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Abstract

We consider linear error correcting codes associated to higher-dimensional projective varieties
defined over a finite field. The problem of determining the basic parameters of such codes
often leads to some interesting and difficult questions in combinatorics and algebraic geometry.
This is illustrated by codes associated to Schubert varieties in Grassmannians, called Schubert
codes, which have recently been studied. The basic parameters such as the length, dimension
and minimum distance of these codes are known only in special cases. An upper bound for the
minimum distance is known and it is conjectured that this bound is achieved. We give explicit
formulae for the length and dimension of arbitrary Schubert codes and prove the minimum
distance conjecture in the affirmative for codes associated to Schubert divisors.
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1. Introduction

Let Fq denote the finite field withq elements, and letn, k be integers with 1�k�n.
The n-dimensional vector spaceFnq has a norm, calledHamming norm, which is
defined by

‖x‖ = | {i ∈ {1, . . . , n} : xi 	= 0} | for x ∈ Fnq .

More generally, ifD is a subspace ofFnq , theHamming norm of Dis defined by

‖D‖ = | {i ∈ {1, . . . , n} : there existsx ∈ D with xi 	= 0} |.

A linear [n, k]q -codeis, by definition, ak-dimensional subspace ofFnq . The adjective
linear will often be dropped since in this paper we only consider linear codes. The
parametersn andk are referred to as thelengthand thedimensionof the corresponding
code. IfC is an [n, k]q -code, then theminimum distanced = d(C) of C is defined by

d(C) = min {‖x‖ : x ∈ C, x 	= 0} .

More generally, given any positive integerr, the rth higher weightdr = dr(C) of C is
defined by

dr(C) = min {‖D‖ : D is a subspace ofC with dim D = r} .

Note thatd1(C) = d(C).
An [n, k]q -code is said to benondegenerateif it is not contained in a coordinate

hyperplane ofFnq . Two [n, k]q -codes are said to beequivalentif one can be obtained
from another by permuting coordinates and multiplying them by nonzero elements of
Fq ; in other words, if they are in the same orbit for the natural action of the semidirect
product of(F∗

q)
n andSn. It is clear that this gives a natural equivalence relation on the

set of [n, k]q -codes.
An alternative way to describe codes is via the language of projective systems in-

troduced in[18]. A projective systemis a (multi)setX of n points in the projective
spacePk−1 over Fq . We callX nondegenerateif thesen points are not contained in a
hyperplane ofPk−1. Two projective systems inPk−1 are said to beequivalentif there
is a projective automorphism of the ambient spacePk−1, which maps one to the other;
in other words, if they are in the same orbit for the natural action ofPGL(k, Fq). It
is clear that this gives a natural equivalence relation on the set of projective systems
of n points inPk−1.
It turns out that a nondegenerate projective system ofn points inPk−1 corresponds

naturally to a nondegenerate linear[n, k]q -code. Moreover, if we pass to equivalence
classes with respect to the equivalence relations defined above, then this correspondence
is one-to-one. The minimum distance of the codeC = CX associated to a nondegenerate
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projective systemX of n points inPk−1 admits a nice geometric interpretation in terms
of X, namely,

d(CX) = n − max
{
|X ∩ H | : H a hyperplane ofPk−1

}
.

We have a similar interpretation for therth higher weightdr(CX), where the hyperplane
H is replaced by a projective subspace of codimensionr in Pk−1. For more details
concerning projective systems, higher weights and a proof of the above mentioned
one-to-one correspondence, we refer to[18,19].
The language of projective systems not only explains the close connection between

algebraic geometry and coding theory, but also facilitates the introduction of linear
codes corresponding to projective algebraic varieties defined over a finite field. A case
in point is the GrassmannianG�,m = G�(V ) of �-dimensional subspaces of anm-
dimensional vector spaceV over Fq . We have the well-known Plücker embedding of
the Grassmannian into a projective space (cf. [3,9]), and this embedding is known to be
nondegenerate. Considering the (Fq -rational) points ofG�,m as a projective system, we
obtain aq-ary linear code, called theGrassmann code, which we denote byC(�,m).
These codes were first studied by Ryan [14–16] in the binary case and by Nogin [12]
in the q-ary case. It is clear that the lengthn and the dimensionk of C(�,m) are
given by

n =
[
m

�

]
q

:= (qm − 1)(qm − q) · · · (qm − q�−1)

