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Abstract

Many optimization problems in computer science have been proven to be NP-hard, and it is un-
likely that polynomial-time algorithms that solve these problems exist unless P = NP. Alternatively,
they are solved using heuristics algorithms, which provide a sub-optimal solution that, hopefully,
is arbitrarily close to the optimal. Such problems are found in a wide range of applications, in-
cluding artificial intelligence, game theory, graph partitioning, database query optimization, etc.
Consider a heuristic algorithm, A. Suppose that A could invoke one of two possible heuristic func-
tions. The question of determining which heuristic function is superior, has typically demanded a
yes/no answer—one which is often substantiated by empirical evidence. In this paper, by using Pat-
tern Classification Techniques (PCT), we propose aformal, rigorous theoretical model that provides
a stochastic answer to this problem. We prove that given a heuristic algorithm, A, that could utilize
either of two heuristic functions Hq or H» used to find the solution to a particular problem, if the
accuracy of evaluating the cost of the optimal solution by using H; is greater than the accuracy of
evaluating the cost using H», then H1 has ahigher probability than H> of leading to the optimal solu-
tion. This unproven conjecture has been the basis for designing numerous algorithms such as the A*
algorithm, and its variants. Apart from formally proving the result, we also address the correspond-
ing database query optimization problem that has been open for at least two decades. To validate
our proofs, we report empirical results on database query optimization techniques involving a few
well-known histogram estimation methods.
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1. Introduction
1.1. Overview

The area of computer science has still quite a few open, unsolved problems. In this
paper, we are concerned with one such problems, namely that of using heuristics to solve
optimization problems.

Any arbitrary optimization problem? istypically defined in terms of instances which are
drawn from a (finite) set, X', an objective function, and some feasibility functions. Theaim
isto find an (and hopefully, the unique) instance of X', which leads to the maximum (or the
minimum) value of the objective function subject to the feasibility constraints. A formal
definition of an optimization problem can be found in [10]. But to be more specific, con-
sider the well-known Traveling Salesman Problem (TSP), in which the cities are numbered
from 1 to n, and the salesman starts from city 1, visits every other city once, and returns
to city 1. An instance of X is a permutation of the cities, for example, 14325, if we
are considering a world consisting of five cities. The objective function for that instance,
f(14325) is obtained by performing the summation of the inter-city distances: 1 — 4,
4— 3,3—2,2— 5,and5— 1. Theoptimal solution is the instance that minimizes the
valueof f.

A heuristic algorithm is an agorithm that attempts to find a certain instance of X* that
maximizes f (or the profit) by iteratively invoking a heuristic function. The instance that
maximizes f will be the optimal solution* to the optimization problem. A heurigtic is a
method that performs one or more modifications to a given solution or instance, in order to
obtain a different solution which is either superior, or which leads to a superior solution.
The heurigtic, in turn, invokes a heuristic function, which estimates (or measures) the cost
of the solution at the particular state in the search process. Thisis the context in which we
use these terms.

Many heuristic algorithms and heuristic functions have been reported in the literature,
where the former include the al pha-beta search [11], backtracking, hill-climbing [10], sim-
ulated annealing [1], genetic algorithms [13], tabu search [ 7], learning automata [15], etc.
The issue of how heuristic functions are used in such heuristic algorithms in searching,
game playing, etc., can be found in [16,24] and is, indeed, an enormous field of study in
itself. This question is not addressed here.

To clarify issues, let us consider the classical n-puzzle problem [16]. This problem con-
sists of a square board containing » square tiles and an empty position called the “blank”.
The aim isto rearrange the tiles from some pre-defined (usually random) initial configura-
tion into a pre-determined goal configuration, by sliding any tile adjacent to the blank into

3 Every optimization problem can also be formulated as a decision problem [6].
4 \We use the term “solution” to refer to an element x € X, and the term * profit” to refer to the value of f(x).
In minimization problems, 7 (.) will be a cost function.
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the blank position. A heuristic algorithm solves this problem by examining, using aheuris-
tic function, some of the possible valid movements. Viewed from the perspective of the
underlying state graph, the possible states encountered at the next level form the children
nodes of the current node in the search structure. Other variants of heuristic algorithms
involve the examination of lower levels as well. The breadth-first search and depth-first
search schemes are examples of heuristic algorithms, useful in any such problem solving
strategy. An example of a heuristic function, however, is the measurement (or estimate) of
the number of tiles that are out of place. Another measure is the sum of the depth of the
node and the number of tiles that are out of place.

One of the better-known solutions to the n-puzzle problem is the A* agorithm. This
algorithm isagraph search algorithm that is used to find the path of minimum cost between
two nodes, the start node and the goal node. The A* maintains atree which stores the paths
that are already explored. Using these paths, a measure, f, of the potential advantage of
choosing each path is calculated. The value of f, which isthe cost of traversing the graph
between two nodes, can be calculated by using different heuristic functions. A heuristic is
said to be admissible, and the A* convergesto the correct result, if the heuristic functionis
an upper bound of the true cost from all nodes to the goal node.

In general, for any arbitrary problem, the question of how useful a heuristic function
is, in determining the cost of traversing from one node to another, has no known analytic
solution—it has traditionally been empirically analyzed. In this paper, we present aformal
analysis that provides a stochastically positive answer to the question of comparing the
relative advantages of potential heuristic functions.

