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Abstract

We consider the nonlinear Euler differential equation t2x′′ + g(x) = 0. Here g(x) satisfies xg(x) > 0
for x �= 0, but is not assumed to be sublinear or superlinear. We present implicit necessary and sufficient
condition for all nontrivial solutions of this system to be oscillatory or nonoscillatory. Also we prove that
solutions of this system are all oscillatory or all nonoscillatory and cannot be both. We derive explicit
conditions and improve the results presented in the previous literature. We extend our results to the extended
equation t2x′′ + a(t)g(x) = 0.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the second-order nonlinear differential equation of Euler type

t2x′′ + g(x) = 0, t > 0, (1.1)

where ′ = d
dt

, g(x) is continuous on R, and

xg(x) > 0, for x �= 0. (1.2)
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We assume that uniqueness is guaranteed for the solutions of (1.1) to the initial value problem.
In [16] the authors have proved that all solutions of (1.1) are continuable in the future. Hence, it
is worthwhile to discuss whether solutions of (1.1) are oscillatory or not.

A solution x(t) of (1.1) is said to be oscillatory if there exists a sequence tn tending to ∞ such
that x(tn) = 0. Otherwise, x(t) is said to be nonoscillatory. For brevity, Eq. (1.1) is called os-
cillatory (respectively nonoscillatory) in case all nontrivial solutions are oscillatory (respectively
nonoscillatory).

In the case g(x) = λx, Eq. (1.1) is called the Euler differential equation and it is well known
that all nontrivial solutions are oscillatory if λ > 1

4 and are nonoscillatory if λ � 1
4 . In this case,

the number 1
4 is called the oscillation constant.

A considerable number of studies have been made on the oscillation and nonoscillation of
solutions of (1.1) (or (1.5) below) for a long time. Those results can be found in [2–14,18,20–22]
and references cited therein.

Sugie and Hara [16] proved that if

g(x)

x
� 1

4
+ λ

log |x| , (1.3)

for some λ > 0 and |x| sufficiently large then (1.1) is oscillatory, and if

g(x)

x
� 1

4
+

(
λ

log |x|
)2

, (1.4)

for some λ with 0 < λ < 1
4 , and x > 0 or x < 0 with |x| sufficiently large, then (1.1) is nonoscil-

latory.
Wong [22] studied the equation

x′′ + a(t)g(x) = 0, t > 0, (1.5)

which includes the Emden–Fowler differential equation (as for the Emden–Fowler differential
equation, for example, see [3–15,21,22]). Using Sturm’s comparison method, he improved the
results presented by Sugie and Hara [16]. In fact he proved that if t2a(t) � 1 for t sufficiently
large and there exists λ > 1

4 such that

g(x)

x
� 1

4
+ λ

(log |x|)2
, (1.6)

for |x| sufficiently large, then (1.5) is oscillatory. Also he proved that if 0 � t2a(t) � 1 for t

sufficiently large,

A(t) := a′(t)
2a

3
2 (t)

+ 1 = O(1), as t → ∞,

A(t) � 0, and there exists λ with 0 < λ � 1
16 such that

g(x)

x
� 1

4
+ λ

(log |x|)2
, (1.7)

for x > 0 or x < 0, |x| sufficiently large, then (1.5) is nonoscillatory.
Wong [22] expected that if 1

16 < λ � 1
4 , then Eq. (1.1) with

g(x) = 1 + λ

2
,

x 4 (log |x|)
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has both oscillatory and nonoscillatory solutions. But Sugie and Kita in [17] showed that this
conjecture is not true and if (1.6) holds for λ > 1

16 , then Eq. (1.1) is oscillatory. However, yet
they expected that Eq. (1.1) can have both oscillatory and nonoscillatory solutions. In Section 4
we will show that the solutions of (1.1) are either all oscillatory or all nonoscillatory and cannot
be both.

In [17] Sugie and Kita considered Eq. (1.5) and proved that if t2a(t) � 1 for t sufficiently
large and there exists λ with λ > 1

16 such that (1.6) holds for |x| sufficiently large, then (1.5) is
oscillatory. Also they proved that if

x∫
0

g(ξ) dξ � 1

2
x2, for x ∈ R, (1.8)

0 � t2a(t) � 1 for t sufficiently large, and (1.7) holds for λ = 1
16 , then (1.5) is nonoscillatory.