(q� − 1)(q� − q) · · · (q� − q�−1)
and k =

(
m

�

)
. (1)

The minimum distance ofC(�,m) is given by the following elegant formula due to
Nogin [12]:

d (C(�,m)) = q�, where � := �(m − �). (2)

In fact, Nogin [12] also determined some of the higher weights ofC(�,m). More
precisely, he showed that for 1�r� max{�,m − �} + 1,

dr (C(�,m)) = q� + q�−1 + · · · + q�−r+1. (3)

Alternative proofs of (3) were given in [3], and in the same paper a generalization
to Schubert codes was proposed. The Schubert codes are indexed by the elements of
the set

I (�,m) := {� = (�1, . . . , ��) ∈ Z� : 1��1 < · · · < ���m}.

Given any� ∈ I (�,m), the correspondingSchubert codeis denoted byC�(�,m), and
it is the code obtained from the projective system defined by the Schubert variety��
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in G�,m with a nondegenerate embedding induced by the Plücker embedding. Recall
that �� can be defined by

�� = {W ∈ G�,m : dim(W ∩ A�i )� i for i = 1, . . . , �},

whereAj denotes the span of the firstj vectors in a fixed basis ofV, for 1�j�m. It
was observed in[3] that the lengthn� and the dimensionk� of C�(�,m) are abstractly
given by

n� = |��(Fq)| and k� = |{� ∈ I (�,m) : ���}|, (4)

where for� = (�1, . . . , ��) ∈ I (�,m), by ��� we mean that�i ��i for i = 1, . . . , �.
It was shown in[3] that the minimum distance ofC�(�,m) satisfies the inequality

d(C�(�,m))�q�� , where �� :=
�∑

i=1

(�i − i) = �1 + · · · + �� − �(� + 1)

2
.

Further, it was conjectured by the first author that, in fact, the equality holds, i.e.,

d(C�(�,m)) = q�� . (5)

We shall refer to (5) as theminimum distance conjecture(for Schubert codes). Note
that if � = (m − � + 1, . . . , m − 1,m), then�� = G�,m and so in this case (5) is an
immediate consequence of (2).
The minimum distance conjecture has been proved in the affirmative by Chen [1]

when � = 2. In fact, he proves the following. If� = 2 and � = (m − h − 1,m) [we
can assume that� is of this form without any loss of generality], thend(C�(2,m)) =
q�� = q2m−h−4, and moreover,

n� = (qm − 1)(qm−1 − 1)

(q2 − 1)(q − 1)
−

h∑
j=1

j∑
i=1

q2m−j−2−i , and (6)

k� = m(m − 1)

2
− h(h + 1)

2
. (7)

An alternative proof of the minimum distance conjecture, as well as the weight
distribution of codewords in the case� = 2, was obtained independently by Guerra
and Vincenti [7]; in the same paper, they prove also the following lower bound for
d(C�(�,m)) in the general case:

d(C�(�,m))�
q�1(q�2 − q�1) · · · (q�� − q��−1)

q1+2+···+�
�q��−�. (8)
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In an earlier paper, Vincenti[20], partly in collaboration with Guerra, verified the
minimum distance conjecture for the unique nontrivial Schubert variety in the Klein
quadricG2,4, namely�(2,4), and obtained a lower bound which is weaker than (8),
and also proved the following formula3 for the length ofC�(�,m).

n� = |��(Fq)| =
∑

(k1,...,k�−1)