The A* agorithm and its variants (like the A+ algorithm) have also been success-
fully applied to other problems, such as object recognition using deformable templates
[16,26,28]. Various solutions to optimization problems using different heuristic functions
are found in [28]; we shall use this paper, [28], to highlight the difference between the
heuristic algorithms, and the effect of the same algorithm using various potential heuristic
functions. The authors of [28] address the problem of tracking roads in satellite images
using the twenty-question search paradigm, and the A+ algorithm, a “cousin” of the A*
agorithm. Using these algorithms the roads can be represented in terms of straight-line
segments. The various paths are expanded by the application of an ensemble of heuristic
functions. One such heuristic function is the one based on the conditional entropy mea-
surements of the branches, which are used to choose the most “promising” path. While
the paper discusses other heuristic functions, the question of how one can compare the
solutions obtained using the various heuristic functions is achieved by comparing the em-
pirical simulation results. We hope that our formal analysis can be atool to achieve amore
rigorous comparison of these heuristic functionsin [28], and other similar scenarios.®

The tools we propose to use are drawn from the well-established theory of Pattern
Recognition (PR) [5,27]—aprominent field of machine intelligence. Broadly speaking, PR
involves decision-making, based on a priori and learned knowledge of the classes and ob-
jects being recognized. More specifically, the system learns information about the features

5 The model presented here has some limitations when investigating the quality of solutions yielded by an
A*-like algorithm. These limitations will be discussed in alater sub-section.
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of a set of classes. Subsequently, given an object of unknown identity, and this informa-
tion, the system attempts to recogni ze the unknown object as belonging to one of the known
classes with some arbitrary accuracy. Necessarily, our overview of PR is brief!

There are many applications of PR, including face and speech recognition, fingerprint
identification, character recognition, medical diagnosis, etc. In each of these applications,
the information about the classes can be structural or statistical. In the former, we deal
with thefield of structural and syntactic pattern recognition, and in the latter, with the field
of statistical pattern recognition. Furthermore, in the latter, the statistical information, or
features, about the classes is represented by random vectors. The procedure of obtaining
the features consists of mapping the feature values of each sample to a vector. Feature
values, for example, can be the width or the height of afigure, the value of a pixel of an
image, etc. Statistical pattern recognition can also be subdivided into two well-defined ap-
proaches, parametric and non-parametric. In the former, the random vectors have aknown
probability distribution, e.g., normal (or Gaussian), exponential, multinomial, etc. No such
model is assumed in a non-parametric case.

Although we are aware of the use of PR principles in real life scenarios, we are not
aware of any previous resultsin which PR principles have been used to solve a theoretical
unsolved problemin a completely different field.

Our result can be crystallized as follows: Given two heuristic functions, the question
of determining which is superior, has typically demanded a yes/no answer which is of-
ten substantiated based on empirical evidence. We have solved the problem of deciding
on the superior heuristic function by using PR techniques. It should be mentioned that
there are numerous well-known techniques that have been utilized in the context of pattern
classification, such as hypothesis testing, bootstrap methods, Neyman—Pearson methods,
etc. A good reference for such methods can be found in [21]. However, the results derived
in this paper essentialy use the methods that have been traditionally applied to optimal
Bayesian Classification, as described in the statistical pattern recognition literature [4].
Using these principles, we prove the following assertion: Given two heuristic functions,
H1 and H>, used by a heuristic algorithm in finding a solution to a particular problem, if
the accuracy in obtaining the optimal solution by using H; is greater than that of using Ho,
then H1 has a higher probability of leading to the optimal solution than H». To the best
of our knowledge, this is an open problem. However, this unproven conjecture has been
the basis for designing numerous algorithms such as the A* algorithm, and its variants, in
searching, game playing, and numerous other applications [16,24,25,28].

Our strategy for achieving this analysis is as follows. The first task is to mode the
cost of the solution. Since the optimal “true” cost is unknown, we represent it in terms
of its estimate, as estimated using the heuristic function. Observe that since the latter is
inaccurate, this“ cost” isrepresented in terms of arandom variable. Note that by “cost”, we
do not mean the cost of the search process involved in determining the optimal solution,
but rather the cost of the optimal solution, as estimated by the heuristic function. This
differenceiscrucial.

Now that the modelling of the heuristic function isin place, the question of quantifying
the quality of any heuristic function has to be considered. Informally speaking, we can
say that this paper concerns this “heuristic-function quality assessment” problem, which
is addressed, in turn, by viewing it as a pattern recognition problem. We solve this pat-



B.J. Oommen, L.G. Rueda / Artificial Intelligence 164 (2005) 1-22 5

tern recognition problem by considering two independent random variables, the first for
the optimal solution and the second for the sub-optimal, both of them being pursued by a
heuristic function, H1. We use a reasonable model for the accuracy of the heuristic func-
tion, in which the error of Hj isadoubly-exponential random variable.® This distribution,
which as we shall presently see, is used to approximate the Gaussian distribution, is typ-
icaly used in reliability and failure models, and hence is reasonable in this scenario. In
our model, the accuracy of the heuristic function is related to the variance of the random
variable used to represent it. The analysis for the Gaussian distribution follows thereafter.

If we now consider another heuristic function, H», whose variance is greater than that
of H1, and whose mean isthe same asthat of H1, we have amodel by which the efficiency
of heuristic functions can be compared. Indeed, using this model, we have theoretically
proven that Hy is more likely to succeed in obtaining the optimal solution than H,. For
this model, we have also proved the uniqueness of the result, and the conditions for which
both heuristic functions lead to coincident probabilities of success.

The doubly exponentia distribution is actually meant to be an approximation of the
Gaussian distribution, typically used to model errors. However, the algebraic analysis for
Gaussian distributionsisimpossible asthereis no closed-form expression for integrating its
probability density function. Consequently, we have extended the analysis for the doubly
exponential distribution to formulate a reasonable analysis for the Gaussian distribution
using numerical integration. By means of this analysis, we have corroborated the validity
of our hypothesis for Gaussian distributions also.

We also provide empirical results on using afew histogram-like estimation methods in
database query optimization, which demonstrate the validity of our theoretical analysis.

1.2. Applications

There are many heuristic algorithms that can be used to solve awide variety of NP-hard
problems. Such problems can be found in awide range of applications spanning the whole
spectrum of artificial intelligence, and include game playing and game theory, graph the-
ory, database query optimization, networking, computational geometry, number theoretic
problems, parallel processing, etc. The results presented in this paper are applicable to any
heuristic algorithm that uses different heuristic functions to solve a particular problem. In
thisintroductory section, we just describe afew of them.

