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1. Introduction

A quasigroup is an ordered pair (Q, %), where Q is a set and () is a binary operation on Q such that the equations
axx=b and yxa=>» (1)
are uniquely solvable for every pair of elements a, b € Q. A quasigroup is called idempotent if the identity
XkX =X (2)
is satisfied for all x € Q. An element e € Q is called idempotent if e x e = e; otherwise non-idempotent. If the identity
xxy)x(y*xx)=x (3)

holds for all x, y € Q, then it is called a Schréder quasigroup. The order of the quasigroup is |Q |.

Idempotent Schroder quasigroups, or I1SQs, are associated with other combinatorial configurations such as a class of
edge-colored block designs with block size 4, triple tournaments and self-orthogonal Latin squares with Weisner property
(see[7,2,10,11]). A pair of Latin squares, say (Q, *) and (Q, -), are said to have the Weisner property ifxxy = zandx-y = w
wheneverz * w = xandz-w = yforallx,y,z, w € Q.If (Q, -) is the transpose of (Q, *), thenz - w = w *x z. If (Q, %) is
an ISQ, then fromz * w = xand z - w = y, we have x x y = (z * w) * (w * z) = z. Similarly, we also have x - y = w [11].
The following theorem states the known results relating to the existence of Schréder quasigroups and in particular ISQs.
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Theorem 1.1 ([10,5,7]).

(a) A Schrader quasigroup of order v exists if and only if v= 0, 1 (mod 4) and v # 5.
(b) An idempotent Schroder quasigroup of order v exists if and only if v =0, 1 (mod 4) and v # 5, 9.

Let Q be asetand # = {S1,S,, ..., Sk} be a set of subsets of Q. A holey idempotent Schrioder quasigroup having hole set
J is a triple (Q, #, *), which satisfies the following properties:

1. (x)is a binary operation defined on Q, however, when both points a and b belong to the same set S;, there is no definition
for a * b,

2. the Egs. (1) hold when a, b are not contained in the same set S;, 1 <i <Kk,

3. the identity (2) holds for any x & U;<j<x Si,

4. the identity (3) holds when x and y are not contained in the same setS;, 1 <i <k.

We denote the holey ISQ by HISQ(v; s1, Sa, . .., Sx), where v = |Q] is the order and s; = |S;|, 1 <i < k.Each S; is called
a hole. When # = @, we obtain an ISQ, and denote it by ISQ(v). When J¢ = {S;}, we obtain an incomplete ISQ, and denote it
by IISQ(v, |S1]). The definition of holey ISQ can be extended to non-idempotent Schréder quasigroups (NISQ). In particular,
when an NISQ has only b disjoint holes of the same size a, we denote it by HNISQ(v, a).

From the definition of HISQ, we can obtain the definition of frame ISQ as follows. If #¢ = {S;, S,, ..., Sk} is a partition of
Q, then a holey ISQ is called frame ISQ. The type of the frame ISQ is defined to be the multiset {|S;| : 1 < i < k}. We shall
use an “exponential” notation 5715'212 -+ s¢* to describe the type of n; occurrences of s;, 1 < i < t in the multiset. We briefly
denote a frame ISQ of type s'sy? - - - s{* by FISQ(s]'s5? - - - s{°).

An ISQ(v) is equivalent to an edge-colored design CBD[Gg; v] which is investigated in [7]. An edge-colored design
CBD[Gg; v] on a v-set Q is a partition of the colored edges of a triplicate complete graph 3K, each K,, receives one color for
its edges from three different colors, into blocks {a, b, c, d} each containing edges {a, b}, {c, d} colored with color 1, edges
{a, c}, {b, d} with color 2, and edges {a, d}, {b, c} with color 3.If we define a binary operation(-)asa-b =c,b-a=d,c-d =a
and d - ¢ = b from the block {a, b, c, d} and define x - x = x for every x € Q, an ISQ(v) is obtained on set Q. On the other
hand, suppose Q isanISQ.Ifa-b =c,b-a = d,thenwemusthavec-d = (a-b)-(b-a) =aandd-c = (b-a)-(a-b) = b.
So the block {a, b, c, d} is determined and a CBD[Gg; v] can be obtained in this way.

Now from an F[SQ(STS? .- sf"), we can use the same method to obtain an edge-colored design which is called a holey
Schrijde_r design and denoted by HSD (s'll1 sgz - -stt). A holey Schréder design is a triple (X, #, 8) which satisfies the following
properties:

1. # is a partition of X into subsets called holes,

2. B is a family of 4-subsets of X (called blocks) such that a hole and a block contain at most one common point,

3. the pairs of points in a block {a, b, c, d} are colored as {a, b} and {c, d} with color 1, {a, c} and {b, d} with color 2, and
{a, d} and {b, c} with color 3,

4. every pair of points from distinct holes occurs in 3 blocks with different colors.

The type of the HSD is the multiset {|H| : H € J¢} and it is also described by an exponential notation.

An HSD can be viewed as a generalization of CBD[Gg; v]. An HSD of type {s1, s2, . . ., S} is a partition of the colored edges
of a triplicate graph 3Kj, ,, .5, into blocks {a, b, c, d} each containing edges {a, b}, {c, d} with color 1, edges {a, c}, {b, d}
with color 2, and edges {a, d}, {b, c} with color 3, where each Kj s, Teceives one color for its edges from three different
colors.

On the other hand, it is well known that the multiplication table of a quasigroup defines a Latin square. For a Schréder
quasigroup, the corresponding Latin square is self-orthogonal with the Weisner property. For the equivalence of the Schréder
quasigroup to SOLS with Weisner property, the reader is referred [11]. In this way, an HSD is equivalent to a frame self-
orthogonal Latin square (FSOLS) with Weisner property.

For the existence of FSOLS of type 4"u', [13] gives the following theorem.

1,52,

Theorem 1.2. There exists an FSOLS(4"u') ifand onlyif n > 4and 0 < u < 2n — 2.

By a simple calculation and in light of Theorem 1.2, we have the following lemma.

Lemma 1.3. Ifan HSD(4™u') exists, thenn > 4andu < 2n — 2.

Another class of designs related to HSDs is group divisible design (GDD). A GDD is a 4-tuple (X, ¢, 8, A) which satisfies
the following properties:

1. G is a partition of X into subsets called groups,
2. B is a family of subsets of X (called blocks) such that a group and a block contain at most one common point,
3. every pair of points from distinct groups occurs in exactly A blocks.
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The type of the GDD is the multiset {|G| : G € 4}. We also use the notation GD(K, M; A) to denote the GDD when its block
sizes belong to K and group sizes belong to M.