�−1∏
i=0

[
�i+1 − �i
ki+1 − ki

]
q

q(�i−ki )(ki+1−ki ), (9)

where the sum is over all(�− 1)-tuples(k1, . . . , k�−1) of integers withi�ki ��i and
ki �ki+1 for 1� i�� − 1, and where, by convention,�0 = 0 = k0 and k� = �.
We can now describe the contents of this paper. In Section2 below, we give two

formulae for the lengthn� of C�(�,m). Of these, the first is very simple and is related
to a classical result about the Grassmannians. The other formula is somewhat similar to
(9) even though it was obtained independently. The latter formula may be a little more
effective in actual computations. Next, in Section 3, we give a determinantal formula
for the dimensionk� of C�(�,m) and show that in certain cases this determinant
can be evaluated. Moreover, we also give an alternative formula fork� using the
formulae forn� obtained in the previous section. Finally, in Section 4, we show that
the minimum distance and some of the higher weights for the codes corresponding
to Schubert divisors, i.e., Schubert varieties of codimension one in the corresponding
Grassmannians, can be easily obtained using the results of [3,12]. This shows, in
particular, that the minimum distance conjecture is true for all Schubert divisors such
as, for instance, the unique nontrivial Schubert variety in the Klein quadric.
As a byproduct of the results in this paper, we see thatn� can be expressed in three

distinct ways andk� in two. This yields curious combinatorial identities, which may
not be easy to prove directly.
Some of the main results of this paper, namely, Theorems 4, 7 and 9, were presented

during a talk by the first author at the Conference on Arithmetic, Geometry and Coding
Theory (AGCT-8) held at CIRM, Luminy in May 2001. The article [6], written for
FPSAC-2003, gives an overview (without proofs) of the results in this paper, and it
may be referred to for a more leisurely introduction to this paper.
We end this introduction with the following comment. The Grassmannian is a special

instance of homogeneous spaces of the formG/P whereG is a semisimple algebraic
group andP a parabolic subgroup. Moreover, Schubert varieties also admit a general-
ization in this context. Thus it was indicated in [3] that the Grassmann and Schubert
codes can also be introduced in a much more general setting. It turns out, in fact,
that the construction of such general codes was already proposed in the binary case
by Wolper in an unpublished paper [21]. The general case, however, needs to be better
understood and can be a source of numerous interesting problems.

3 In fact, in [7,20], the Grassmannian and its Schubert subvarieties are viewed as families of projective
subspaces of a projective space rather than linear subspaces of a vector space. The two viewpoints are,
of course, equivalent. To get (9) from [20, Proposition 15], one has to set� = d + 1, �i = ai−1 + 1 and
ki = �i−1 + 1 for 1� i��. A similar substitution has to be made to get (8) from [7, Theorem 1.1].
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2. Length of Schubert codes

Fix integers�,m with 1���m. Let I (�,m) be the indexing set with the partial
order � defined in the previous section. For� = (�1, . . . , ��) ∈ I (�,m), let

�� :=
�∑

i=1

(�i − i) = �1 + · · · + �� − �(� + 1)

2
.

Finally, fix some� ∈ I (�,m) and letC�(�,m) be the corresponding Schubert code.
Quite possibly, the simplest formula for the lengthn� of C�(�,m) is the one given

in the theorem below. This formula is an easy consequence of the well-known cellular
decomposition of the Grassmannian, which goes back to Ehresmann[2]. However, it
does not seem easy to locate this formula in the literature, and thus, for the sake of
completeness, we include here a sketch of the proof.

Theorem 1. The lengthn� of C�(�,m) or, in other words, the number ofFq -rational
points of��, is given by

n� =
∑
���

q�� , (10)

where the sum is taken over all� ∈ I (�,m) satisfying���.

Proof. Consider, as in the previous section, the subspacesAj spanned by the first
j basis vectors, for 1�j�m. Given anyW ∈ G�,m, the numbersrj = dim W ∩ Aj

have the property4 that 0�rj − rj−1�1 (where r0 = 0, by convention), and, since
rm = �, there are exactly� indices where this difference is 1. Thus there is a unique
� ∈ I (�,m) such thatW is in

C� :=
{
L ∈ G�,m : dim(L ∩ A�j ) = j and dim(L ∩ A�j−1) = j − 1 for 1�j��

}
.