In the area of database query optimization, when more than two tables have to be joined,
intermediate join operations are performed to ultimately obtain the final relation. Asare-
sult, the same query can be performed by means of different intermediate (join) operations.
A simple sequence of join operations that leads to the same final result is called a query
evaluation plan (QEP). Each QEP has associated an internal cost, which depends on the
number of operations performed in the intermediate joins. The problem of choosing the
best QEP is a combinatorially explosive optimization problem. This problem is currently

6 The reasoning used in this paper assumes that the errors are on either side of the true value. However, we
believe that if the distribution is one-sided, similar arguments will be true as long as the distribution is not
“heavily-tailed”. We are grateful to the anonymous referee who brought this to our attention.
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solved by estimating the query result sizes of the intermediate relations and selecting the
most efficient QEP.

Since the analysis of selecting the best QEP must be done in “real” time, it is not pos-
sible to inspect the real data in this phase. Consequently, query result sizes are usually
estimated using statistical information about the structures and the data maintained in the
database catalogue. Thisinformation is used to approximate the distribution of the attribute
valuesin aparticular relation. Hence the problem of selecting the best QEP depends on how
well that distribution is approximated.

In[8], it has been shown that errorsin query result size estimates may increase exponen-
tially with the number of joins. Since current databases and the associated queries increase
in complexity, numerous efforts have being made to devise more efficient techniques that
solve the query optimization problem.

Many techniques have been proposed to estimate query result sizes, including his-
tograms, sampling, and parametric techniques [9,12,14,22]. Histograms are the most com-
monly used form of statistical information. They are incorporated in most of the commer-
cial database systems such as Oracle, Microsoft SQL Server, Teradata, and DB2, which
mainly use the Equi-depth histogram. The prominent models of histograms known in the
literature are: Equi-width [2,9], Equi-depth [14,22], the Rectangular Attribute Cardinal-
ity Map (R-ACM) [18], the Trapezoidal Attribute Cardinality Map (T-ACM) [19], and the
V-Optimal Histograms [8,23].

In this scenario, the heuristic algorithm is the actual algorithm that uses a histogram
as the heuristic function, and obtains an optimal (or a sub-optimal) QEP. The heuristic
function used by thisalgorithm isthe actual histogramthat approximates the distribution of
the attribute values of the relevant tables. Thus, in our model (and using our terminology),
Equi-width, Equi-depth, the R-ACM and the T-ACM are the heuristic functions.

Other areasin which our model can be used to answer open questions are in the fiel ds of
game theory and game playing [25]. In game playing, the most widely used structure used
to analyze the best possible move and strategy is a game tree, whose root node represents
theinitial status of the board. All possible moves of thefirst player are the edges from the
root to the first level, the edges of each child represent all possible moves of the second
player, the opponent. Continuing in the same fashion, the game is played (or rather plans
executed) until one of the playerswins. The aim is to optimize the moves of thefirst player
based on searching all the branches of the tree until the leaves, and perform the best move
based on maximizing the reward of thefirst player and minimizing that of the second one.

There are many techniques used to optimize the moves of the first the player. One of
them is the minimax search algorithm, which searches over a fixed number of levels of the
entire tree, and finds the best moves at each node. This exhaustive search procedure has a
complexity that grows exponentially with the number of nodes of the tree. A more efficient
mechanism is the alpha-beta search algorithm [11], a heuristic that significantly reduces
the number of nodes explored. Both of these assume that the heuristic function that they
use, which typically evaluates the position of the board viewed from the perspective of the
first player, is advantageous in determining a superior strategy. This is the question that
we address in this paper. The model presented in this paper has important consequencesin
choosing such aheuristic function. Such a heuristic function could be, for example, the cost
of a path from the current state to a goal state, which unfortunately is not exactly known,
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but is estimated. The search scheme, such as the al pha-beta search and the minimax search
algorithm, uses this heuristic function to search for a, hopefully, optimal path in the game
tree.

Another application of our result isin graph theory, for example, in solving the uniform
graph partitioning problem. Given a complete graph on 2n vertices, G = (V, £), aong
with acost function f:& — Z* U {0}, the aimisto find a partition whose sum of costs of
the individual subsets is minimized. This problem is also known to be NP-hard, and has
several applications especially in VLSI design, hydrology, networks, etc. Many heuristic
algorithms have been proposed to solve this problem, including simulated annealing, ge-
netic algorithms, learning automata, etc. [10,20]. When considering a particular heuristic
algorithm, we can incorporate different heuristic functions to approximate the sum of costs
of the individual subsets of a particular partitioning. It is intuitive that a more accurate
heuristic function is more likely to succeed in finding the optimal solution. However, this
isnot what happensin all cases. Werather provide a stochastic answer to this question. By
means of arigoroustheoretical analysis, we provethat aparticular heuristic function, which
provides more accurate approximations for the sum of costs of the individual subsets, is
more likely to obtain the minimal cost for a partitioning, than a less accurate heuristic
function.

1.3. Problem statement

In this paper, we propose a theoretical model that solves this fundamental open problem
in computer science, namely that of relating heuristic functions with solution optimality,
using the principles of the theory of pattern classification. This problem has been (to our
knowledge) open. In particular, the corresponding database query optimization problem
has been unsolved for more than two decades.

More specifically, we prove the following: Given a heuristic algorithm, A, that invokes
two heuristic functions, H; and Ho, used in adecision problem, if the accuracy in approx-
imating the optimal solution by using H; is greater than that of using H», then H1 has a
higher probability of leading to the optimal solution than H>.

The importance of the results of this paper is that we show that the answer to the accu-
racy/optimality question is* stochastically positive”. In other words, we prove that although
asuperior heuristic function may not alwaysyield a better solution, the probability that the
superior heuristic function yields an optimal solution exceeds the probability that an in-
ferior heuristic function yields an optimal solution. This paper thus justifies and gives a
formal rigorous basis for why heuristic functions work.