If M = {1}, then the GDD becomes a PBD. If K = {k}, M = {n} and with the type n¥, then the GDD becomes TD(k, n). It is
well known that the existence of a TD(k, n) is equivalent to the existence of k — 2 MOLS(n). For more information on GDDs
and PBDs, the reader is referred to [9,12]. It is easy to see that if we erase the colors in the blocks, the HSD becomes a GDD
with block size 4 and A = 3. But the converse may be not true. It is proved in [6] that a {4}-GDD with A = 3 and of type h"
exists if and only if h>u(u — 1) = 0 (mod 4), while in [3,16], the following theorem is proved.

Theorem 1.4. An HSD(hY) exists if and only if h*u(u — 1) = 0 (mod 4) with exceptions of (h, u) € {(1,5), (1,9), (2, 4)}.

Theorem 1.1 gives the necessary and sufficient conditions for the existence of Schréder quasigroups in general and for the
existence of an ISQ. Non-idempotent Schréder quasigroups, or NISQs, are the main subject of our current investigation. There
has been no concerted effort made in the past to construct NISQs. An additional basic necessary condition for the existence
of NISQs is that the number of non-idempotent elements must be even and at least four. For any v where we have a NISQ of
order v, briefly NISQ(v), we are interested in the construction of the NISQ(v) with all the feasible number k of idempotent
elements. The necessary conditions for k are that 0 < k < v,k # v — 2,and v — k is even (see, for example, [ 10]). Given any
v, whenever k satisfies these conditions, we say k is feasible. We show that these conditions for k are also sufficient with few
definite exceptions and only a handful of possible exceptions.

From now on, let SQ(v, n) denote a Schréder quasigroup of order v with n idempotent elements. Note that SQ(v, v) is an
ISQ(v). The remainder of the paper will be devoted to proving the following theorem:

Theorem 1.5. An SQ(v, n) exists if and only if v = 0,1 (mod 4),0 < n < v,n # v — 2, and v — n is even, except for
(v,n) € {(5,1), (5,5), (8,2),(8,4), (9, 1), (9, 5)}, and except possibly for (v, n), where v € {20, 21, 24, 25, 28, 29, 32, 36}
and n = 2 (mod 4), when v is even, and n = 3 (mod 4), when v is odd.

2. Direct constructions

The results in this section were obtained using computer search. We often list the SQ’s multiplication table for its
presentation. In some of what follows, we shall tacitly make use of the following construction:

Construction 2.1. (a) If there exist an 1ISQ(v, n) and an SQ(n, k), then there exists a SQ(v, v — n + k).
(b) If there exist an HNISQ(v, a®) with k idempotent elements and an SQ(a, d), then there exists an SQ(v, k + bd).

Lemma 2.2. There exists an SQ(v, n) for (v, n) € {(4,0), (4, 4), (8,0), (8, 8), (9, 3)} and there are no SQ(v, n) for (v,n) €
{(8,2),(8,4), (9, 1), (9,5)}.

Proof. SQ(4, 0) is given below:

x| 0 1 2 3
__+ _____________
ol 3 1 0 2
1] 0 2 3 1
21 2 0 1 3
3] 1.3 2 0

For SQ(v, v), v = 4, 8, they come from idempotent models.
Here are SQ(8, 0) and SQ(9, 3):

x| 0 1 2 3 4 5 6 8
| 0o 1 2 4 5 6 7 R T
b 0| 5 8 7 0 2 4 6 1 3
ol 7 2 6 1 4 0 5 3 1] 6 1 8 7 0 3 5 2 4
1] 6 5 7 3 0 4 2 1 21 1 5 6 8 4 2 7 3 0
2| 1 4 3 7 2 5 0 6 31 3 2 0 4 8 5 1 6 7
31 41 0 2 7 6 3 b5 41 8 7 2 1 3 6 4 0 b5
41 0 3 4 5 6 7 1 2 5|1 7 6 5 3 1 0 8 4 2
5| 5 6 2 0 3 1 7 4 61 0 4 3 5 6 7 2 8 1
61 3 01 6 5 2 4 7 71 4 01 2 5 8 3 7 6
71 2 7 5 4 1 3 6 0 8| 2 3 46 7 1 0 5 8

An exhaustive computer search has confirmed the non-existence in each of the four cases stated. O

Lemma 2.3. There exists an SQ(12, k) for any feasible k.
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Proof. The case k = 12 comes from idempotent models. For the other cases, please see Appendix A.1. O

Example 2.4. An 1ISQ(13, 4):
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Example 2.5. An SQ(13, 9) can be obtained from an 1ISQ(13, 4) by filling the hole of size 4 with an SQ(4, 0).

Lemma 2.6. There exists an SQ(13, k) for any feasible k.

Proof. The case k = 13 comes from idempotent models. The case k = 9 is covered in Example 2.5. For the other cases,
please see Appendix A.2. O

Example 2.7. An HNISQ(16, 4%) with two idempotent elements, where the two holes are S; = {0,1,2,3} and S, =
{12, 13, 14, 15}, and an HNISQ(17, 4%) with three idempotent elements, where the two holes are S; = {0, 2, 4, 6} and
S, = {1, 3, 5, 7}, are given below and on the top of the next page.

* 01 2 3 4 5 6 7 8 910 11 12 13 14 15

I

——tte e = =
0 | 1311121415 7 6 4 8 910 b5
1 15614 413 7 8 91210 5 6 11
2 | 14 4151013 12 5 6 711 8 9
3 | 812 7 15 514 13 9 4 6 11 10
4|1 6 9 815 413 51210 31114 2 0 7 1
5115111210 1 914 5 8 0 413 6 2 3 7
61 515 71310 1 8 314 61211 0 4 9 2
71 41014 5 2 7131112 9 815 1 3 0 6
811012 914 7 5 2 0 61315 811 1 4 3
91141311 61215 9 7 0 5 210 3 8 1 4
10 | 12141311 9 6 1 4 31510 0 5 7 2 8
11 | 13 81512 3 2 6 111 414 7 910 5 0
12| 7 6 4 9 5 010 8 111 3 2

13| 8 4 5 71110 0 6 9 2 1 3

14111 5 6 4 0 8 3 9 210 7 1

15| 9 710 8 6 311 2 4 1 0 5

Lemma 2.8. There exists an SQ(16, k) for k € {2, 6, 10}.