Moreover, for anyL ∈ C�, we have:L ∈ �� ⇔ ���. It follows that�� is the disjoint
union ofC� as� varies over the elements ofI (�,m) satisfying���. Now it suffices to
observe that the subspaces inC� are in natural one-to-one correspondence with�×m

matrices (overFq ) with 1 in the (i, �i )th spot, and zeros to its right as well as below,
for 1� i��. �
It may be argued that even though formula (10) is simple and elegant, it may not

be very effective in practice in view of the rather intricate summation involved. For
example, if�� is the full GrassmannianG�,m, then (10) involves

(
m
�

)
summands, while

4This follows, for example, because the kernel of the mapW ∩Aj → Fq , mapping a vector to itsjth
coordinate (with respect to the fixed basis ofV), is W ∩ Aj−1.
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the closed form formula in (1) given by the Gaussian binomial coefficient may be
deemed preferable. For an arbitrary� ∈ I (�,m), it is not easy to estimate the number
of summands in (10), as may be clear from the results of Section 3. With this in view,
we shall now describe another formula forn�, which is far from being elegant but
may also be of some interest. First, we need an elementary definition and a couple of
preliminary lemmas.
By a consecutive blockin an�-tuple� = (�1, . . . , ��) ∈ I (�,m), we mean an ordered

sequence of the form�i , . . . , �j where 1� i�j�� and �p+1 = �p + 1 for i�p < j .
For example, 3,4 is a consecutive block in(1,3,4,7) as well as in(1,3,4,5) and in
(2,3,4,5). Note that any� ∈ I (�,m) always has� consecutive blocks although it may
often be regarded as having fewer consecutive blocks.

Lemma 2. Suppose� = (�1, . . . , ��) has u + 1 consecutive blocks:

� = (�1, . . . , �p1, �p1+1, . . . , �p2, . . . , �pu−1+1, . . . , �pu, �pu+1, . . . , ��)

so that1�p1 < · · · < pu < � and �pi+1, . . . , �pi+1 are consecutive for0� i�u, where
by convention, p0 = 0 and pu+1 = �. Then

�� = {W ∈ G�,�� : dim(W ∩ A�pi )�pi for i = 1, . . . , u}.

Proof. As in the proof of Theorem1, for any W ∈ G�,�� , we have dim(W ∩
Aj−1)� dim(W ∩ Aj) − 1 for 1�j�m. Also, dim(W ∩ A�� )�� if and only if W
is a subspace ofA�� . The desired result is now clear.�
Given any integersa, b, s, t , we define

�(a, b; s, t) =
t∑

r=s

(−1)r−sq(
r−s
2 )

[
a − s

r − s

]
q

[
b − r

t − r

]
q

.

Here, for anyu, v ∈ Z, the Gaussian binomial coefficient
[
u
v

]
q
is defined as in (1) when

0�v�u, and 0 otherwise. Thus, ifa = s = 0, then�(a, b; s, t) = [
b
t

]
q
.

Lemma 3. Let B be a b-dimensional vector space overFq andGt,b = Gt(B) denote
the Grassmannian of t-dimensional subspaces of B. Now suppose A is any subspace of
B and S is any subspace of A, and we leta = dim A and s = dim S. Then

|{T ∈ Gt(B) : T ∩ A = S}| = �(a, b; s, t).

Proof. Let LA be the poset of all subspaces ofA with the partial order given by
inclusion. Define functionsf, g : LA → N by

f (S) = |{T ∈ Gt(B) : T ∩ A = S}| and g(S) = |{T ∈ Gt(B) : T ∩ A ⊇ S}|.
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It is clear that for anyS ∈ LA with dim S = s, we have

g(S) =
∑
R∈LA

R⊇S

f (R).