We analytically prove that under the well-acclaimed models of inaccuracy, the better
the accuracy of a heuristic function, the greater the probability of it choosing the optimal
solution. We have also provided some empirical results related to the field of database
guery optimization. These results show the superiority of the R-ACM over the traditional
histogram estimation methods, the Equi-width and the Equi-depth. The empirical results
obtained by testing these properties for many of the above histogram methods in random
databases show that the R-ACM is significantly superior to both the Equi-width and the
Equi-depth schemes.
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1.4. Restrictions of our model

As mentioned above, this paper addresses the problem of quantifying the quality of a
heuristic function, and it achieves this by posing the problem in afairly general framework.
However, for the results to be applicable for a particular application domain’ which usesa
specific search strategy such as the A* algorithm, the logistics of the search process itself
have to be considered.

Informally speaking, the main result of our paper proves the following: Given two
heuristic functions evaluating the same “cost”, a search mechanism utilizing these func-
tions will converge (with a higher probability) to a superior solution, when it utilizes a
function with a lesser variance. However, comparing the performance of heuristic func-
tionsin the search processinitiated by A* isamore complicated issue. The reason for this
can beargued asfollows. In each iteration, A* computesthe values of the heuristic function
(say, “ f(.)") for dl candidate nodes (the OPEN list), which represent how promising they
are. A* then selectsthe onewith the highest value of f(.), generatesits children, computes
their valuesof f(.), and insertsthem into the OPEN list. For an algorithm like A*, the most
we can claim isthat it is more expedient to use a heuristic function which better estimates
the “cost” than one which estimates it poorly. The question of how the nodes in the OPEN
list lead to solutions, isreally aproblem-dependent question which we cannot answer here.
Weintend to study this problem in the database query optimization domain mentioned later,
by incorporating a search strategy to search the set of QEPs whose costs are estimated by
the various histogram methods. Note that this does not invalidate the query-optimization
results presented in this paper, because, in our simulations, we exhaustively search the QEP
space without using any intelligent search strategy like A*.

2. Heuristic function accuracy vs. optimality

Consider a heuristic algorithm, A, that invokes either of two heuristic functions, Hy
and H». The probability of correctly estimating a cost value of a particular solution by H;
and that of estimating a cost value by H, are represented by two independent random
variables. In our model, we assume that these two heuristic functions are independent, and
thus, the value obtained by one heuristic function should not affect the value obtained by
the second.

For the analysis done bel ow, we work with two modelsfor the error function: the doubly
exponential distribution and the normal distribution. In the former, the probability of ob-
taining a value that deviates from the mean (or true value) falls exponentially as afunction
of the deviation. The exponential distribution is more typical in reliability analysis and in
failure models, and in this particular domain, the question is one of evaluating how reli-
able the quality of a solution is, if only an estimate of its performance is available. More
importantly, it is used as an approximation to the Gaussian distribution for reasons which
will be clarified momentarily. The Gaussian model is much more difficult to analyze, since

7 We are grateful to the anonymous referee who brought this limitation to our attention.
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there is no closed-form algebraic expression for integrating the probability density func-
tion. However, aformal computational proof isincluded, which confirms our hypothesis.

2.1. Analysisusing exponential distributions

A random variable, X, is said to be doubly exponentially distributed with parameter
if the density function is given by:

1
fx(x)= Eke_kl"_cl, —00 < X < 00. (1)

If X isadoubly exponential random variable, by elementary integration and straight-
forward algebraic steps, it can be shown that:

E[X]=c, and )
2
Var(X] = =. ©)

Without loss of generdlity, if the mean of the cost of the optimal solution is c1, by
shifting the origin by ¢1, we can work with the assumption that the cost of the best solution
is 0, which isthe mean of these two random variables. The cost of the second best solution
is given by another two random variables (one for H; and the other one for H») whose
mean, ¢z > 0, isthe same for both variables. An example will help to clarify this.

Example 1. Suppose that using H; leads to the optimal cost with a probability represented
by a doubly exponential random variable, X\°®, whose mean is 0 and i1 = 0.4. This

heuristic function also leads to another sub-optimal cost according to X *** whose mean
is8and A1 =0.4.

H> is another heuristic function using which the optimal cost is chosen with a prob-
ability distribution given by XY™ whose parameters are ¢c; = 0 and 1, = 0.2. It leads
to the second sub-optimal cost value with a probability density given by X" whose
parametersare c; =8 and A, = 0.2.

Thefact that 2/A2 < 2/13 signifies that the probability of using H; could lead to asub-
optimal cost is smaller than the probability of using H» leading to a sub-optimal cost. This
scenario isdepicted in Fig. 1, and is formalized presently.

The result depicted above is formalized in the following theorem, which is the first pri-
mary result of this paper, and answers the open question referred to above. The theoremis
formulated in terms of the probabilities that the two heuristic functions lead to the wrong
decision, which we show isinherently related to the probability that these heuristic func-
tions lead to the convergence to the sub-optimal solutions. The formulation of the result
and the proof utilize techniques typically foreign to database theory, game theory, artificial
intelligence, or for that matter any computer science area in which this approach can be
applied. They belong to the theory of PR.

The second theorem, extends the results of the first, and shows how the results can also
be geometrically interpreted.
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Fig. 1. An example of doubly exponential distributions for the random variables and

X éwbc’pt), whose parametersare A1 = 0.4 and 1o = 0.2.
Theorem 1. Suppose that A is a heuristic algorithm that can potentially utilize either of
two heuristic functions, H; and Ho. Let:

e X3 and X be two doubly exponential random variables that represent the estimated
costs of the optimal solutions obtained by using H; and H, respectively.

e X and X/, be two other doubly exponential random variables representing the esti-
mated costs of non-optimal solutions obtained by using H; and H» respectively.

o 0=E[X1] = E[X2] < E[X}] =E[X}] =c.

e pjp and p, bethe probabilitiesthat H; and Ha respectively lead to the wrong decision.