Proof. For the two holes of HNISQ(16, 4) in the previous example, we fill in either an SQ(4, 0) or an SQ(4, 4) to get the
desired result. O

Lemma 2.9. There exists an SQ(17, k) for k € {3,7, 11}.

Proof. For the two holes of HNISQ(17, 4?) in the previous example, we fill in either an SQ(4, 0) or an SQ(4, 4) to get the
desired result. O
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01 2 3 4 5 6 7 8 910 11 12 13 14 15 16

I
g g g g
0| 14 10 12 11 71613 9 3 8 5 115
1] 12 15 9 8 13 6 216 14 4 11 10 O
2 | 13 14 11 16 3 8151210 9 7 5 1
31 15 13 10 12 914 6 8 411 016 2
4 | 11 13 10 1512 116 14 7 5 9 8 3
51 9 14 11 16 1513 0 6 210 8 12 4
6 | 10 11 8 9 1 3 713151612 14 5
71 8 9 14 13 41112 216 015 6 10
8113 016 215 4 912 8 5 1 7111410 3 6
9111 8 3 413 210 01412 9 1 5 616 15 7

10| 516 1 9 71415 2 61011 412 313 0 8
11| 712 815 116 314 0 4 510 613 211 9
121 14 6 716 815 513 2 010 3 912 1 4 11
131 1 9 56 616 014 810 7 411 1315 3 2 12
14 | 10 41112 3 9 1 61615 8 5 0 214 7 13
15116 212 0 5 6 71011 9 315 8 1 4 13 14
16 | 31510 8121311 4 5 214 0 1 7 6 9 16

To construct HSDs directly, sometimes we can use starter blocks. Suppose the block set B of an HSD is closed under the
action of some Abelian group G, then we are able to list only part of the blocks (starter or base blocks) which determines
the structure of the HSD. We can also attach some infinite points to an Abelian group G. When the group acts on the blocks,
the infinite points remain fixed. Formally, let B be the block set of an HSD over the point set S = G U X, where (G, +) is
a group, X is a set of infinite points, G N X = (. The addition (4) is extended over X as follows: g + x = x + g = x for
any g € Gand x € X. Aset A C B is called starter blocks of B if 4 is a minimum subset of B satisfying the property that
foranya € Aandany g € G,a+ g € B,and forany b € B, there exista € 4 and g € G such thatb = a + g, where
a+g={a1+g,a,+g,as+g,as+g}whena={ay, az, as, as}.

Example 2.10. Example 2.4 corresponds to an HSD(1°4') with the following:
points: Zg U {x, y, z, w}, where x, y, z, w are infinite points for the hole.
starter blocks: {x, 0, 4, 1}, {y, 0, 3, 2}, {z, 0, 2, 4}, {w, O, 1, 6}.

In this example, the entire set of blocks are developed from the starter blocks by adding 1 (mod 9) to each point of the
starter blocks. For instance, the block {x, 0, 4, 1} will generate eight more blocks such as {x, 1, 5, 2}, {x, 2, 6, 3}, and so on.

To check the starter blocks, we need only calculate whether the differences +(x — y) from all pairs {x, y} with coloriin
the starter blocks are precisely G\ S for 1 < i < 3, where S is the set of the differences of the holes. For the above example,
for color 1, the set of differences from the four blocks is {£(4 — 1), (3 — 2), £(4 —2), (6 — 1)}, which is exactly Zg — {0}.
This is also true for colors 2 and 3.

We have pointed out in the previous section that there is a correspondence between an HISQ and an HSD. That is, for
all distinct a, b,c,d € Q,axb =c,bxa =d,c*d = a,d = c = b in the HISQ if and only if {a, b, c, d} is a block of the
HSD. So we are free to use either form. In fact, all the designs found by computer in this paper are in the form of Schréder
quasigroups. To allow the existence of starter blocks with a group G, for quasigroup (Q, *), we require that Q = G U X and
forallx,y,z € Q,xxy =zifandonlyif (x+ g) * (y +g) = (z+ g) forany g € G[14,15]. Since HSDs have a more compact
form than quasigroups, we will present them as HSDs in this paper.

Example 2.11. An HSD(442")
points: Zg U {x, ¥}, where x, y are infinite points.
holes: {{i,i+4,i4+8,i4+ 12} : 0 <i <3} U {x,y}
starter blocks: {0, 1, 6, 15}, {0, 3, 9, 14}, {0, 6, 13, x}, {0, 14, 1, y}.

In this example, the entire set of blocks are developed from the starter blocks by adding 1 (mod 16) to each point of
the starter blocks; the infinite points are unchanged for addition. The above idea of starter blocks can be also generalized:
Instead of adding 1 to each point of the starter blocks, we may add k, where k > 1, to develop the block set; we refer to this
as the +k method. In this case, for a set + to be starter blocks, we require that foranya € 4 andany g € G,a+ kg € 8. For
quasigroups, we require that forallx,y,z € Q,x *y = z ifand only if (x + kg) * (y + kg) = (z + kg) forany g € G [14,15].

Example 2.12. An HSD(441")
points: Z1g U {x}
holes: {{i,i+4,i+8,i+ 12} : 0 <i <3} U {x}
starter blocks (4+2 mod 16): {0, 2, 13, 7}, {0, 3, 2, 9}, {0, 5, 3, 6}, {0, 6, 11, 13}, {0, 9, 10, x}, {0, 11, 1, 2}, {1, 0, 3, x}.

By adding 2 (mod 16) to the 7 starter blocks, we obtain a set of 56 blocks.
Lemma 2.13. There exists an HSD(4"1') for 4 < n < 13 and n # 0 (mod 3).
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Proof. The case n = 4 is given in Example 2.12. The starter blocks of the other cases are given in Appendix A.3. O

Lemma 2.14. There exist HSDs of type 4™u' forn = 4,5and 0 < u < 6.

Proof. For u = 0, 4 the HSDs come from Theorem 1.4. For u = 1, the HSDs come from Lemma 2.13. For all other cases, the
HSDs can be found in Appendix A.4. O

Construction 2.1 shows how holey Schroder quasigroups are useful in the study of non-idempotent Schréder quasigroups.
In the next section, we present some results related to holey or frame Schroder quasigroups.

3. Recursive constructions

In this section we present several recursive constructions of HSDs, which are commonly used in other block designs. The
following construction comes from the weighting construction of GDDs [12].

Construction 3.1 (Weighting). Suppose (X, #, 8) is a GDD with A = 1and let w : X — ZT U {0}. Suppose there exist HSDs
of type {w(x) : x € B} for every B € 8. Then there exists an HSD of type {} ", ., w(x) : H € J}.
The following result about TD(4, m) is well known (see [1,4], for example).