On the other hand, for anyS as above, we clearly have

g(S) = |{T ∈ Gt(B) : T ⊇ S}| = |Gt−s(B/S)| =
[
b − s

t − s

]
q

. (11)

Hence, by Möbius inversion applied to the posetLA and the well-known formula for
the Möbius function ofLA (cf. [17, Chapter 3]), we obtain

f (S) =
∑
R∈LA

R⊇S

�(S, R)g(R) =
∑
R∈LA

R⊇S

(−1)dim R−dim Sq(
dim R−dim S

2 )
[
b − r

t − r

]
q

.

Since the terms in the last summation depend only on the dimension of the varying
subspaceR, we may write it as

a∑
r=s

|{R ∈ LA : R ⊇ S and dimR = r}|(−1)r−sq(
r−s
2 )

[
b − r

t − r

]
q

.

As in (11), the cardinality of the set appearing in the above summand is readily seen
to be

[
a−s
r−s

]
q
. This yields the desired equality.�

Theorem 4. Let u and p1, . . . , pu be as in Lemma2. Then the lengthn� of the
Schubert codeC�(�,m) is given by

n� =
�p1∑

s1=p1

�p2∑
s2=p2

· · ·
�pu∑

su=pu

u∏
i=0

�(�pi , �pi+1; si, si+1) (12)

where, by convention, s0 = p0 = 0 and su+1 = pu+1 = �.

Proof. We use induction onu. If u = 0, i.e., if �1, . . . , �� are consecutive, then
�� = G�,�� , and so we know thatn� = [��

�

]
q

= �(0, ��;0, �). Now suppose thatu�1
and the result holds for all smaller values ofu. Then, by Lemma2, we see that

�� =
∐
S

{T ∈ G�,�� : T ∩ A�pu = S},
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where the disjoint union is taken over the set, say�u, of all subspacesS of A�pu
satisfying dimS�u and dimS ∩ A�pi �pi for 1� i�u − 1. Hence, by Lemma3,

n� = |��(Fq)| =
�pu∑
s=pu

|{S ∈ �u : dim S = s}|�(�pu, ��; s, �).

But for anyswith pu�s��pu , the set ofs-dimensional subspaces in�u is precisely the
Schubert variety inGs,�pu corresponding to the tuple(�1, . . . , �pu) with u consecutive
blocks. Hence the induction hypothesis applies.�

Remark 5. In the case� = 2, we obviously haveu�1, and the formula given above
becomes somewhat simpler. It is not difficult to verify that this agrees with the formula
(6) of Chen [1].

Remark 6. As a consequence of the results in this section, we obtain a purely combi-
natorial identity which equates the right-hand sides of (9), (10) and (12). It would be
an intriguing problem to prove this without invoking Schubert varieties.

3. Dimension of Schubert codes

Let the notation be as in the beginning of the previous section. Our aim is to give
an explicit formula for the dimensionk� of the Schubert codeC�(�,m). As in the case
of Theorem 1, it suffices to appeal to another classical fact about Schubert varieties
in Grassmannians, namely, the postulation formula due to Hodge [8]. For our purpose,
we use a slightly simpler description of Hodge’s formula, which (together with an
alternative proof) is given in [5].

Theorem 7. The dimensionk� of the Schubert codeC�(�,m) equals the determinant
of the � × � matrix whose(i, j)th entry is

(�j−j+1
i−j+1

)
, i.e.,

k� =

∣∣∣∣∣∣∣∣∣

(�1
1

)
1 0 . . . 0(�1

2

) (�2−1
1

)
1 . . . 0

...
...(�1

�

) (�2−1
�−1

) (�3−2
�−2

)
. . .

(��−�+1
1

)

∣∣∣∣∣∣∣∣∣
. (13)

Proof. Recall the abstract description in (4) for the dimensionk� of C�(�,m):

k� = |{� ∈ I (�,m) : ���}|.