Then,

2
=2 < 2 = Var[Xp] =Var[X5], p1< po.
1 2

if Var[X1] = Var[X]]
Proof. Consider a particular cost, x. The probability that x leads to a wrong decision
when A uses H; isthat of incorrectly classifying x as being obtained from the non-optimal
solution. Thisis, indeed, the error in classification, and is the area under the curve of the
pdf function of X or the cumulative probability of x under the pdf of H1 when it refersto
the sub-optimal solution. Because of the discontinuity of the doubly exponential function
at ¢, thisareais decomposed into the following two integrals:

X

1
1= / M€, itr<e, and
- p (4)
1 (u—c) 1 —A1(u—c) R
I = Eklem du + Ekle 1 du ifx>c.

—00 c
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Solving the integrals, (4) resultsin:

I = }eﬁl(xfc) — lim }efkl(ufc) _ }ef?»l(xfc) and
2 u——00 2 2 ’
1 A1(—u+c) 1 1 A1( ) 1 1 2 ) (5)
Iip= lim ez reo 4 = —gMl=d 4 — -1 —g =9,
12 u—>—00 2 + 2 2 + 2 2
The probability that using H; leads to the wrong decision for all the values of x isthe

following function of 11 and c:

0 c [e%9)
1 1 1
p1=1(1,0)= / Inéxle“"dw / Illé)tle_hxdx‘l‘ / Ilzékle‘*” dx, (6)
—00 0 c

which, after applying the distributive law and substituting the values of 111 and I32, can be
written as:

0 c o0
)‘lelex—xlc /)‘1 —X / Ay A __onixta
—= dr — [ ——eMdx —e MmN e gy 7
/ 4 4 + 2 4 ¢
—00 0 c

After solving theintegrals, (7) is transformed into:

1,1 03 .01, .
S MO DqceME 4 TeT M = Zemhe 4 Ty cen il 8
5 + 2 1C + 8 > + 1 1c (8)
Similarly, we do the same analysisfor p2, which isafunction of 1, and ¢:
1 1 .
p2=1(A2,¢c)= Zehee 4 —Azcesz‘. 9
2 4
We have to prove that:
1,1 1 1
= Ze M4 TgceME L Zehel o Danceh = py. 10
Pi=; +ghe 5 +ghec p2 (10)

Multiplying both sides by 2, and substituting A1¢ for g and Aoc for a2, (10) can be
written as follows:

1 1
e "4 Eozle_‘”l <e %24 Eo;ge_‘)‘z. (11
Substituting a2 for kag, a1 > 0and 0 < k& < 1, (11) resultsin:

1 1
q1= e_al + E(Xle_al < e_kal + Ekale_kal ={(>2. (12)

We now prove that g1 — g2 < 0. After applying natural logarithm to both sides of (12)
and some algebraic manipulations, g1 — g2 < 0 implies:

1 1
F(a1, k) =koy — a1 + In<1+ 50[1) — In<1+ Ekoq) <0. (13)

To provethat F (a1, k) < 0, we use the fact that Inx < x — 1. Hence, we have:



12 B.J. Oommen, L.G. Rueda / Artificial Intelligence 164 (2005) 1-22

1+3
Flan k) = ay(k — 1)+ |n(412“1> (14)
1+ Qkoll
1413
Caplh—D+—2% 1 (15)
1+ ikOl]_
o1 — ko
=a1k—1) 4+ ——= 16
a1 ( ) + 2 1 ko (16)
. koy + kz(x% —a1 — kozf 17)
- 2+ koy
_ a1tk — (ka1 + 1) <0. (18)
2+ koy
because:

(i) O<k<landa1 >0 = a1(k—1) <Oandkai1+1> 0. Henceay(k — 1) (ka1 +1) <
0,and
(i) O<k<landw1 >0 = O<kay <a1 = ka1 +2>2>0.

Hencethetheorem. 0O

The above theorem can be viewed as a “sufficiency result”. In other words, we have
shown that g1 — g2 < 0 or that p1 < p2. We now show a “necessity result” stated as a
uniqueness result. This result states that the function p1 < p hasits equality ONLY at the
boundary condition where the two distributions are exactly identical.

To prove the necessity result, we consider g2 — g1 which, derived from (12), can be
written, as afunction of o and k, as:

1 1
G(a, k) =€k Ekozle_’“"l —e— Eozle_"‘l. (19)

By examiningitspartial derivatives, we shall show that there are two solutionsfor equal-
ity. Furthermore, when o1 > 0 and 0 < k < 1, we shall seethat for agiven k, thereisonly
one solution, namely o1 = 0and k, 0 < k < 1, proving the uniqueness.

Theorem 2. Supposethat o1 > 0,0 < k < 1. Let G(a1, k) be:

1 1
G(a, k) = —her 4 Ek(xle—k‘xl —e Y- éoele_“l. (20)

Then G(ag, k) > 0, and there are exactly two solutions for G (a1, k) = 0, being: {1 =
—1,k=1}and {xy =0, k}.

Proof. We must prove that, as defined in the theorem statement, G (a1, k) > 0.
We shall prove that thisis satisfied by determining the local minimafor G(., .), where
a1 > 0and 0 < k < 1. Wefirst find the partial derivatives of (19) with respect to o1 and k:
G 1 1 1 1
— = —Zkef _ ZpPpet 4 Zer M 4 Zgpe =0, and 21
day 2 e A oe T om (21)
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G 1 ke L 2 &
— = ——a1€ " — —kafe "1 =0. 22
ok~ 2% 2" (22)
We now solve (21) and (22) for w1 and k. Eq. (22) can be written as follows:
1 1
—Eale_kal = Eka%e_kal, (23)

which, after canceling some terms results in kaf + a1 = 0. Solving this equation for aq,
we have: a1 = —+ and a3 = 0. Substituting oy = —7 in (21), and canceling some terms,
we obtain:

%e“"l + %ale_"‘l =0, (29)
which resultsin the solution to be ¢ = —1, and consequently, k = 1.