Lemma 3.2. There exists a TD(4, m) for any positive integer m, m # 2, 6.

Using Lemma 3.2, if we give every point of an HSD weight m and input TD(4, m) to each block of the HSD, we can obtain
the following construction.
Construction 3.3. Suppose there exists an HSD(h'l11 h;z e hzk), then there exists an HSD((mh{)™ (mhy)" - - - (mhy)"), where
m#2,6.

The next construction may be called “filling in holes”. It is used commonly in constructing designs.

Construction 3.4. Suppose there exist an HSD of type {s; : 1 < i < k} and HSDs of type {h; : 1 < j < n;} U {a}, where
Z}L hi = siand 1 <i < k — 1, then there exists an HSD of type {h;; : 1 <j <m;, 1 <i <k — 1} U {8 + a}.

Construction 3.5. If there exist an HSD(4™t') and an HSD(4°u'), where 4s + u = t, then there exists an HSD(4™+u?).

The next construction comes from [7].

Construction 3.6. Suppose there exists an FSOLS(h'hy? - - - h;¥), then there exists an HSD((4hy)"™ (4hy)" - - - (4hy)™).

For some of our recursive constructions, we shall utilize the following lemma.

Lemma 3.7. For any m > 4, there exists an HSD(4*™(4u + k)') whenever 0 < u <2m —2and 0 < k < 6.

Proof. For all integers m and u satisfying the conditions above, we have an FSOLS(4™u') ([13], Theorem 4.4). From this,
we first get an HSD(16™(4u)!) by Construction 3.6. To this HSD we can adjoin k infinite points using an HSD(4%k") from
Lemma 2.14 to fill in the holes of size 16 and creating one hole of size 4u + k to get the desired HSD. O

We also need to make use of the following result relating to a TD(6, m) (see [1,4], for example).
Lemma 3.8. For m > 5and m ¢ {6, 10, 14, 18, 22}, there exists a TD(6, m).

Lemma 3.9. If there exists a TD(6, m), then there exist HSDs of type HSD(4*™tku'), where k = 0,1,4,5,...,mand 0 <
u<6m

Proof. Give weight 4 to each point of first four groups of a TD(6, m). Give weight 4 to k points of the fifth group and weight
0 to the remaining points of this group, and give weight 0, 1, 2, 3, 4, 5 or 6 to the points of the sixth group such that the
sum of these weights of the points is equal to u. As there exist HSDs of type 4™ and 4¥ and also HSD(4"t?) for n = 4, 5 and
0 <t < 6 by Lemma 2.14, we obtain the desired HSD by Construction 3.1. O

In most of what follows, we shall rely quite heavily on the following useful construction in going from HSDs of various
types to SQ(v, k)s:

Construction 3.10. (a) If there exists an HSD(4"), then there exists an SQ(4n, k) for any feasible k = 0 (mod 4).
(b) If there exists an HSD(4™12"), then there exists an SQ(4n + 12, k) for any feasible k.

(c) If there exists an HSD(4™11), then there exists an SQ(4n + 1, k) for any feasible k = 1 (mod 4).

(d) If there exist an HSD(4"+t21') and an HSD(4"9'), then there exists an SQ(4n + 9, k) for any feasible k.

Proof. (a) Let k = 4t where 0 < t < n. We may fill in t holes of size 4 with an SQ(4, 4) and n — t holes of size 4 with an
SQ(4, 0) to get 4t idempotent elements.

(b) As in the proof of (a), we may get 4t idempotent elements, where 0 < t < n, from n holes of size 4. Then we may fill in
an SQ(12, s), wheres = 0, 2, 4, 6, 8, and 12, as needed to have k idempotent elements in SQ(4n + 12, k).

(c) Analogous to that of (b) and we fill one in the hole of size one to get 4t + 1 idempotent elements.
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(d) Similarly, from an HSD(4"21'), we may get 4t + 1 idempotent elements where 0 < t < n + 2.Ifk = 3 (mod 4), we
need to use an HSD(4"9') where we get 4t idempotent elements, 0 < t < n, from n holes of size 4, and 3 idempotent
elements from the hole of size 9. O

4. SQ(v, k) for v = 0 (mod 4)

Lemma 4.1. There exists an SQ(16, k) for any feasible k.

Proof. Ifk = 0 (mod 4), the result comes from Construction 3.10(a) because HSD(4*) exists (Theorem 1.4).Ifk = 2 (mod 4),
the result comes from Lemma 2.8. O

Since an HSD(4") exists for n > 4, by Construction 3.10(a), we have an SQ(4n, k) for k = 0 (mod 4). For k = 2 (mod 4),
we use Construction 3.10(b).

Theorem 4.2. An HSD(4"121) exists if and only if n > 7.

Proof. The necessary condition comes from Lemma 1.3.
For n > 7, there exists an FSOLS(1"3"). Using Construction 3.6, we have an HSD(4"12'). O

Theorem 4.3. For v = 0(mod 4), an SQ(v, n) exists if n < v, n # v — 2, and v — n is even, except for (v, n) € {(8, 2), (8, 4)},
and except possibly for (v, n), where v € {20, 24, 28, 32, 36} and n = 2 (mod 4).

Proof. For v < 16, the result comes from Lemmas 2.2, 2.3 and 4.1. For 16 < v < 36 and n = 0 (mod 4), they come from
Construction 3.10(a) and Theorem 1.4. For v > 36, the result comes from Construction 3.10(b) and Theorem 4.2. O

5. SQ(v, k) for v = 1 (mod 4)

In light of Construction 3.10, we are interested in the existence of HSDs of type 4"u' for u = 1 and 9. We commence with
the following useful lemma.

Lemma 5.1. For any n > 6, there exists an HSD(4"u') whenever n = 0 (mod 3),0 < u < 2n — 2, and u = 1 (mod 3).

Proof. There exist 4-GDDs of the same type (see, for example, [8]). So we can give all points of this GDD weight one to get
the desired HSD(4™u!). O

Theorem 5.2. An HSD(4"1') exists if and only if n > 4.

Proof. The necessary condition comes from Lemma 1.3.

Lemma 2.13 covers the case when n < 14 and n s 0 (mod 3), Lemma 5.1 covers n = 6, 9, 12, 15, 18, and Appendix A.6
coversn = 14, 17, and 19, Lemma 3.7 covers n = 16. And now we assume n > 20.