By Hodge Basis Theorem (cf.[5, Theorem 1]), we know that a vector space basis for
the tth component, sayRt , of the homogeneous coordinate ring of�� is indexed by
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the t-tuples (�(1), . . . , �(t)) of elements ofI (�,m) satisfying�(1)� · · · ��(t)��. The
postulation formula of Hodge gives the Hilbert functionh(t) = dim Rt (t ∈ N) of this
ring. Now, using[5, Lemma 7], we may write

h(t) = det
1� i,j ��

((
t + �j − j

t + i − j

))
for t ∈ N.

By putting t = 1, we get the desired result. �

Remark 8. In the case� = 2, we obviously have

k� = �1(�2 − 1) −
(

�1
2

)
= �1(2�2 − �1 − 1)

2

and if we write� = (m − h − 1,m), then we retrieve the formula (7) of Chen [1].

The determinant in (13) is not easy to evaluate in general. For example, none of
the recipes in the rather comprehensive compendium of Krattenthaler [10] seem to be
applicable. The following Proposition shows, however, that in a special case a simpler
formula can be obtained.

Theorem 9. Suppose�1, . . . , �� are in an arithmetic progression, i.e., there arec, d ∈
Z such that�i = c(i − 1) + d for i = 1, . . . , �. Let ��+1 = c� + d = ��2 + (1− �)�1.
Then

k� = �1
�!

�−1∏
i=1

(��+1 − i) = �1
��+1

(
��+1

�

)
.

Proof. If �i = c(i − 1) + d for i = 1, . . . , �, then the(i, j)th entry of the transpose
of the � × � matrix in (13) can be written as

(
c(i − 1) + d − i + 1

j − i + 1

)
=

(
BLi + A

Li + j

)
, whereB = 1− c, Li = 1− i andA = d.

Now we use formula (3.13) in[10, Theorem 26], which says that for an�× � matrix
whose(i, j)th entry of the form

(
BLi+A
Li+j

)
[whereA,B can be indeterminates and the

Li ’s are integers], the determinant is given by

∏
1� i<j ��(Li − Lj )∏�

i=1(Li + �)!
�∏

i=1

(BLi + A)!
((B − 1)Li + A − 1)!

�∏
i=1

(A − Bi + 1)i−1,
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where in the last product we used the shifted factorial notation, viz.,(a)0 = 1 and
(a)t = a(a+1) · · · (a+ t −1), for t�1. SubstitutingB = 1− c, Li = 1− i andA = d

and making elementary simplifications, we obtain the desired formula.�

Remark 10. The simplest case, where the above proposition is applicable is when
�1, . . . , �� are consecutive, i.e.,c = 1 and�i = d + i − 1. Notice that in this case, the
formula for k� reduces to

(
d+�−1

�

)
. Of course, this is not surprising since�� is nothing

but the smaller GrassmannianG�,d+�−1 in this case. Thus, in this case we also have
simpler formulae forn� and�� and the minimum distance conjecture is true. However,
even in this simplest case, the evaluation of the determinant in (13) does not seem

obvious. Indeed, here it becomes an instance of the Ostrowski determinant det
((

d
ki−j

))
if we takeki = i+1. A formula for such a determinant and the result that it is positive
for increasing{ki} was obtained by Ostrowski [13] in 1964. The case when{ki} are
consecutive seems to go back to Zeipel in 1865 (cf. [11, Vol. 3, pp. 448–454]).

An alternative formula for the dimensionk� of C�(�,m) can be derived using results
of the previous section. To this end, we begin by observing that the dimensionk of the
q-ary Grassmann codeC(�,m) does not depend onq, and bears the following relation
to the lengthn = n(q) of C(�,m):

lim
q→1

n(q) = k or, in other words, lim
q→1

[
m

�

]
q

=
(
m

�

)
. (14)

Much has been written on this limiting formula in combinatorics literature. For example,
a colourful, albeit mathematically incorrect, way to state it would be to say that the
(lattice of) subsets of anm-set is the same as the (lattice of) subspaces of anm-
dimensional vector space over the field of one element! In the proposition below, we
observe that a similar relation holds in the case of Schubert codes, and, then, use this
relation to obtain the said alternative formula fork�.