The second root, o1 = 0, indicates that the minimum is achieved for any value of k.

We have thus found two solutions for (21) and (22), {«1 =0, k} and {@1 = —1, k = 1}.
Sincews > 0, it meansthat o1 can have at least avalue of 0, and hence the local minimais
in {@1 = 0, k}. Substituting these two valuesin G, we see that G (a1, k) = 0, which isthe
minimum. Therefore, G(ay, k) >0fora; >0and0 < k < 1.

Hencethetheorem. O

To get a physical perspective of these results, et us analyze the geometric relation of
the function G and the heuristic functions. G is a positive function in the region a1 > 0,
0 <k <1.Whenai — 0, G — 0. Thismeansthat for small values of «1, G isaso small.
Since a1 = A1c, the value of a1 depends on A1 and ¢. When ¢ issmall, G isvery close to
its minimum, 0, and hence both probabilities, p1 and p», are very close. This behavior can
be noticed in Fig. 2, and the phenomenon is observed if the heuristic functions are both
comparable and almost equally efficient.

In terms of histogram methods and in database query optimization, when ¢ issmall, the
optimal and the sub-optimal QEP are very close. Since histogram methods such as Equi-

2
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S 2
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s st
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505000 055805500055527

522
23855555552 222
RS2
S s eeseesors5000500550255005 7 3
s s ersss000500sS 2
SR eSESEa005855005500502 05 7554777
s e o o oA S e ee (oAt oy
s oo e s s oo o s
LARLARRLAALA ALY v
QAR
SRR %
L0504 % £
A o ALY
904 LLALT % oy
L8 XX
L5 %
%

0.4

k 0.4

Fig. 2. Function G (a1, k) plottedintheranges0< g <1and0<k < 1.
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width and Equi-depth produce a larger error than the R-ACM and the T-ACM, the former
areless likely to find the optimal QEP than the latter.

Interpreted alternatively, G isvery small when A1 iscloseto 0. This meansthat Var[ X1]
is very large. Since Var[X1] < Var[X>], Var[X2] is dso very large, and both are close
each other (in Fig. 1, we would observe almost flat curves for both distributions). Random
variables for histogram methods such as Equi-width and Equi-depth yield similar error es-
timation distributions with large and similar variances. Hence, the probabilities p1 and p»
are quite close, and consequently, similar results are expected for these estimation meth-
ods. However, when the heuristic functions yield widely different estimated costs (as in
the case when the new histogram methods, the R-ACM and the T-ACM, are compared to
the traditional methods), these effectively imply random variables with smaller variances
being compared to random variables with larger variances. In such a case, the value of G
isvery high—implying that the former would yield superior solutions.

2.2. Analysis considering normal distributions

For the analysis done in this section, we consider that we are given two heuristic func-
tions, H1 and Ho, for which the probabilities of choosing optimal or suboptimal solutions
are represented by two normally distributed random variables, X; and X5, whose means
are pu1 and iz, and whose variances are o2 and o2 respectively.

Although the model using normal distributions is more realistic in real life problems,
the analysis becomes impossible because there is no closed-form algebraic expression for
integrating the normal probability density function. Alternatively, we have used numerical
integration and we have obtained rather representative values for which the implication
between efficiency and optimality is again corroborated.

Without loss of generality, if the mean cost of the optimal solutionis w1, by shifting the
origin by w1, we again assume that the cost of the best solution is 0, which is the mean
of these two random variables. The cost of the second best solution is given by another
two random variables (one for using the heuristic function H1, and the other one for using
the heuristic function H») whose mean, u2 > 0, is the same for both variables. We aso
assume that, by scaling both distributions® the variance of using H; and leading to the
optimal solution is unity. An example will help to clarify this.

Example 2. Supposethat using H1 leadsto the optimal cost with probability represented by

the normal random variable X {°® whose mean is 0 and standard deviation is o1 = 1. This

heuristic function also estimates another sub-optimal cost according to X {**°™ whose
meanis4and o1 = 1.

Hy is another heuristic function that is used to estimate the optimal cost with probabil-
ity given by X ;Opt) whose parameters are 11 = 0 and o = 1.4. The other corresponding
sub-optimal cost given by the heuristic function Ho is obtained with probability given by
X ;wbom) whose parametersare j» = 4 and o2 = 1.4.

8 This can be done by muitiplying o2 and o3 by o7 2, and u1 and u by o7 . Thisis aparticular case of the
simultaneous diagonalization between d-dimensional normal random vectors for which d = 1 [5].
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O-4i Xl(opt) Xl(subopt)

N\

/

XQ(OPt) X2(subopt)

0.3+

0.24

0.14

—4 2 0 2 4 6 8

Fig. 3. An example showing the probability density function of four normal random variables whose parameters
aeoy1=1,00=14, 41 =0,and up =4.

Observe that o1 < o2, and hence we are expecting that the probability of using Hy
and leading to a wrong decision is smaller than that of using H». The probability density
functions for these four random variables are depicted in Fig. 3. Note that, asin the doubly
exponential distribution, given aparticular value of x, if its probability under X \°™ ishigh,
then the areafor which using H; leadsto thewrong decision (i.e., its cumulative probability
under X f“bo'ot)) issmall. Since these two quantities are multiplied and integrated, the final
value is smaller than that of using Ho, since o7 is greater than o1 = 1. Thisis what we
formally show below.

Result 1. 2 Supposethat A isa heuristic algorithmthat can potentially utilize either of two
heuristic functions, H, and H. Let:

X1 and X» be two normally distributed random variables that represent the costs of
the optimal solutions obtained by H1 and H, respectively.

e X} and X/, betwo other normally distributed randomvariables that represent the costs
of non-optimal solutions obtained by using A1 and H> respectively.

0=E[X;] = E[X2] < E[X]] = E[X}] = u.

p1 and p» be the probabilities that using Hy and H» respectively lead to the wrong
decision.