When n = 4m, 4m + 5, 4m + 6 or 4m + 7 for any m > 4, we have HSDs of types 4*™1', 44m211, 44m251 and 4*™29! by
applying Lemma 3.7 withu = 0and k = 1,u = 5and k = 1, 5, u = 6 and k = 5. By filling in the holes of sizes 21, 25 and
29 with HSDs of types 4°11, 41" and 471", respectively, we get an HSD of type 471! as desired. This completes the proof of
the theorem. O

Lemma 5.3. There exists an SQ(17, k) for any feasible k.

Proof. If k = 1 (mod 4), the result comes from Construction 3.10(c) because HSD(4%1') exists. If k = 3 (mod 4), the result
comes from Lemma 2.9. O

Lemma 5.4. There exists an HSD(4"9") for 6 < n < 18.

Proof. An HSD(4'°9') comes from Lemma 3.7. The starter blocks of the other cases are given in Appendix A.5. O

Theorem 5.5. An HSD(4"9") exists if and only if n > 6.

Proof. The necessary condition comes from Lemma 1.3.

The previous lemma covers the case when n < 19. Now we assume n > 19. When n = 4m, 4m + 6 or 4m + 7 for any
m > 5, we have HSDs of types 4*m9', 433" and 4*"37" by applying Lemma 3.7 withu = 2 and k = 1, and withu = 8
and k = 1, 5. By filling in the holes of sizes 33 and 37, with HSDs of types 469! and 479", respectively, we get an HSD of type
4n9l,

When n = 4m + 9 for any m > 6, we have an HSD of type 4*™45! by applying Lemma 3.7 with u = 10 and k = 5. By
filling in the holes of size 45, with an HSD of type 4°9!, we get an HSD of type 479,

The above covers n = 20, 24, 26, 27,28 and all n > 30. For n = 21, 25 and 29, we apply Lemma 3.9 withm = 5, 7,
k=1,5andu =09.

Forn = 19, 22, first of all, we start with a TD(8, 8): For n = 19, in the first four groups of this TD we give all of the points
a weight of two. In the fifth, sixth and seventh groups, we give two points weight two and the other points weight zero. For
n = 22, in the first five groups of this TD we give all of the points a weight of two. In the sixth and seventh groups, we give
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two points weight two and the other points weight zero. For both n = 19 and 22, in the last group, we give seven points a
weight of one and one point of weight two for a total weight of 9. Since we have HSDs of types 2" forn = 5, 6, 7, 8 and 2"1!
forn = 4,5, 6, 7 [4], we get HSDs of types 16?4%9" and 16°429" by Construction 3.1. By filling in the holes of size 16 with
an HSD(4%), the resulting designs are HSD(4"9") for n = 19, 22.

For n = 23, we start with a TD(6, 5). In the first four groups of this TD we give all of the points a weight of four. In the
fifth group, we give three points weight four and the other points weight zero. In the last group, we give all the points a
weight of one. Since we have HSDs of types 471! for n = 4, 5, we get an HSD of type 20*12!5". By adjoining four points
to this HSD and filling in the holes of sizes 12 and 20 with HSDs of types 4* and 4°, respectively, the resulting design is an
HSD(4%9'). O

Theorem 5.6. For v = 1 (mod 4), an SQ(v, n) exists if n < v,n # v — 2, and v — n is even, except for (v,n) €
{(5,1), (5,5), (9, 1), (9, 5)}, and except possibly for (v, n), where v € {21, 25,29} and n = 3 (mod 4).

Proof. For v < 17, the result comes from Lemmas 2.2, 2.6 and 5.3. For 17 < v < 29 and n = 1 (mod 4), the result comes
from Construction 3.10(c) and Theorem 5.2. For v > 29, the result comes from Construction 3.10(d) and Theorem 5.5. O

6. Conclusions

We have used the concept of holey Schréder designs and specifically investigated the existence of HSD(4™u!) mainly for
u = 1,9 and 12. We proved that such HSDs exist foru = 1, 9,and 12 and n > max{(u + 2)/2, 4}. The results have provided
an application to the construction of Schroder quasigroups with a specified number of idempotent elements. Most recursive
constructions used in this paper are standard in combinatorial designs and many of the direct constructions of HSDs in this
paper are carried out by a computer search. Apart from a handful of possible exceptions, which remain under investigation,
we have been able to provide fairly conclusive results. From the previous sections, we obtain the main theorem of this
paper:

Theorem 6.1. An SQ(v, n) exists if and only if v = 0,1 (mod 4),0 < n < v,n # v — 2, and v — n is even, except for
(v,n) € {(5,1), (5,5), (8,2), (8,4), (9, 1), (9, 5)}, and except possibly for (v, n), where v € {20, 21, 24, 25, 28, 29, 32, 36}
and n = 2 (mod 4), when v is even, and n = 3 (mod 4), when v is odd.

Proof. The necessary conditions come from [10], and sufficiency comes from Theorems 4.3 and 5.6. O

We define an n? x k orthogonal array based on an n-set S to be a rectangular array of n? rows and k columns where, for
any two distinct columns, the set of ordered pairs occurring in the n? rows of these two columns is precisely the set of all
n? distinct ordered pairs from S. Evidently, any quasigroup (Q, ) of order n is equivalent to an n?> x 3 orthogonal array,
where (x, y, z) is a row of the array if and only if x % y = z. In the statement of Theorem 6.1 for every integer v > 1, where
v = 0,1 (mod 4) except for v = 5, we have presented a large variety of non-idempotent Schréder quasigroups of order
v. For each Schréder quasigroup (Q, %), we can define a |Q |> x 4 array where the rows are {(x,y,x*y,y *x) : X,y € Q}.
It is perhaps worth mentioning that all of these non-idempotent models of Schréder quasigroups of order v correspond to
v? x 4 orthogonal arrays that have the Klein 4-group as conjugate invariant subgroup. For more details on this association,
the interested reader is referred to [10]. We can now formally state the following theorem.