Sugie and Yamaoka [19] continued the investigation of oscillation properties of Eq. (1.1).
Using phase analysis of a certain Liénard-type system associated with (1.1), they proved the
following theorem.

Theorem A. Let the functions Ln, ln be defined respectively by l1(x) = 2 logx, ln+1 = log(ln(x)),
L1 = 1, Ln+1(x) = Ln(x)ln(x), and let Sn(x) = ∑n

k=1
1

Lk(x)2 . If there exists an integer n such

that g(x)
x

� 1
4Sn(|x|) for x > 0 or x < 0, |x| sufficiently large, then all nontrivial solutions of

(1.1) are nonoscillatory.

Also in [20] the authors proved that if there exists λ with λ > 1
4 and n ∈ N such that

g(x)

x
� 1

4
Sn−1

(|x|) + λ

{ln(|x|)}2
, (1.9)

for |x| sufficiently large, then all nontrivial solutions of (1.1) are oscillatory.
In this paper, we present an implicit necessary and sufficient condition for all nontrivial so-

lutions of (1.1) to be oscillatory or nonoscillatory. Then we use our implicit condition to derive
explicit conditions and improve the results presented in the above easily.

2. Reduction to the equivalent Liénard system

The change of variable t = es reduces Eq. (1.1) to the equation

ẍ − ẋ + g(x) = 0, s ∈ R,

where˙= d
ds

. This equation is equivalent to the system

ẋ = y + x,

ẏ = −g(x), (2.1)

which is of Liénard type. Hereafter we denote s by t again.
We say that system (2.1) has property (X+) in the right half-plane (respectively in the left

half-plane), if for every point (x0, y0) with y0 > −x0 and x0 � 0 (respectively y0 < −x0 and
x0 � 0), the positive semitrajectory of (2.1) passing through (x0, y0) crosses the vertical isocline
y = −x. Recently, in [1] the authors have presented some sufficient conditions for the property
(X+) in the Liénard systems.
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In order to study the oscillation problem for (1.1) the significant point is to find conditions
for deciding whether all orbits intersect the vertical isocline y = −x in the equivalent Liénard
system (2.1) or not. The following theorem gives a necessary and sufficient condition for the
system (2.1) to have property (X+).

Theorem 2.1. System (2.1) fails to have property (X+) in the right half-plane if and only if there
exist a constant b � 0 and a function ϕ ∈ C1(R) such that ϕ(x) > 0, and

g(x) � ϕ(x)
(
1 − ϕ′(x)

)
, for x � b. (2.2)

Proof. Sufficiency. Consider the positive semitrajectory of (2.1) starting at a point (b, y0) with
y0 > ϕ(b) − b. This trajectory is considered as a solution y(x) of

dy

dx
= − g(x)

y + x
, (2.3)

with y(b) = y0. Suppose that the positive semitrajectory y(x) crosses the vertical isocline
y = −x. Then it also meets the curve y = ϕ(x) − x, at a point (s, ϕ(s) − s) with s > b such
that

dy

dx
(s) = −g(s)

ϕ(s)
<

d

dx

(
ϕ(x) − x

)∣∣∣∣
x=s

.

Thus,

−g(s)

ϕ(s)
< ϕ′(s) − 1.

Therefore,

g(s) > ϕ(s)
(
1 − ϕ′(s)

)
.

This is a contradiction. Thus, the trajectory y(x) does not cross the vertical isocline, and therefore
system (2.1) fails to have property (X+).

Necessity. Suppose that system (2.1) fails to have property (X+) in the right half-plane.
Then there exists a positive semitrajectory of (2.1) starting at a point (x0, y0) with x0 > 0 and
y0 > −x0, which does not meet the vertical isocline y = −x. This trajectory can be regarded
as the graph of a function ψ(x) which is a solution of (2.3). Let (b,ψ(b)) be a point on the
trajectory ψ(x) with b � x0, and ϕ(x) = ψ(x) + x. Then it is clear that ϕ(x) > 0, and

g(x) = ϕ(x)
(
1 − ϕ′(x)

)
,

for x � b. Hence, (2.2) is verified and the proof is complete. �
Similarly, the following analogous result is obtained with respect to property (X+) in the left

half-plane.