Proposition 11. The dimensionk� of the q-ary Schubert codeC�(�,m) is independent
of q and is related to the lengthn� = n�(q) of C�(�,m) by the formula

lim
q→1

n�(q) = k�. (15)

Consequently, if u and p1, . . . , pu be are as in Lemma2, then

k� =
�p1∑

s1=p1

�p2∑
s2=p2

· · ·
�pu∑

su=pu

u∏
i=0

(
�pi+1 − �pi
si+1 − si

)
, (16)

where, by convention, s0 = p0 = 0 and su+1 = pu+1 = �.
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Proof. The limiting formula (15) follows from the abstract description in (4) of
k� and Theorem 1. Further, (16) will follow from Theorem 4 if we show that for any
integer parametersa, b, s, t , we have

lim
q→1

�(a, b; s, t) =
(
b − a

t − s

)
.

But, in view of (14), this is equivalent to proving the binomial identity

∑
j �0

(−1)j
(
a − s

j

)(
b − s − j

t − s − j

)
=

(
b − a

t − s

)
.

This identity is trivial if t < s, and if t�s, it follows easily if, after expanding by the
binomial theorem, we compare the coefficients ofXt−s in the identity

(1− X)a−s(1− X)t−b−1 = (1− X)a−b+t−s−1

and observe that for any integersM andN, we have
(−N−1

M

) = (−1)M
(
N+M
M

)
. �

Remark 12. As a consequence of the results in this section, we obtain a purely com-
binatorial identity which equates the right-hand sides of (13) and (16). It would be an
intriguing problem to prove this without invoking Schubert codes.

While one would like to construct codes having both therate k/n and therelative
distanced/n as close to 1 as possible, the two requirements are in conflict with each
other. For Schubert codes, this conflict manifests itself in a peculiar way:

Corollary 13. Let R = R(q) and � = �(q) denote, respectively, the rate and the
relative distance of the q-ary Schubert codeC�(�,m). Then, we have

lim
q→1

R(q) = 1 and lim
q→∞ �(q) = 1.

Proof. The limiting formula for the rate is immediate from Proposition11. As for the
relative distance, it suffices to observe that using Theorem 1, we have

lim
q→∞

U�(q)

n�(q)
= 1 and lim

q→∞
L�(q)

n�(q)
= 1,

whereU�(q) := q�� denotes the upper bound (cf.[3, Proposition 4]) for the minimum
distance ofC�(�,m), while L�(q) denotes the lower bound given by (8).�
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4. Minimum distance conjecture for Schubert divisors

The notation in this section will be as in the Introduction and at the beginning of
Section2. To avoid trivialities, we may tacitly assume that 1< � < m. Further, we let

	 := (m − � + 1,m − � + 2, . . . , m) and 
 := (m − �,m − � + 2, . . . , m).

Note that with respect to the partial order� , defined in the Introduction,	 is the unique
maximal element ofI (�,m) whereas
 the unique submaximal element. Moreover,
by (4), we have

k	 = k :=
(
m

�

)
and k
 = k − 1; also �	 = � := �(m − �) and �
 = � − 1.

Thus, in view of Theorem1, we have

n	 = |�	| = |G�,m| =
[
m

�

]
q

and n
 = |�
| =
[
m

�

]
q

− q�. (17)

Indeed,�	 is the full GrassmannianG�,m, whereas�
 is the unique subvariety of
G�,m of codimension one, which is often referred to as theSchubert divisorin G�,m.

Theorem 14. If 
 := (m − �,m − � + 2, . . . , m) so that�
 = � − 1, then

dr(C
(�,m)) = q�−1 + q�−2 + · · · + q�−r for 1�r� max{�,m − �}. (18)

In particular, d1(C
(�,m)) = q�
 , and so the minimum distance conjecture is valid in
this case.

