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ABSTRACT

The capacity of Staphylococcus aureus strain
LUG855 to release Panton–Valentine leukocidin
(PVL) in the presence of sub-inhibitory concen-
trations of anti-staphylococcal drugs was exam-
ined. Oxacillin enhanced PVL release 2.5-fold,
while clindamycin, linezolid, fusidic acid and
rifampicin were inhibitory, and vancomycin,
pristinamycin, tetracycline, ofloxacin and co-
trimoxazole had no effect. In combination with
oxacillin, sub-inhibitory concentrations of clinda-
mycin or rifampicin inhibited PVL induction
significantly, linezolid was less inhibitory, and
fusidic acid did not inhibit PVL induction by
oxacillin. These data support the use of oxacillin
in combination with clindamycin, rifampicin or
linezolid for the treatment of PVL-positive
S. aureus infections.
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Staphylococcus aureus is a major human pathogen.
Depending on the setting, 5–50% of S. aureus
isolates produce Panton–Valentine leukocidin
(PVL), a cytotoxin that causes tissue damage
[1,2]. PVL production has been linked to severe
infections such as necrotising pneumonia, necro-
tising fasciitis and osteomyelitis [3–6]. PVL-asso-
ciated necrotising pneumonia has a mortality rate
of 75%, and complications are more frequent in
osteomyelitis caused by PVL-expressing strains.

It has been shown previously that sub-inhibi-
tory concentrations of b-lactams augment PVL
production, while agents such as clindamycin and
linezolid reduce the release of PVL by S. aureus
[7,8], suggesting that the choice of antibacterial
agents for the treatment of PVL-positive staphy-
lococcal infections should take into account their
possible effect on toxin release. The present study
extends previous work [7] by examining the effect
of vancomycin, ofloxacin, co-trimoxazole, pristi-
namycin, clindamycin, fusidic acid, linezolid,
tetracycline and rifampicin, alone or in combina-
tion with oxacillin, on PVL release in vitro by the
methicillin-sensitive reference PVL-producing
S. aureus strain LUG855 [7].

Experimental procedures were as close as
possible to CSLI recommendations for MIC deter-
minations [9]. PVL levels in culture supernatants
were determined using a specific ELISA [7].
However, when Mueller–Hinton (MH) medium
and CSLI procedures were used, PVL levels were
close to the detection limit of the ELISA in the
absence of antibiotics (data not shown). MH
medium was thus replaced by casein hydrolysate
and yeast extract (CCY) medium, which increased
PVL levels 50-fold and MICs by one or two
dilution steps, except for oxacillin and pristina-
mycin (data not shown). As MICs of rifampicin
were extremely low (<0.006 mg ⁄L), the effect of
rifampicin on PVL production by LUG855 could
not be investigated. Therefore, a S. aureus mutant
with intermediate susceptibility to rifampicin
(LUG855-R5) was obtained by culturing strain
LUG855 on MH agar supplemented with rifam-
picin; this was assessed for the stability of its
rifampicin resistance (MIC, 2 mg ⁄L) as described
previously [10]. As the PVL levels produced by
LUG855-R5 and LUG855 were identical (results
not shown), LUG855-R5 was then used to exam-
ine the effect of rifampicin on PVL production.

To examine the effect of antibiotics on PVL
release, PVL was quantified in the culture super-

natant of LUG855 incubated for 24 h in the
presence of sub-inhibitory concentrations (0.5,
0.25 and 0.125 · MIC) of oxacillin, vancomycin,
clindamycin, linezolid, pristinamycin, fusidic
acid, tetracycline, ofloxacin and co-trimoxazole,
and also in the culture supernatant of LUG855-R5
incubated for 24 h in the presence of sub-inhib-
itory concentrations of rifampicin. Bacterial
counts were determined by the dilution and
plating method, with PVL production expressed
as lg of PVL ⁄ log10 CFU ⁄mL.

PVL production was increased significantly
(up to 2.5-fold) by oxacillin at 0.125 and 0.25 ·
MIC (Fig. 1). In contrast, clindamycin, linezolid,
fusidic acid and rifampicin had a concentration-
dependent inhibitory effect on PVL production at
0.125–0.5 · MIC. PVL production started to
decrease significantly at 0.125 · MIC of clin-
damycin and rifampicin, and at 0.25 · MIC of
linezolid and fusidic acid. Pristinamycin, tetra-
cycline and ofloxacin inhibited PVL production
at 0.5 · MIC, but not at lower concentrations. Co-
trimoxazole and vancomycin had no effect on
PVL production.

The effect of the strongest inhibitory drugs (i.e.,
clindamycin, linezolid, fusidic acid and rifampi-
cin) on the enhancement of PVL production by
oxacillin was then examined. A modified che-
querboard method with CCY medium was used
to determine the inhibitory effect of antibiotics in
combination as recommended by the CLSI [9].
After incubation, bacterial counts and PVL levels
were determined, and growth inhibition by
antibiotic combinations was assessed using the
fractional inhibitory concentration index, with
antibiotic combinations defined as antagonistic,
indifferent or synergic [11]. Combinations were
indifferent, with the exception of oxacillin plus
linezolid, which was synergic. PVL release was
inhibited significantly by sub-inhibitory concen-
trations of oxacillin with either clindamycin or
rifampicin in all the combinations tested (Fig. 2).
When combined with 0.25 · MIC of oxacillin,
linezolid inhibited PVL release at 0.5 and
0.25 · MIC, but not at 0.125 · MIC. When com-
bined with 0.125 · MIC of oxacillin, linezolid
inhibited PVL release at 0.5 · MIC but not at
lower concentrations. In combination with oxacil-
lin, fusidic acid inhibited PVL release only at
0.5 · MIC. With other concentrations of fusidic
acid, PVL release was still increased in the
presence of oxacillin.
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Thus, in summary, sub-inhibitory antibiotic
concentrations could either up-regulate (oxacillin)
or down-regulate (clindamycin, rifampicin,