Theorem 2.2. System (2.1) fails to have property (X+) in the left half-plane if and only if there
exist a constant b � 0 and a function ϕ ∈ C1(R), such that ϕ(x) > 0 for x � b and

g(x) � −ϕ(x)
(
1 + ϕ′(x)

)
, for x � b. (2.4)
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Corollary 2.1. Suppose that system (2.1) with g1 has ( fails to have) property (X+) in the right
half-plane. If

g2(x) � g1(x)
(
g2(x) � g1(x)

)
, for x > R,

with sufficiently large R, then the system (2.1) with g2 has ( fails to have) property (X+) in the
right half-plane.

Corollary 2.2. Suppose that the system (2.1) with g1 has ( fails to have) property (X+) in the left
half-plane. If

g2(x) � g1(x)
(
g2(x) � g1(x)

)
, for x < −R,

with sufficiently large R, then the system (2.1) with g2 has ( fails to have) property (X+) in the
left half-plane.

3. Some lemmas

In this section, we present some lemmas that we will need in Section 4.

Definition 3.1. Let f1(x) and f2(x) be real valued functions. By f1(x) � f2(x) we mean that
f1(x) � f2(x) for x sufficiently large.

Lemma 3.1. Let λ > 1
16 and k > 0. Then does not exist a function ϕ(x) such that ϕ ∈ C1(R),

ϕ(x) > 0 for x sufficiently large, and

ϕ(x)
(
1 − ϕ′(x)

)
� 1

4
x + λx

log2(kx)
. (3.1)

Proof. Suppose that there exists λ with λ > 1
16 such that

ϕ(x)
(
1 − ϕ′(x)

)
� 1

4
x + λx

log2(kx)
. (3.2)

Let ϕ(x) = 1
2x + β(x). From (3.2) we have

1

2
β(x) − 1

2
xβ ′(x) − β(x)β ′(x) � λx

log2(kx)
.

Assume {xn} tends to infinity and β(xn) = 0, then there exists a sequence {cn} which tends
to infinity, β ′(cn) = 0, and β(cn) � 0. This contradicts with the last inequality. Thus, β(x) is
eventually positive or negative. Hence, we can let ϕ(x) = 1

2x + x
f (x)

, for x � c with c sufficiently

large, where f ∈ C1(R), and f (x) �= 0, for x sufficiently large.
Here we show that f (x)

log kx
is bounded for x � c with c sufficiently large. We have

ϕ(x)
(
1 − ϕ′(x)

) = 1

4
x + x

f 2(x)

(
xf ′(x)

(
1

2
+ 1

f (x)

)
− 1

)
. (3.3)

Therefore, by (3.2),

f ′(x)

(
1 + 1

)
� 1

.

2 f (x) x
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Thus,

f (x) + 2 log
(∣∣f (x)

∣∣) � 2 log(kx),

for x sufficiently large. Hence, f (x) � λ log(kx) for every λ < 2. On the other hand, (3.2) and
(3.3) imply

1

f 2(x)

(
xf ′(x)

(
1

2
+ 1

f (x)

)
− 1

)
� 1

16(log kx)2
, (3.4)

or

f ′(x)

(
1

2f 2(x)
+ 1

f 3(x)

)
� 1

16x(logkx)2
+ 1

xf 2(x)
.

Hence, for every y > x � c with c sufficiently large, we have

1

2f (x)
+ 1

2f 2(x)
− 1

2f (y)
− 1

2f 2(y)
� 1

16 logkx
− 1

16 logky
+

y∫
x

1

ηf 2(η)
dη.

Since f (y) tends to infinity as y → ∞,

μ log(kx) � f (x), for every μ > 8.

Therefore, h(x) = f (x)
log(kx)

is bounded for x � c with c sufficiently large.

Now we show that limx→∞ h(x) = f (x)
log(kx)

exists. From (3.4) we have

x

h2(x)
h′(x) log(kx)

(
1

2
+ 1

h(x) log(kx)

)

+ 1

h(x)

(
1

2
+ 1

h(x) log(kx)

)
− 1

h2(x)
� 1

16
. (3.5)

Suppose that sequence xn tends to infinity and h′(xn) = 0. Then from (3.5) we have(
1 − h(xn)

4

)2

� 1

log(kxn)
,

for n sufficiently large. Thus,

lim
n→∞h(xn) = 4.

Since h′ vanishes in the extremum points, if h(x) is not eventually increasing or decreasing,

lim sup
x→∞

h(x) = lim inf
x→∞ h(x) = 4.