9 We cannot claim thisresult as atheorem, since the formal analytic proof isimpossible. Thisis becausethereis
no closed-form expression for integrating the Gaussian probability density function. However, the computational
proof that we present renders this to be more than a conjecture.
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Then,
if Var[X1] = Var[X}] = of < 0f = Var[Xp] = Var[X5], p1<p2.
Computational Proof. To achieve this proof, we proceed by doing the same analysis that

we did for the doubly exponential distributions (Theorem 1). If we consider a particular
cost x, the probability that x leadsto awrong decision made by using Hz, is given by:

W 2mo1

The probability that using H1 leads to the wrong decision for all values of x is obtained
by integrating the function resulting from multiplying every value of 5 for each x with the
respective probability density function of x{*, which resultsin:

" 1 _(“*MZ)Z
L= / e % du. (25)
—00

S 2

1 —3
p1L= I e 1 dx. (26)
. V2ro1

Similarly, p» can also be expressed as follows:

00 1 2
52
2= I e % dx, 2
P N @)
—00

where I is obtained in the same way as in (25) for the distribution with variance 2.

Sincethereisno closed-form a gebraic expression for integrating the normal probability
density function, no analytical solution for proving that p1 < p2 can be formalized.

Alternatively, we have invoked a computational analysis by calculating these integral
for various representative values of o1 and o2 by using the trapezoidal rule. The values
of G=pa/p1>=1(.e,forl<o; <10and 1< o2 <10, where o1 < 02) are depicted in
Table 1in theform of alower-diagonal matrix. All the values of the upper-diagonal matrix
(not shown here) are less than unity. Note that by making the value of o1 = 1, the analysis
reduces to the first and second columns of this table. For example, if o1 = 1 and o2 = 2,
p2/p1 ~ 33.6276. For more neighboring values of o1 and a2, 9., 01 =9 and o2 = 10
(01 = 1 and o2 &~ 1.2345 after scaling), p2/p1 ~ 1.0318, which is very close to unity. The
ratio for o1 = 1 and o2 = 10 is much bigger, i.e., more than one hundred times. O

In order to get a better perspective of the computational analysis, we study the behavior
of the function G = p»/p1. Using the values of G given in Table 1, we have plotted this
function in the three-dimensional space as G (o1, a1), where a1 = ko1, 1 < k < 10. The
plot is depicted in Fig. 4.

In order to enhance the visualization of G, we have approximated it by using the regres-
sion utilities of the symbolic mathematical software package Maple V [3]. When k = 1,
the surface lies on the z = O plane, in the form of a straight line x = y (labeled “k =1
or o1 = 2" in thefigure). Thisis the place in which G reaches its minimum, when both
heuristic functions have identical variances. When k islarger (i.e., k = 10), the function G
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Table 1
Ratio between the probability of making the wrong decision for two normally distributed random variables whose
standard deviations are oy and o2

02 o1
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

1.00 1.0000

2.00 33.6276 1.0000

3.00 73.9210 21982  1.0000

4.00 102.5081 3.0483 1.3867 1.0000

5.00 1221988 3.6339 1.6531 1.1921 1.0000

6.00 136.2472 40516 1.8431 13291 11150 1.0000

7.00 146.6138 4.3599 1.9834 14303 11998 1.0761 1.0000

8.00 154.7078 4.6006 2.0929 15092 1.2660 11355 1.0552 1.0000

9.00 161.0448 47891 21786 15710 1.3179 11820 1.0984 1.0410 1.0000

10.00 166.1716 4.9415 22480 16211 13598 1219 11334 10741 10318 1.0000

Fig. 4. Function G (o1, ko) plotted intheranges 1 < o1 < 10 and 1 < ko < 10, where oo = koy.

becomes much larger (up to 166.1716 in Table 1). This clearly shows the importance of
minimizing the variance in deciding on a heuristic function.

When it concerns histograms in database query optimization, when k issmall, it implies
that the optimal and sub-optimal QEP are very close. Therefore, histogram methodslikethe
Equi-width and the Equi-depth are less likely to find the optimal QEP, since they produce
larger errors than histogram approximation methods such as the R-ACM and the T-ACM.
The latter produce very small errors, and hence, when comparing any of them with the
Equi-width or the Equi-depth, we will have amuch larger value of k. Thiswill be reflected
in our empirical results presented in the next section.
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3. Simulation resultsfor database heuristic functions
3.1. Empirical results

In order to provide practical evidence of the theoretical results presented above,1° we
have performed some simulations in database query optimization. In the experiments, we
have conducted four independent runs. In each run, 100 random databases were generated.
Each database was composed of six relations, each of them having six attributes. Each
relation was populated with 100 tuples.

For each database, a random query including the six relations and arbitrary attributes
was performed. The cost of executing the query using the estimates of the histograms
obtained from the Equi-width, the Equi-depth, and the R-ACM was evaluated. This cost is
calculated by counting the number of tuples of the intermediate relations involved in the
query processing tree. More details of the simulations can be found in [17].

The efficiency of the R-ACM was compared with that of the Equi-width and the Equi-
depth after performing these simulations using 50 values per attribute. We set the number
of bins for the Equi-width and the Equi-depth to be 22. In order to be impartia with the
evaluation, we set the number of bins for the R-ACM to be approximately half of that of
the Equi-width and the Equi-depth, because the former needs twice as much storage as that
of the latter.

