¢ — d#, respectively (assuming that they have
been calculated already). At time t, it is defined by

f(x,t) = f1 normalized according to (2.2). (4.6)

The RHS of the Div Equation

Now the right-hand side of (2.4a) can be calculated

01N (/FG) = 1 fGot - db))
RHS = —= <f(x,t)> ~ . . (4.7)
Solving the Transport ODE
The deformation ODE in (2.5) is solved by Euler’s method.
For each x € Q(tp),
¢(x,t +dt) = ¢(x,1) + f(¢(x,1), H)u(d(x, ), ¢) dt, (4.8)
ie.,
Xpew = Xold + f(xolda t)u(xold, t) dt, (49)
where

Xnew € 2(t + dt) and Xold € Q(t). (4.10)



1082 X.-X. CAI et al.

t= .0000 t‘= .6000
EEnEREEN T '
N E
0_95__ | 0.95
0.85: 0.63
0.75 0.7;
0.6; 0.6:
>-0.5§ > 0.5
0.45 0.4;
0.3_5 0.5
0.25— o.2f~ ]
o.1§““j ! 1 o.1f:
Eammmnn INSEAEREN . N 1]
0o " Toes 05 ' 075 o 0 o2 'Oi' TS’ '
t=_.8000 t= 1.0000
1 T
°-9§ 0.0\ AN\
: - W L
ol : -“3\\‘\&‘}\“"',"&!’,""
: 0.8 --.“\as‘\‘,gm. 'N, ¢‘
] AR <]
0.7; 0.7 EEE’_..S.... .&:“
“ s o =S
: T 25K 3
: 17 <SS NS
> > 05 A RS N
04 T SSSERSION]
EEEE
0.33 X2 o e B AV ) LX) l.Q‘ ‘
: i A7 Do TN
0.24 L1 0.2 ”““"""0"" II ..
: IO Ainy
I T
G<U t ‘025 o5 075 C_O T TR T T Tos T T T 075

Figure 3. Grid adapted to a circle at (0.6, 0.6) with radius 0.1.

5. NUMERICAL EXAMPLES

EXAMPLE 5.1. Let Q be the domain inside the unit square and outside the circle centered at
(0.6,0.6) with radius 0.1. An unstructured quadrilateral grid on  is deformed according to

0.95d
05— 2 —04<
005~ ——=, ~04<d<0,

f= 0.05+%, 0<d<0.4, (5.1)

1, ldi > 0.4,

where d = 5(z — 0.6)%(y — 0.6)2. See Figure 3.

EXAMPLE 5.2. Let Q(t) be the image of the unit square [0, 1] x [0, 1] as the top boundary oscillates
according to

y(z,t) =1+ 0.1sin(27z) sin (%wt) . (5.2)

A hybrid grid on ©(0) is deformed into a grid on Q(¢). An inflow condition is imposed on the
top boundary. A slippery wall condition is imposed on the rest of the boundary. See Figure 4.
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Figure 4. Grid adapted to a moving boundary.
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Figure 5. Grid on unit square deformed to a circle and adapted to an ellipse.
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Figure 5. (cont.)

EXAMPLE 5.3. A uniform grid (except at the corners where modifications were made) on Q(0) =
[0,1] x [0,1] is deformed to a grid of uniform size on a circle and adapted to the ellipse

z —0.45 2+ y=-055\* _
0.15 0.22 o
Inflow condition is imposed on the whole boundary. See Figure 5.

6. CONCLUSION AND REMARKS

For a chosen monitor function f, the deformation method controls the cell size by making the
Jacobian determinant J(¢) = f. Thus, it generates grids of desirable cell sizes. Moreover, since
f > 0, the deformed grid is nonfolding, even in 3D.

Various boundary conditions can be directly enforced with LSFEM. A nonslippery wall condi-
tion is used for fixed boundaries, which ensures that boundary nodes move along the boundary.
Other boundary conditions such as inflow conditions may be enforced for free surface and moving
boundary problems.

The deformation method can be used in 3D problems as well. Results in 3D will be presented
in a forthcoming paper.

The LSFEM always leads to symmetric positive-definite matrices which can be efficiently
solved. Parallelization of LSFEM is straightforward. Thus, large scale grids on 3D domains of
complex boundaries can be efficiently adapted according to an error indicator. In fact, LSFEM
can be used to solve many different types of PDEs and the residuals can be used to construct
the monitor function. Thus, it is ideal to use LSFEM to solve both the host PDEs (governing
the underlying physical phenomenon) and the div-curl system for deformation of the grid.

The existing deformation method is based on solving a potential ¢ from a Poisson equation.
The node velocity then is chosen to be fV. This method can only be used in fixed domains due
to the inability of imposing Dirichlet boundary condition on V. In fact, the Neumann boundary
condition for Poisson equation is used on a fixed domain, and consequently, V¢ - n = 0, where n
is the outward unit normal vector to the boundary. Thus, boundary nodes will remain on the
boundary. If the Dirichlet boundary condition is used for the Poisson equation, we will still have
no control of V1 on the boundary. This explains why the method based on the Poisson equation
works on fixed domains only. The method described in this paper is based on solving directly a
vector field v from a div-curl system by LSFEM. A main benefit of this method is that it allows
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us to impose various boundary conditions including slippery wall condition (which is equivalent
to the existing Poisson equation method with the Neumann boundary condition) and inflow
condition, which allows the method to be used on domains with moving boundaries. Indeed, an
initial grid on the initial domain will be deformed into a moving grid on the subsequent domain at
any time ¢, once the new location of the boundary nodes are known. Another advantage is that the
velocity components are computed directly from the div-curl system, instead of obtaining them
by a numerical differentiation of the potential from the Poisson equation, which may decrease
the order of accuracy.
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