Therefore, limx→∞ h(x) exists and we can let f (x) = α log(kx) + p(x), where
limx→∞ p(x)

log(kx)
= 0 and α ∈ [2,8].

Let

ψ(x) = 1

2
x + x

α log(kx)
. (3.6)

Then we have
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k(x) = ϕ(x)
(
1 − ϕ′(x)

) − ψ(x)
(
1 − ψ ′(x)

)
=

(
1

2
x + x

α log(kx) + p(x)

)(
1

2
−

(
x

α log(kx) + p(x)

)′)

−
(

1

2
x + x

α log(kx)

)(
1

2
−

(
x

α log(kx)

)′)

= xp′(x)

(
1

(α log(kx) + p(x))3
+ 1

2(α log(kx) + p(x))2

)
+ O

(
x

log2(kx)

)
.

Since limx→∞ p(x)
log(kx)

= 0, there exists a sequence {xn} which tends to infinity and xnp
′(xn) � 1.

Thus, for every λ > 0,

k(xn) <
λxn

log2(kxn)
,

for n sufficiently large. To complete the proof it is sufficient to show that for every λ > 1
16 and

α ∈ [2,8],

ψ(x)
(
1 − ψ ′(x)

)
� 1

4
x + λx

log2(kx)
,

where ψ(x) is defined by (3.6). We have

ψ(x)
(
1 − ψ ′(x)

) =
(

1

2
x + x

α log(kx)

)(
1

2
−

(
x

α log(kx)

)′)

= 1

4
x +

(
1

2α
− 1

α2

)
x

log2(kx)
+ x

α2 log3(kx)

� 1

4
x + x

16 log2(kx)
+ x

α2 log3(kx)

� 1

4
x + λx

log2(kx)
, for every λ >

1

16
.

This contradicts with (3.2) and the proof is complete. �
In [16] the authors went into details about asymptotic behavior of (2.1) and proved the fol-

lowing lemmas.

Lemma 3.2. For each point P = (p,−p) with p > 0, the positive semitrajectory of (2.1) crosses
the negative y-axis.

Lemma 3.3. For each point P = (−p,p) with p > 0, the positive semitrajectory of (2.1) crosses
the positive y-axis.

4. Oscillation theorems

In this section, we present necessary and sufficient conditions for all nontrivial solutions of
(1.1) to be oscillatory or nonoscillatory. The main theorem is as follows.
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Theorem 4.1. All nontrivial solutions of (1.1) are nonoscillatory if there exist a constant R > 0
and a function ϕ ∈ C1(R) such that

ϕ
(|x|) > 0 and

g(x)

x
� ϕ(|x|)(1 − ϕ′(|x|))

|x| , (4.1)

for x > R or x < −R. Otherwise, all nontrivial solutions of (1.1) are oscillatory. Therefore, the
solutions of second-order nonlinear differential equation (1.1) are all oscillatory or all nonoscil-
latory and cannot be both.

Proof. First suppose that (4.1) does not hold. Then the system (2.1) which is equivalent to (1.1)
has property (X+) in the right and left half-plane. Thus, it follows from Lemmas 3.1 and 3.2 that
every solution of (2.1) keeps on rotating around the origin except the zero solution. Hence, all
nontrivial solutions of (1.1) are oscillatory.

Now suppose that (4.1) holds. Then by Theorem 2.1 or 2.2 the system (2.1) fails to have
property (X+) in the right or left half-plane. We consider only the case that (2.1) fails to have
property (X+) in the right half-plane, because the other case is carried out in the same way.
Suppose that the system (2.1) fails to have property (X+) in the right half-plane. Hence, there
exists a point P0(x0, y0) with x0 � 0 and y0 > −x0 such that the positive semitrajectory of (2.1)
runs to infinity without intersecting the curve y = −x. With the same argument in [16, Proof of
Theorem 2.1] we can conclude that the system (2.1) cannot have any oscillatory solution. The
proof is complete. �

In [16] the authors, judging from the oscillation result for Euler’s equation, expected that all
nontrivial solutions of (1.1) have a tendency to be oscillatory as g(x) grows larger in some sense.
The following corollary of Theorem 4.1 gives a mathematical proof for their statement.