Theorem 6.2. Forall orders v > 1, where v = 0, 1 (mod 4) except for v = 5, there exists a variety of non-idempotent Schréder
quasigroups of order v, all of which correspond to v x 4 orthogonal arrays that have the Klein 4-group as conjugate invariant
subgroup.
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Appendix

Al. SQ(12,n)

The following are SQ(12, k) for k = 0, 2, 4, 6, 8, in that order.
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A2.SQ(13,n)

The following are SQ(13, k) for k = 1, 3, 5, 7, in that order.
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|
——,ttm e = -
0l 0121011 8 9 5 1 4 7 3 2 6
1] 2 112 711 310 9 6 0 5 4 8
2112 4 8 3 911 210 5 6 7 1 0
31 4 011 912 6 8 210 5 1 3 7
4110 2 6 5 412 711 3 8 9 0 1
51 1 9 012 7 5 6 811 4 210 3
61 6 3 9 410 01112 1 2 8 7 5
71 3 8 510 1 2 0 71211 6 9 4
8l 910 7 0 6 812 3 2 1 4 511
9111 5 2 1 010 4 6 7 312 8 9
10| 811 3 6 5 7 1 4 0 91012 2
11| 56 7 4 2 3 1 9 0 81211 6 10
12| 7 6 1 8 2 4 3 5 910 0 11 12

A.3. HSD(4"1")

Here we list some HSDs which are used in the previous sections. All of them are obtained by computer. In the following
list, the point set of an HSD(4"u') consists of Z, and u infinite points which are denoted by alphabet. For simplicity, we only
list the starter blocks or the corresponding Latin square. We also use the 42 method or the +4 method to develop blocks,
which means that we add two or four (mod 4n) to each point of the starter blocks to obtain all blocks.

n =5 (+2 mod 20):
{O’ 1’ 13’ 17}’ {O’ 2, 1, 18}, {O’ 4’ 17’ 3}’ {O’ 6, 12, 4}, {O’ 7’ 9’ 1}’
{0, 11, 7, 8%}, {0, 13, 6, x}, {0, 17, 11, 9}, {1, 12, 3, x}

n=7 (+2 mod 28):
{0, 1, 4, 24}, {0, 2, 19, 27}, {0, 3, 1, 20}, {0, 4, 13, 22}, {0, 5, 2, 18},
{0, 10, 23, 26}, {0, 11, 3, 1}, {0, 13, 9, 5}, {0, 15, 20, 19}, {0, 17, 27, 15},
{0, 22, 6, x}, {0, 23, 17, 11}, {1, 19, 7, x}

n =28 (+2 mod 32):
{O, 1’ 14’ 13}) {O’ 2’ 313 12}, {0, 3’ 20’ 10}) {O’ 4’ 63 17}, {0, 5’ 30’ 4})
{0, 7, 4, 25}, {0, 9, 23, 26}, {0, 12, 17, 31}, {0, 13, 11, 93}, {0, 14, 3, 23},
{o, 17, 7, 11}, {0, 23, 27, 1}, {0, 25, 5, 27}, {0, 27, 21, =x}, {1, 18, 4, x}

n = 10 (+2 mod 40):
{O, 1’ 32’ 3}) {O, 2’ 14’ 33}’ {O, 3’ 7, 25}) {O’ 4’ 19’ 7}’ {O’ 5, 13’ 16}’
{0, 6, 35, 22}, {0, 7, 23, 31}, {0, 8, 6, 1}, {0, 9, 36, 8}, {0, 14, 18, 39},
{o, 16, 2, 27}, {0, 17, 5, 21}, {0, 18, 15, 17}, {0, 23, 37, x}, {0, 27, 21, 35},
{0, 29, 27, 23}, {0, 31, 12, &5}, {0, 39, 17, 11}, {1, 26, 32, x}

n = 11 (+2 mod 44)
{0, 1, 41, 18}, {o, 2, 19, 28}, {0, 3, 28, «x}, {0, 4, 35, 6}, {0, 5, 36, 12},
{Os 6) 15: 35}, {O> 7: 25: 8}: {Os 8: 31: 21}, {O: 93 17: 3}, {Os 10, 6: 20})
{0, 12, 5, 7%}, {0, 13, 23, 41}, {0, 15, 20, 1}, {o, 16, 1, 2}, {0, 18, 4, 25},
{0, 19, 3, 10}, {0, 31, 32, 27}, {0, 41, 21, 5}, {1, 5, 3, 39}, {1, 7, 21, 33},
{1, 18, 33, x}

n = 13 (+2 mod 52):

{0, 1, 38, 5}, {0, 2, 21, 36}, {0, 3, 44, 93}, {0, 4, 29, 31}, {0, 5, 50, 42},
{o, 6, 41, 51}, {0, 7, 22, 2%, {0, 9, 37, 21}, {0, 10, 48, 41}, {0, 11, 47, 43},
{0, 12, 20, 45}, {0, 14, 43, 20}, {o, 15, 7, 1}, {0, 16, 10, 28}, {0, 21, 35, 4},
{0, 22, 19, 47}, {0, 24, 36, 33}, {0, 29, 11, 30}, {0, 35, 23, 34}, {0, 43, 49, 27},
{0, 47, 24, x}, {0, 51, 3, 17}, {1, 9, 11, 31}, {1, 13, 45, 11}, {1, 26, 29, x}

Forn = 14, 17, 19, please see Appendix A.6.
A4. HSD(4™u') forn = 4,5

For u = 0, 1, 4 the HSDs come from Theorem 1.4 and Lemma 2.13. For n = 4 and u = 2, see Example 2.11.



n=4, u=3 (+2 mod,
{0, 2, 15, 9%}, {0,
{0, 13, 3, =x1}, {1,

n=4, u=>5 (+2 mod,
{O, 1’ 3: XS}, {Os
{O’ 13’ 7, Xs}, {1,
{1, 12, 2, x3},

n=4, u=6 (+1 mod,
{0, 1, 2, x6}, {0,
{0, 14, 5, x3}

n=5, u=2 (+1 mod,

6}, {0,

n=5, u=3 (+2 mod,
{0, 2, 14, 13}, {0,
{O’ 16’ 7, X2}, {O,
{1, 10, 12, x1}

n=5,u=5 (+2 mod,

{0, 1 3, x5}, {0,
7}, {0,
5, X2}, {1’

n=5,u=6 (+1 mod,
{0, 1, 2, x6}, {0,
{O’ 17, 3, XS}’ {0,

9,
18,

20) :

4,
18,

A.5. HSD(4"9") for6 < n < 18
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HSD(4'99') comes from Lemma 3.7.