The simulation results obtained from 400 independent runs, used to compare the effi-
ciency of the R-ACM with that of the Equi-width and that of the Equi-depth, are given
in Table 2. The column labeled “R > W” is the number of times that the R-ACM obtains
a better solution than that of the Equi-width. The column labeled “W > R” indicates the
number of timesin which the Equi-width leads to a better QEP than the one determined by
the R-ACM. Similarly, the column labeled “R > D” represents the number of timesthat the
R-ACM yieldsabetter solution than the Equi-depth, and the columnlabeled “D > R” isthe

Table 2

Simulation results for the R-ACM, the Equi-width, and the Equi-depth, after optimizing
queries on 400 randomly generated databases. The column labeled “R > W” contains
the number of times in which R-ACM obtained a better solution than the Equi-width on
100 randomly generated databases. The information contained in the other columns has a
similar interpretation, where“R”, “W” and “D” stand for the R-ACM, the Equi-width and
the Equi-depth respectively. The last row contains the sum of the values in each column

Simulation R>W W >R R>D D>R
1 26 12 35 12
2 24 15 42 13
3 35 11 46 8
4 29 15 46 8
Total 114 53 169 41

10 Theempirical results presented in this paper are not intended to compare the vari ous histogram methods: Equi-
width, Equi-depth, R-ACM, T-ACM, V-optimal, etc. The experimental results submitted are merely included to
demonstrate that the theoretically proven results can be experimentally justified.
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number of times in which the Equi-depth is superior to the R-ACM. The last row, the total
of each column, gives us the evidence that the superiority of the R-ACM over the Equi-
width is demonstrated more than twice as often. The same factor relating the superiority of
the R-ACM over the Equi-depth is about four.

3.2. Geometric justification of the rationale

We now present a different perspective for the formulation of the QEP model that has
been used earlier. Indeed, we shall analyze the suitability of using the doubly exponential
distribution for the query optimization problem. To demonstrate this suitability, we ex-
amined 200 randomly selected queries. Since the cost of each query is different for each
database, we computed the difference between the actual cost of executing the query and
the estimated cost. For each of the histogram methods, namely the Equi-width, the Equi-
depth and the R-ACM, we obtained two hundred points.'* Using these points (or samples)
we estimated the parameters of the doubly exponential distribution, A, for each histogram
method, using a Maximum Likelihood Estimate (MLE) method [4].

Given N samples, {x1,...,xy}, obeying a doubly exponential distribution, it is easy
(almost purely algebraic) to see that the maximum likelihood parameter, X, satisfying the
distribution obeys:

N
il il

Using the estimate of (28), we computed the parameters for the doubly exponential dis-
tribution for the Equi-width, the Equi-depth, and the R-ACM, which resulted in 0.6399,
0.6120, and 0.7089 respectively. We have also calculated their variances as in (3) — they
are 4.8834, 5.3401, and 3.9791 for the Equi-width, the Equi-depth and the R-ACM respec-
tively. As expected, the variance for the R-ACM is smaller than that of the Equi-width and
the Equi-depth. This can also be observed in Fig. 5, in which the corresponding doubly ex-
ponential probability distribution functions are plotted for the three histograms. This slight
difference between the R-ACM, the Equi-width and the Equi-depth schemes reflectsin the
corresponding results leading to superior QEPs as shown in Table 2. Clearly, the R-ACM,
whose variance is smaller than that of the Equi-width and the Equi-depth, is a superior
heuristic function.

In order to observe the similarities between the doubly exponential distribution and the
distribution of the actual cost of executing a query, we have plotted the expected values of
the doubly exponential distribution and the actual costs obtained when optimizing queries
using the R-ACM histogram. The plot depicted in Fig. 6 was obtained by grouping the data
in bins of width two, for the valuesin the ranges [x1, x2), where xo = x1 + 2, and xo = 2i
fori =—4,...,5. Inthefigure, “R-ACM” (in light gray) represents the actual cost values
of the queries, and “d-exp” (in dark gray) represents the expected population in each bin
when the random variable is doubly exponential with a value of A being determined by

A= (28)

11 Since these histograms always tend to under-estimate the costs of the queries, we have shifted al the points
so that the estimated mean of these samplesis zero. In thisway, we could work with zero-mean random variables.
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Fig. 5. Estimated probability density function for three doubly exponential random variables that represent the
error in estimation for the Equi-width, the Equi-depth and the R-ACM.
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Fig. 6. Expected values for a doubly exponential random variable, and the actual costs obtained after optimizing
queries on 400 random databases using the R-ACM histogram.

using (28). Observe the similarity between both histograms. We further corroborate the
validity of our model for the database query optimization problem.

4. Conclusions

The theory of PR is quite developed, and has many applications. In this paper, we have
applied pattern classification techniques to solve a fundamental open problem in computer
science that relates heuristic function accuracy and solution optimality. More specificaly,
in this paper, we have discussed the efficiency of using heuristic functionsfor optimization
problems and resolved an open problem, which has been (to our knowledge) open for at
least twenty years. The problem involves how the accuracy of a heuristic function relates
to the quality of the corresponding solution obtained. The efficiency has been quantified by
means of the probability of the heuristic function leading to the optimal solution. We have
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shown analytically (using areasonable model of accuracy, namely the doubly exponential
distribution for errors) that asthe accuracy of a heuristic function increases, the probability
of it leading to a superior solution also increases.

Due to the constraints involved in deriving a closed-form expression for integrating the
normal probability density function, we have presented a computational analysis of the
accuracy/optimality result for the Gaussian distribution. Again, our analysis corroborates
the result that heuristic functions producing smaller errors lead more often to optimal so-
lutions.

For the field of database query optimization, we have highlighted that for histogram
methods that produce errors with similar variances (the Equi-width and the Equi-depth),
the query processing results are also quite similar. However, we have also shown that the
R-ACM and the T-ACM, which produce errors with smaller variances than the traditional
methods, yield better query optimization plans more often. This result, earlier shown the-
oretically, has been experimentally verified. Thus, our empirical results on database query
optimization show that the R-ACM provides superior solutions more than twice as many
times as the Equi-width, and more than four times as often as the Equi-depth. More de-
tailed empirical results including the design of random databases and random queries in
these random databases can be found in [17].

We have aso estimated the parameters of the doubly exponentia distributions repre-
senting the Equi-width, the Equi-depth and the R-ACM, and shown graphically how our
experiments relate to the theoretical model presented in this paper.
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