Corollary 4.1. Suppose that all nontrivial solutions of the system (1.1) with g1 are oscillatory. If

g2(x)

x
>

g1(x)

x
,

for |x| > R with a sufficiently large R, then all nontrivial solutions of (1.1) with g2 are oscilla-
tory.

Corollary 4.2. Suppose that all nontrivial solutions of the system (1.1) with g1 are nonoscillatory.
If

g2(x)

x
<

g1(x)

x
,

for |x| > R with a sufficiently large R, then all nontrivial solutions of (1.1) with g2 are nonoscil-
latory.

The following theorem gives an explicit sufficient condition for all nontrivial solutions of (1.1)
to be nonoscillatory.

Theorem 4.2. For n ∈ N , k > 0, and x sufficiently large, let

T k
n (x) = 1 + 1

4

n−1∑
j=1

1

(logkx × log log kx × · · · × log log · · · log︸ ︷︷ ︸kx)2
.

j -times
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If there exist an integer n and k > 0 such that g(x)
x

� 1
4T k

n (|x|), for x > 0 or x < 0, |x| sufficiently
large, then all nontrivial solutions of Eq. (1.1) are nonoscillatory.

Proof. Let

ϕn(x) = 1

2
x + 1

4

n−1∑
j=1

x

logkx × log log kx × · · · × log log · · · log︸ ︷︷ ︸
j -times

kx
. (4.2)

Then we have

1 − ϕ′
n(x) = 1

2
− 1

4

n−1∑
j=1

1

logkx × log logkx × · · · × log log · · · log︸ ︷︷ ︸
j -times

kx

︸ ︷︷ ︸
N(x)

+ 1

4

n−1∑
j=1

j∑
i=1

1

(log kx × log logkx × · · · × log log · · · log︸ ︷︷ ︸
i-times

kx)2 × log log · · · log︸ ︷︷ ︸
(i+1)-times

kx × · · · × log log · · · log︸ ︷︷ ︸
j-times

kx

︸ ︷︷ ︸
M(x)

.

It is easy to verify that

T k
n (x) = 1 + 1

4

(
2M(x) − (

N(x)
)2)

.

Thus,

ϕn(|x|)
|x|

(
1 − ϕ′

n

(|x|)) = 1

4
− 1

16

(
N

(|x|))2 + 1

8
M

(|x|) + 1

16
N

(|x|)M(|x|)

= 1

4
T k

n

(|x|) + 1

16
N

(|x|)M(|x|) >
1

4
T k

n

(|x|) � g(x)

x
, (4.3)

for |x| sufficiently large. Hence, by Theorem 4.1 all nontrivial solutions of Eq. (1.1) are nonoscil-
latory. �
Remark 4.1. Let the functions Wn,wn be defined respectively by w1(x) = 2 logx, wn+1 =
log(wn(x)), W1 = 1, Wn+1(x) = Wn(x)wn(x). Define Sn(x) = ∑n

k=1
1

Wk(x)2 . Then we have

Sn

(|x|) < T 1
n

(|x|),
for |x| sufficiently large, thus, the main theorem in [19] follows from Theorem 4.2.

Let

Ln(x) = logkx × log logkx × · · · × log log · · · log︸ ︷︷ ︸
(n−1)-times

kx, for n > 1. (4.4)

Notice that

L′
n(x) =

n−1∑
j=1

Ln(x)

x(logkx × log logkx × · · · × log log · · · log︸ ︷︷ ︸kx)
j -times
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and

lim
x→∞xL′

n(x)N(x) = 0.

We will need the following lemma in the proof of Theorem 4.3.

Lemma 4.1. Let f ∈ C1(R). Suppose that limx→∞ |f (x)| = ∞ and

− 1

f (x)

(
N(x)

2
+ 1

f (x)

)
+ f ′(x)x

f 2(x)

(
1

2
+ N(x)

4
+ 1

f (x)

)
� λ

(Ln+1(x))2
, λ >

1

16
.

(4.5)

Then limx→∞ f (x)
Ln+1(x)

= 4.

Proof. Let g(x) = f (x)
Ln+1(x)

. Then from (4.5) we have

x(g′(x)Ln+1(x) + g(x)L′
n+1(x))

g2(x)

(
1

4
N(x) + 1

g(x)Ln+1(x)

)
+ xg′(x)Ln+1(x)

2g2(x)

� λ + 1

g2(x)
− 1

2g(x)
. (4.6)

Suppose that {xn} tends to infinity and g′(xn) � 0, then from (4.6) we have

xng(xn)L
′
n+1(xn)

(
1

4
N(xn) + 1

g(xn)Ln+1(xn)

)
�

(
1 − g(xn)

4

)2

.