n =6 (+2 mod 24):
{0, 1, 3, x93}, {0,
{0, 10, 7, x4}, {0,
{1, 2, 4, x9}, {1,
{1, 14, 5, x1}, {1,

n=7 (+2 mod 28):
{0, 1, 3, x93}, {o,
{0, 9, 12, x4}, {0,
{0, 20, 11, x3}, {1,
{1, 6, 23, x1}, {1,
{1, 24, 5, x4}

n =28 (+2 mod 32):
{0, 1, 3, x9}, {o,
{0, 7, 10, x4}, {0,
{0, 21, 7, 10}, {0,
{1, 3, 8, x6}, {1,
{1, 18, 23, x5}, {1,

n =9 (+2 mod 36):
{O: 1’ 3’ Xg}: {Oa
{0, 8, 19, 22}, {o,
{0, 15, 30, 25}, {0,
{0, 25, 11, 33}, {1,
{1, 9, 13, x7}, {1,
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o=
{0,
{0,
{0,
{0,
{1,
{1,

10 (+2 mod 40):
1, 16, 24}, {0,

7, 14,
18, 9,
31, 28,
15, 13,
32, 28,

1},
x61},
x4%},
x9%},
x5%},

{0,
{0,
{0,
{1,
{1,

n =11 (+2 mod 44):
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19, 21,
0, 9,
20, 41,

273,
13},
x9},

3})
X7},
x1},

{0,
{0,
{0,
{o’
{1,
{1,

12 (+2 mod 48):

3, 31,
9, 25,
17, 10,
25, 15,
45, 22,
31, 20,
44, 42,

25},
x1},
31},
x2%},
x3},
x9%},
x2}

{0,
{0,
{03
{0,
{0,
{1,

13 (+2 mod 52):

1, 49,
8, 2,
17, 22,
27, 17,
43, 23,
13, 38,
44, 20,

43%},
12},
453,
X7},
x4},
x5},
x3%},

{0,
{0,
{0,
{o’
{0,
{1,
{1,

14 (+2 mod 56):

1, 27,
8, 46,
13, 17,
19, 25,
29, 38,
3, 19,
22, 14,

367,
45%,
x5},
40%},
x3%},
x1},
x5},

{0,
{O’
{0,
{0,
{0,
{1,
{1’

15 (+2 mod 60):

1, 40,
6, 49,
16, 17,
24, 1,
47, 39,
57, 51,
21, 49,
52, 21,

59},
163},
x8%,
11},
x1},
x4},
25},
x9%},

{0,
{0,
{o)
{0,
{0,
{1,
{1,
{1,

17 (+2 mod 68):

2, 44,
7, 52,
16, 48,
22, 11,
28, 4,
43, 29,

14%},
29},
x61},
x8%},
53},
49%},

{0,
{0,
{0,
{0,
{o’
{0,

12,
19,
33,
16,
38,
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36,
23,
33,
29,
23,
37,

42,
43,

7,
20,
33,
25,

43,
28,
47,
45,

1:
41,

36,
45,
12,
51,
21,
39,
50,

54,
52,
40,
13,
39,

34,

58,

19,
46,
65,
13,

x93},
19},
X7},
32},
x4},
x2}

x1},

6},
x3},
X7},
x93},
x5%},

8%},
21},
4},
43},
x5%},
x8%},

x1},
x3},
44%,
49},
41%},
x8%},
X7},

2},
413},
x2},
513},
x6},
x8%},
x9},

573},
493,
10},
35},
x5%},
x1},
X7},
x5}

27},
x1},
63},
331,

2%},
21},

{0,
{0,
{0,
{0,
{1,

{0,
{0,
{0,
{O’
{1,
{1,

{0,
{0,
{0,
{0,
{1,
{1,

{0,
{0,
{0,
{0,
{0,
{1,
{1,

{0,
{0,
{0,
{0,
{0,
{1,
{1’

{0,
{0,
{0,
{0,
{0,
{1,
{1,

{0,
{0,
{0,
{0,
{0,
{0,

4,
13,
21,
39,
17,

10,
16,
27,
10,
29,

14,
19,
29,

38,

21,
25,

8,
18,
39,

12,

30,
40,
35,
10,

16,

27,
23,
28,
12,

29,
18,
33,

35,
29,
50,

60,
23,
62,
39,
49,
63,

23},
37},
x3%},
x2%},
x1},

35},

7},
x8%},
x6},
x6%},
x2},

x4},
47%,
X7},

9},
x1},
X7},

42%,
513},
303},
35},
173},
x6},
x4}

27},
32},
X7},
33},
x4},
x2%},
x3%},

54},
553,

8%},
XT3},
39},
13},
x4%},

39},
x2},
x3%},

9},
353},
x9%},

{0,
{0,
{0,
{1,
{1,

{O:
{O:
{O;
{0,
{1’
{1:

{0,
{0,
{0,
{0,
{1,
{1,

{0,
{0,
{0,
{o)
{0,
{1,

{0,
{O)
{0,
{0,
{0,
{1,
{1)

{0,
{0,
{o)
{0,
{0,
{1,
{1,

{0,
{0,
{0,
{0,
{o)
{0,

5,
14,
24,

6,
18,

25,

13,
21,
39,
50,

39,

14,
20,
26,
33,
61,

11,

3,
38,
33,
36,

26,
29,
37,

32,
15,

42,
13,
35,

39,
43,

20,

31,
19,
46,
24,

29,
30,
55,
45,
36,
17,
48,

36,

16,
43,
53,
36,
58,

30,
18,
42,
67,
55,
21,

x8%},

9%},
x1},
x3},
x8%},

34},
39},
x4},
41},
x3},
x8}

163},
173},
x67},
27},
x3},
x4},

x67},
23},
x2},
x5},
x8%},
x23},

39},
x8%},
12},

6},
29},
x4},
x6},

2},
x9},

7},
x6},
x2},
x2},
x8%},

40%,
503},
x4},

5%},
x5},
31},

{0,
{0,
{0,
{1,
{1,

{0,
{0,
{0,
{O’
{1,

{0,
{0,
{0,
{0,
{1,
{1,

{Oa
{O,
{0,
{O:
{1:
{1’

{0,
{0,
{0,
{0,
{0,
{1,
{1’

{0,
{0,
{0,
{0,
{0,
{1,
{1,

{0,
{0,
{0,
{0,
{0,
{0,

15,
29,

24,

13,
18,
41,
16,

16,
23,
37,
29,
41,

16,
25,
41,

39,

12,
18,
26,
54,
13,
41,

34,
31,
37,
14,
26,

28,
34,
23,
28,

44,
41,

35,
13,
28,

41,
11,
15,
51,
32,

53,

34,
31,
59,

35,
40,

54,
31,

40,
37,
57,

5},
x5},
15},
x6},
X7},

x2},

4},
x5},
15},
x4},

x9%},
353,
x8},
19},
x5},
x67},

163},
x93},
193},

5},
x1},
x9},

x93},
15},
9},
193},
x1},
25},
x7}

24%,
27},
19},
173},
x3},
x3%},
x63},

65},

6},
617},
113},
X7},
58},
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{1, o, 8, x5}, {1, 3, 51, 63}, {1, 5, 26, x8}, {1, 16, 0, x2}, {1, 17, 15, 43},
{1, 23, 54, x1}, {1, 27, 28, x9}, {1, 34, 64, x7}, {1, 37, 49, x6}, {1, 51, 13, x4},
{1, 60, 67, x3}

n =18, (+2 mod 72):