linezolid and fusidic acid) PVL release by
S. aureus. Increased release of toxins in the
presence of b-lactams has also been observed
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Fig. 1. Effect of antibiotics on pro-
duction of Panton–Valentine leuko-
cidin (PVL). Results are given as
the ratio (expressed as a percentage)
of PVL (lg) ⁄ log10 CFU of bacteria
cultured in the presence of the indi-
cated concentration of antibiotic to
the mean PVL lg ⁄ log10 CFU of bac-
teria cultured without antibiotics.
Values are means ± SD of three
different experiments. *denotes a
statistically significant difference
(p <0.05) to the control (the
corresponding isolate grown with-
out antibiotic), according to one-way
ANOVA followed by a posteriori
Dunnett’s test.
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Fig. 2. Effects of clindamycin,
linezolid, fusidic acid and rifampi-
cin in combination with oxacillin on
the production of Panton–Valentine
leukocidin (PVL). Results are given
as the ratio (expressed as a percent-
age) of PVL (lg) ⁄ log10 CFU of bac-
teria cultured in the presence of the
indicated concentration of antibiotic
to the mean PVL (lg) ⁄ log10 CFU of
bacteria cultured without antibiot-
ics. Values are means ± SD of three
different experiments. *denotes a
statistically significant difference
(p <0.05) to the control (the corre-
sponding isolate grown without
antibiotic) according to one-way
ANOVA followed by a posteriori
Dunnett’s test.
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with other S. aureus toxins [8,12], and seems to be
related to transcriptional activation. Clindamycin
and linezolid have been shown previously to
reduce the production of other toxins [13–15],
possibly through their impact on protein synthe-
sis and transcription [8,12]. There are no pub-
lished data concerning the inhibitory effect of
rifampicin on S. aureus toxin production, but
rifampicin inhibits the transcription of other
bacterial genes [16,17]. Pristinamycin, tetracycline
and ofloxacin inhibited PVL production only
when used at concentrations close to the MIC.
This was unexpected, as pristinamycin and tetra-
cycline both inhibit the synthesis of bacterial
proteins, including toxins [18,19]. Finally, sub-
inhibitory concentrations of co-trimoxazole and
vancomycin had no effect on PVL release. Thus,
sub-inhibitory oxacillin concentrations enhanced
PVL production, while clindamycin, linezolid,
fusidic acid and rifampicin inhibited PVL pro-
duction, and the other antibiotics tested had little
or no effect.

As semi-synthetic penicillins are still the most
widely prescribed anti-staphylococcal agents,
subsequent studies then investigated whether
the drugs with the strongest inhibitory effect
could abolish the increase in PVL production
mediated by oxacillin. Clindamycin and rifampi-
cin both significantly reduced PVL production in
the presence of oxacillin, while linezolid and
fusidic acid had an inconsistent effect. However,
as reported previously [20], linezolid was the only
antibiotic that inhibited bacterial growth synergi-
cally with oxacillin.

Taken together, these data confirm that
b-lactam agents up-regulate PVL release, and that
PVL induction is suppressed in combination with
clindamycin, rifampicin or linezolid. This pro-
vides a logical basis for future in-vivo studies
designed to examine whether antibiotic combina-
tions that inhibit both bacterial replication and
PVL release could improve the outcome of severe
infections caused by PVL-producing S. aureus
strains.
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ABSTRACT

The distribution of IgG antibodies to Bordetella
pertussis was investigated in serum samples from
550 subjects, aged 4–24 years, to determine the
optimal age for booster immunisation. Levels of
antibody to B. pertussis antigens were determined
using an ELISA that measures a mixture of

pertussis toxin, filamentous haemagglutinin and
lipopolysaccharide. Geometric mean titres of anti-
pertussis antibodies in subjects aged 4–6 years
were significantly lower than those in other age
groups, which reflects waning immunity follow-
ing vaccination. High positive titres in older
children and adolescents suggested acquired
B. pertussis infection, and booster doses at the
ages of 7 and 15 years are therefore suggested.
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Even if the cellular and humoral immune
responses are both involved in conferring protec-
tion against Bordetella pertussis [1], determination
of the seroepidemiology of pertussis makes
possible the evaluation of patterns of pertussis
immunity in a given population, and helps define
the target population for pertussis booster vacci-
nation [2,3]. The aims of the present study were to
determine the distribution of IgG antibodies to
B. pertussis among different age groups in Turkey,
to evaluate the rate of decrease in vaccine-
acquired immunity, and to determine the optimal
age and frequency for booster immunisations.

Antibody levels to B. pertussis antigens were
measured in serum samples obtained from 550
(305 male, 245 female) healthy subjects, aged
4–24 years, who visited the Gazi University Med-
ical School well-child clinic, or the paediatric and
adolescent health examination clinics, for check-
up between April and June 2006, and who did not
have a prolonged history of coughing in the
preceding month. All study subjects had received
whole-cell pertussis vaccine three times in the
first year of life, followed by a booster at the age
of 18 months. The whole-cell pertussis vaccines
used in Turkey for the last 20 years have been
obtained from several different foreign compa-
nies, and most recently from the Serum Institute
(Pune, India). Each single 0.5-mL dose contains
diphtheria toxoid £25 Lf, tetanus toxoid ‡5 Lf
and B. pertussis ‡4 IU, adsorbed on aluminium
phosphate ‡1.5 mg, with thiomersal 0.01% w ⁄v
as preservative (http://www.seruminsitute.com/
content/products/product_list.htm). Informed
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