It is easy to check that lim supn→∞ |g(xn)| < ∞. Thus, the left-hand side of the last inequality
tends to 0 as n → ∞. Therefore, if g(x) is not eventually increasing, then with the same argument
as in the proof of Lemma 3.1 we have

lim sup
x→∞

g(x) = lim inf
x→∞ g(x) = 4.

Now assume g′(x) > 0, for x sufficiently large. Since N(x) and 1
g(x)Ln+1(x)

= 1
f (x)

tend to 0,
as x → ∞, from (4.6) we have

xg′(x)Ln+1(x) �
(

g(x)

4
− 1

)2

− xg(x)L′
n+1(x)

(
1

4
N(x) + 1

g(x)Ln+1(x)

)
, (4.7)

for x sufficiently large. Assume limx→+∞ g(x) �= 4. Since

lim
x→∞

(
xL′

n+1(x)

(
1

4
N(x) + 1

g(x)Ln+1(x)

))
= 0,

from (4.7) we conclude that there exists c with 0 < c < 1 such that

g′(x)( g(x)
4 − 1

)2
� c

xLn+1(x)
,

for x sufficiently large. Thus,

4

(
1

1 − 1
4g(x)

− 1

1 − 1
4g(y)

)
�

x∫
y

c

ξLn+1(ξ)
dξ = log log · · · log︸ ︷︷ ︸kx − log log · · · log︸ ︷︷ ︸ky,
(n+1)-times (n+1)-times
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for every x > y with y sufficiently large. Since the right-hand side of the last inequality tends to
infinity as x → ∞, limx→∞ g(x) = 4. This is a contradiction and the proof is complete. �

The following theorem gives a sufficient condition for all nontrivial solutions of the system
(1.1) to be oscillatory. Notice that this theorem and Theorem 4.2 present very sharp conditions
for the oscillation of solutions of the system (1.1).

Theorem 4.3. Let (1.2) holds. Suppose that there exist λ with λ > 1
16 , k > 0, and n ∈ N such that

g(x)

x
� 1

4
T k

n−1(x) + λ

(Ln(x))2
(4.8)

for |x| sufficiently large. Then all nontrivial solutions of (1.1) are oscillatory.

Proof. Suppose that there exist a function ϕ ∈ C1(R) with ϕ(x) > 0 for x sufficiently large, and
λ > 1

16 such that

ϕ(x)(1 − ϕ′(x))

x
� 1

4
T k

n−1(x) + λ

(Ln(x))2
. (4.9)

We claim that if (4.9) holds, then ϕ(x) = ϕn−1(x)+ x
f (x)

, where ϕn−1(x) is defined by (4.2), and

lim
x→∞

f (x)

Ln(x)
= 4. (4.10)

By Lemma 3.1 our claim is true for n = 1. Suppose the claim is true for n, and (4.9) holds
for n + 1. Let ϕ(x) = ϕn(x) + β(x). Using the same argument as in the beginning of the proof
of Lemma 3.1 we conclude that β(x) �= 0, for x sufficiently large. Thus, we can let ϕ(x) =
ϕn(x) + x

f (x)
, where f ∈ C1(R), and f (x) �= 0, for x sufficiently large. From (4.3) we have

ϕ(x)(1 − ϕ′(x))

x
= 1

4
T k

n (x) + 1

16
N(x)M(x)

− 1

f (x)

(
N(x)

2
− M(x)

4
+ 1

f (x)

)
+ f ′(x)x

f 2(x)

(
1

2
+ N(x)

4
+ 1

f (x)

)

� 1

4
T k

n (x) + λ

(Ln+1(x))2
, λ >

1

16
. (4.11)

Hence,

− 1

f (x)

(
N(x)

2
+ 1

f (x)

)
+ f ′(x)x

f 2(x)

(
1

2
+ N(x)

4
+ 1

f (x)

)

>
λ′

(Ln+1(x))2
, λ > λ′ > 1

16
,

for x sufficiently large. We have

ϕ(x) = ϕn−1(x) + x

4Ln(x)
+ x

f (x)
= ϕn−1(x) + x

h(x)
,

where

h(x) = 4f (x)Ln(x)
.

f (x) + 4Ln(x)
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Since the claim is true for n,

lim
x→∞

f (x)

f (x) + 4Ln(x)
= lim

x→∞
h(x)

4Ln(x)
= 1.