{O’ 13 313 63}, {O, 2’ 52’ 35}) {O’ 3’ 443 30}, {03 4’ 2’ 55}) {O’ 6, 653 56}3
{0, 7, e6, 15}, {0, 8, 19, x6}, {0, 11, 12, 60}, {0, 13, 63, 4}, {0, 15, 46, 657},
{0, 17, 69, 6}, {0, 20, 10, 5}, {0, 22, 61, 14}, {0, 23, 34, 69}, {0, 25, 59, 8},
{0, 27, 41, 7%}, {0, 28, 47, 67}, {0, 29, 25, x4}, {0, 30, 15, 46}, {0, 32, 49, 53},
{0, 34, 67, 37}, {0, 39, 30, 27}, {0, 43, 40, x2}, {0, 45, 43, 44}, {0, 46, 14, x9},
{0, 49, 4, x8}, {0, 56, 7, x5}, {0, 57, 29, 1}, {0, 60, 37, x7}, {0, 61, 35, x1},
{0, 62, 24, x3}, {0, 65, 71, 21}, {1, 7, 31, 41}, {1, 13, 3, 17}, {1, 17, 46, x5},
{1, 36, 60, x4}, {1, 40, 20, x1}, {1, 42, 67, x8}, {1, 47, 68, x7}, {1, 49, 41, x3},
{1, 65, 18, x6}, {1, 68, 25, x2}, {1, 71, 59, x9}

A.6. Miscellaneous HSD(4"u')

An HSD(4'#1") can be obtained from HSD(41°17") by filling an HSD(4%1") in the hole of size 17. For n = 17 and 19, an
HSD(4"1') can be obtained from HSD(4">21") by filling an HSD(4°1") in the hole of size 21.

n =10, u= 17, (+2 mod 40):
{0, 2, 24, x8}, {0, 4, 19, y6}, {0, 7, 33, y4}, {0, 11, 28, y2}, {0, 12, 37, x3%},
{o, 15, 17, y7}, {0, 16, 13, x6}, {0, 18, 14, x5}, {0, 19, 6, x4}, {0, 23, 4, yO0},
{o, 25, 9, x9}, {0, 26, 7, y5}, {0, 27, 18, y3}, {0, 29, 1, 8}, {0, 32, 38, x2},
{o, 34, 25, y1}, {0, 37, 3, x7}, {0, 39, 32, x1}, {1, o0, 12, y7}, {1, 3, 14, x3},
{1, 6, 5, y3}, {1, 10, 26, x7}, {1, 13, 10, x6}, {1, 17, 39, x5}, {1, 19, 15, %8},
{1, 20, 25, yo0}, {1, 24, 35, y2}, {1, 27, 19, x2}, {1, 28, 30, y4}, {1, 32, 18, x9},
{1, 33, 6, y1}, {1, 35, 2, yé6}, {1, 36, 13, x4}, {1, 37, 36, y5}, {1, 38, 33, x1}

n =12, u = 21 (+2 mod 48)

{o, 1, 17, =1}, {0, 3, 43, z0}, {0, 4, 20, x8}, {0, 5, 18, x2}, {0, 8, 38, y7},
{o, 10, 19, 1}, {o, 15, 8, y6}, {0, 16, 1, y2}, {0, 21, 23, y0}, {0, 22, 44, yi},
{o, 23, 33, yo9}, {0, 25, 34, y4}, {0, 27, 5, x4}, {0, 28, 21, x5}, {0, 30, 47, x6},
{o, 33, 6, x1}, {0, 34, 31, y8}, {0, 37, 32, x3}, {0, 39, 11, y3}, {0, 42, 46, x9},
{o, 43, 22, x7}, {0, 46, 9, y5}, {1, 2, 22, yo}, {1, 3, 36, y8}, {1, 4, 14, x4},
{1’ 7, 3, Xg}, {1: 8: 42: YS}: {1’ 9, 15, Yl}, {1, 14: 12: ZO}: {1’ 15} 20, y2},
{1, 18, 24, yo9}, {1, 20, 19, x7}, {1, 27, 8, x6}, {1, 29, 46, x5}, {1, 30, 43, x3},
{1, 32, 21, y6}, {1, 33, 4, y5}, {1, 36, 11, y4}, {1, 38, 41, x1}, {1, 39, 5, x8},
{1, 40, 17, x2}, {1, 42, 34, z1}, {1, 45, 27, y7}

n =14, u = 21 (+2 mod 56):

{o, 1, 36, x7}, {0, 4, 35, y6}, {0, 6, 30, x9}, {0, 10, 18, y9}, {0, 13, 37, yO},
{o, 15, 54, y7}, {0, 16, 31, 11}, {0, 17, 12, x1}, {0, 18, 40, y5}, {0, 19, 39, 12},
{0, 20, 55, 29}, {0, 21, 23, 30}, {0, 22, 13, =z0}, {0, 23, 4, yi}, {0, 24, 19, 13},
{0, 30, 34, x3}, {0, 33, 50, x4}, {0, 35, 32, x5}, {0, 37, 11, =z1}, {0, 39, 29, x2},
{0, 44, 21, x6}, {0, 45, 46, x8}, {0, 48, 49, y3}, {0, 51, 17, y8}, {0, 53, 3, yal},
{o, 54, 8, y2}, {1, 2, o0, z1}, {1, 5, 49, x3}, {1, 9, 16, =z0}, {1, 10, 4, x2},
{1, 13, 42, x6}, {1, 14, 11, x4}, {1, 16, 5, y7}, {1, 19, 27, yo}, {1, 23, 39, y5},
{1, 26, 33, x7}, {1, 28, 13, x5}, {1, 32, 14, yo}, {1, 33, 52, y3}, {1, 41, 23, y2},
{1, 46, 55, x1}, {1, 47, 24, y6}, {1, 48, 32, y4}, {1, 50, 30, y8}, {1, 52, 21, x8},
{1, 54, 41, yi}, {1, 55, 51, x9}
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