Proof. Let r be a positive integer andH	 = {p = (p�) ∈ Pk−1 = P(∧�V ) : p	 = 0}
be the hyperplane given by the vanishing of the Plücker coordinate corresponding to
	. Note that�
 = G�,m ∩ H	. Now, if � is a linear subspace ofPk
−1 = P(H	) of
codimensionr, then as a linear subspace ofPk−1, it is of codimensionr+1. Therefore,

|�
 ∩ �| = |G�,m ∩ H	 ∩ �| = |G�,m ∩ �|� |G�,m| − dr+1(C(�,m)).

Hence, in view of (17), if r� max{�,m − �}, then by (3), we see that

dr(C
(�,m)) = |�
| − max
codim�=r

|�
 ∩ �|� |�
| − |G�,m| + q� + q�−1 + · · · + q�−r .

Thus, to complete the proof it suffices to exhibit a codimensionr linear subspace� of
Pk
−1 = P (H	) such that|�
 ∩ �| = |�
| − (q�−1 + q�−2 + · · · + q�−r ). To this end,
we use the notion of a close family introduced in[3,4], and some results from [3].
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First, supposem − ��� so thatr�m − �. Now let

�(j) = (m − � + 2− j,m − � + 2,m − � + 3, . . . , m), for j = 1, . . . , r + 1

and let� = {
�(1), . . . , �(r+1)

}
. Then � is a subset ofI (�,m) and aclose family5 ,

in the sense of [3, p. 126]. Note that�(1) = 	 and �(2) = 
. Thus if � denotes the
linear subspace ofPk
−1 = P (H	) defined by the vanishing of the Plücker coordinates
corresponding to�(2), . . . , �(r+1), and�′ denotes the linear subspace ofPk−1 defined
by the vanishing of the Plücker coordinates corresponding to�(1), . . . , �(r+1), then
codim�′ = r + 1, and using [3, Proposition 1], we obtain

|�
 ∩ �| = |G�,m ∩ �′| =
[
m

�

]
q

− q� − q�−1 − · · · − q�−r .

Thus, in view of (17), it follows that� is a subspace ofPk
−1 = P (H	) of codimension
r with the desired property.
On the other hand, suppose��m − �. Then we let

�(j) = (m − �,m − � + 1, . . . , ̂m − � + j − 1, . . . , m), for j = 1, . . . , r + 1,

where ̂m − � + j − 1 indicates that the elementm − � + j − 1 is to be removed. Once
again, forr��, � = {

�(1), . . . , �(r+1)
}
is a subset ofI (�,m) and a close family with

�(1) = 	. Hence we can proceed as before and apply[3, Proposition 1] to obtain the
desired formula fordr(C
(�,m)). �

Remark 15. An obvious analogue of the inductive argument in the above proof seems
to fail for Schubert subvarieties of codimension 2 or more. For example, inG3,6 the
subvariety�� corresponding to� = (3,4,6) is of codimension 2. However,�� is not
the intersection ofG3,6 with two Plüker coordinate hyperplanes but with four of them
[viz., those corresponding to(j,5,6) for 1�j�4]. Thus, to determined1(C�(3,6)), we
should knowd5(C(3,6)). But we knowdr(C(3,6)) only for r� max{3,6−3}+1 = 4.
The argument will, however, work for Schubert varieties of codimension 2 inG2,m
because one of these two varieties will be a lower order Grassmannian while the other
is a section by just 3 hyperplanes, and assuming, as we may, thatm > 4, we can
apply formula (3) and some results from [3]. We leave the details to the reader. In any
case, we know from the work of Chen [1] and Guerra–Vincenti [7] that the minimum
distance conjecture is true when� = 2.

5Two elements� = (�1, . . . , ��) and � = (�1, . . . , ��) in I (�,m) are said to beclose if they differ in
a single coordinate, that is,| {�1, . . . , ��} ∩ {

�1, . . . , ��
} | = � − 1. A subset ofI (�,m) is called aclose

family if any two distinct elements in it are close.
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