Hence, limx→∞ |f (x)| = ∞, and by Lemma 4.1 limx→∞ f (x)
Ln+1(x)

= 4. Therefore, f (x) =
4Ln+1(x) + p(x), where

lim
x→∞

p(x)

Ln+1(x)
= 0.

With the same argument as in Lemma 3.1, we conclude that for every λ > 0 there exists a se-
quence {xn} which tends to infinity and

ϕ(xn)(1 − ϕ′(xn))

xn

− ϕn+1(xn)(1 − ϕ′
n+1(xn))

xn

<
λ

(Ln+1(xn))2
. (4.12)

From (4.3) we conclude that (4.12) contradicts with (4.9). Thus, by Theorem 4.1 all nontrivial
solutions of (1.1) are oscillatory. �
Example 4.1. Suppose that xg(x) > 0, for x �= 0, and

g(x)

x
= 1

4
+ k cos(x) − 1

x
, |k| < 1

4
,

for x > 0, x sufficiently large. Let

ϕ(x) = 1

2
x − 2k sin(x).

Then

g(x)

x
� ϕ(x)(1 − ϕ′(x))

x
,

and by Theorem 4.1, all nontrivial solutions of Eq. (1.1) are nonoscillatory.
Notice, in this example

lim inf|x|→∞
g(x)

x
= 1

4
− |k| < 1

4
< lim sup

|x|→∞
g(x)

x
= 1

4
+ |k|,

and all of the results presented in the previous literature are inapplicable to this example.

5. Extension to general second-order nonlinear differential equations

Here we consider the equation

x′′ + a(t)g(x) = 0, (5.1)

and give oscillation and nonoscillation theorems which extend Theorem 4.1 for the system (5.1).
Here we assume that a(t) and g(x) satisfy suitable smoothness conditions for the uniqueness of
solutions of the initial value problem and

xg(x) > 0, for x �= 0. (5.2)

As is well known, the uniqueness of solutions of (5.1) is guaranteed if a(t) is continuous and
g(x) is locally Lipschitz continuous. We also assume that every solution of (5.1) exists in the
future.
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Using the Sturm’s comparison method we can easily extend Theorem 4.1. Sugie and Yamaoka
[20] proved that if t2a(t) � 1 for t sufficiently large, then Eq. (5.1) is oscillatory if and only if
Eq. (1.1) is oscillatory. Thus, we have the following theorem.

Theorem 5.1. Suppose (5.2) holds, a(t) satisfies

t2a(t) � 1,

for t sufficiently large, and does not exist function ϕ ∈ C1(R) such that ϕ(|x|) > 0, and

g(x)

x
� ϕ(|x|)(1 − ϕ′(|x|))

|x| , (5.3)

for |x| sufficiently large. Then all nontrivial solutions of (5.1) are oscillatory.

Comparing solutions of (5.1) and (1.1), and using the same argument as in [17, Theorem 5.2]
we can prove the following nonoscillation theorem for Eq. (5.1).

Theorem 5.2. Assume (5.2) and (1.8) hold. Suppose a(t) satisfies

0 � t2a(t) � 1,

for t sufficiently large, and there exists a function ϕ ∈ C1(R) such that ϕ(|x|) > 0, and

g(x)

x
� ϕ(|x|)(1 − ϕ′(|x|))

|x| , (5.4)

for x < 0 or x > 0, |x| sufficiently large. Then all nontrivial solutions of (5.1) are nonoscillatory.

Example 5.1. Suppose that a(t) is a continuously differentiable function such that a(t) = tα for
t sufficiently large and α � −2. Also assume that xg(x) > 0, for x �= 0 and

g(x)

x
= 1

4
+ k sin(x) − 1

x
, |k| < 1

4
,

for x > 0, x sufficiently large. Let ϕ(x) = 1
2x + 2k cos(x). It is easy to check that (5.4) holds for

x > 0 sufficiently large. Hence, by Theorem 5.2 all nontrivial solutions of (5.1) are nonoscilla-
tory.
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