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The Colombeau algebra of generalized functions allows us to unrestrictedly carry
out products of distributions. We analyze this operation from a microlocal point of
view, deriving a general inclusion relation for wave front sets of products in the
algebra. Furthermore, we give explicit examples showing that the given result
is optimal; i.e., its assumptions cannot be weakened. Finally, we discuss the
interrelation of these results with the concept of pullback under smooth maps.
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1. INTRODUCTION

Algebras of generalized functions in the sense of J. F. Colombeau
provide an efficient tool for the treatment of nonlinear problems involving
singularities (cf., e.g., [1–3, 9, 14] and the literature cited therein). In
particular, unrestricted multiplication (as well as a host of more general
nonlinear operations) of distributions can be carried out in Colombeau
algebras. Moreover, starting with [14], regularity theory has been intro-
duced into the Colombeau framework and was extended to microlocal
analysis with applications to propagation of singularities in [4, 11–13].
In the present paper we study microlocal properties of multiplication of

generalized functions as well as of related operations (like pullback) in this
setting. Since unlike in the case of intrinsic multiplication of distributions
the formation of products in the Colombeau algebra is not subject to
regularity conditions (“favorable position of the wave front sets”), new
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effects can (and will) occur. Apart from deriving general results on inclusion
relations for wave front sets of products the emphasis of our presentation
will be on providing examples illustrating these new effects. At the same
time, the examples will demonstrate that the mentioned inclusion relations
are optimal in the sense that the assumptions made to derive them cannot
be weakened.
Concerning notation and terminology we basically follow [14]. Thus by

�0��� we denote the space of test functions on � with unit integral. For
1 ≤ q, �q��� is the subspace of �0��� consisting of those elements whose
moments up to order q vanish. For n ≥ 1, �q��n� is the space of n-fold
tensor products φ�n� �= φ⊗ · · · ⊗ φ with φ ∈ �0���. If φ ∈ ���n� is any
test function we set φε�x� = φ�x/ε�/εn. Then the basic building blocks of
the Colombeau algebra of generalized functions are defined as follows.
�M��n� is the set of all maps R� �0��n� ×�n → � which are smooth in

x and satisfy ∀K��n ∀α ∈ �n
0 ∃N ∈ � ∀φ ∈ �N��n� ∃c > 0 ∃η > 0,

sup
x∈K

�∂αR�φε� x�� ≤ cε−N �0 < ε < η�� (1)

� ��n� is the subset of �M��n� consisting of those R satisfying ∀K��n

∀α ∈ �n
0 ∀q ∈ � ∃p ∈ � ∀φ ∈ �p��n� ∃c > 0 ∃η > 0,

sup
x∈K

�∂αR�φε� x�� ≤ cεq �0 < ε < η�� (2)

Then theColombeaualgebra���n� is definedas thequotient�M��n�/� ��n�.
We note that to characterize � as a subspace of �M it would suffice to
suppose (2) only for α = 0 (see [8, Theorem 13.1]). For the definition of����
for � ⊆ �n open we refer to [14]. The subalgebra of compactly supported
elements of� will be denoted by�c .
The respective definitions for the space �τ = �M�τ/�τ of tempered

Colombeau functions read as follows.
�M�τ��n� is the set of all maps R� �0��n� × �n → � which are smooth

in x and satisfy ∀α ∈ �n
0 ∃N ∈ � ∀φ ∈ �N��n� ∃c > 0 ∃η > 0,

�∂αR�φε� x�� ≤ c�1+ �x��Nε−N �x ∈ �n� 0 < ε < η� (3)

�τ��n� is the subset of �M�τ��n� consisting of those R satisfying ∀α ∈ �n
0

∀q ∈ � ∃p ∈ � ∀φ ∈ �p��n� ∃c > 0 ∃η > 0,

�∂αR�φε� x�� ≤ c�1+ �x��pεq �x ∈ �n� 0 < ε < η� (4)

The canonical embedding of �′ into � resp. of 	 ′ into �τ will consistently
be denoted by ι. Also, equivalence classes of elements R of �M resp. �M�τ
will be written as class��R�φ� ���φ�.
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2. BASIC DEFINITIONS, A FIRST EXAMPLE

The starting point for regularity theory and microlocal analysis in
Colombeau algebras of generalized functions was the introduction of the
subalgebra �∞ of � by Oberguggenberger in [14]. �∞ consists of those
elements of � displaying uniform ε-growth in all derivatives. By [14,
Theorem 25.2], �∞ ∩�′ = 
∞, an identity on which all further regularity
theory is based. The analogous notion �∞

τ for tempered Colombeau func-
tions was introduced in [11] where it was also shown that �∞

τ ∩ 	 ′ = �M
[11, Theorem 16]. Here �M denotes the space of smooth functions with at
most polynomial growth in each derivative.
U ∈ �c is an element of �∞ iff its Fourier transform (with respect to any

damping measure) is rapidly decreasing [11, Theorem 18]. Based on this
observation the concept of wave front set in �, first introduced in [4], has
been (equivalently) stated in [11] along the lines of [10, Sect. 8.1]. Thus for
U ∈ �c by �g�U� we denote the cone (in �n \ 0) which is the complement
of those points possessing open conic neighborhoods on which the Fourier
transform of U is rapidly decreasing. This notion is again independent of
the damping measure used in the definition of Fourier transform in �τ.
Then for U ∈ ���� and x0 ∈ �, the cone of irregular directions at x0 is

�g�x0�U� = ⋂
ϕ∈����� ϕ�x0��=0

�g�ϕU�� (5)

The wave front set of U is given by

WF�U� = ��x� ξ� ∈ �× �n \ 0 � ξ ∈ �g�x�U��� (6)

Finally, we shall make use of the concept of characteristic set of a linear
differential operator (introduced in [4] for the case of the special
Colombeau algebra):

Definition 2.1. Let P = ∑
�α�≤m aα�x�∂α be a linear differential

operator on � with coefficients in ����. �x0� ξ0� ∈ � × �n \ �0� is
not in the characteristic set of P if there exists a neighborhood Vx0 of x0,
a conic neighborhood  ξ0 of ξ0, some r ∈ �, and some m ∈ �0 such that
∀φ ∈ �m��n� ∃η > 0 ∃C > 0 with

�Pm�φε� x� ξ�� ≥ Cεr �ξ�m� x ∈ Vx0� ξ ∈  ξ0� ε ∈ �0� η�� (7)

The following example, which was first introduced in [7], gives a first
application of these concepts and introduces some methods that will
repeatedly be used in the following sections.

Example 2.1. We want to calculate the wave front set of the solution to

�∂t + a∂x�U = 0 U �t=0= U0� (8)
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where a denotes a bounded generalized constant and U0 is allowed to be
singular. Thus let �aε�ε>0 be such that �aε� is bounded and denote by a the
generalized constant with representative a�φ� = ad�φ� (where d�φ� is the
diameter of the support of φ). Then for any U0 ∈ ���� the solution U of
(8) is given by the class of U�φ�2�� x� t� = u0�φ�x − a�φ�t�. Denote by B
the set of limit points for ε→ 0 of �aε�ε>0. As was noted in [7],

sing supp�U� ⊆ S �= ��x� t� � ∃b ∈ B s.t. x− bt ∈ K�� (9)

where K = sing supp�U0�. In fact, let �x0� t0� �∈ S. Then by differentiating
u0�φε� x − a�φε�t� and employing the boundedness of a it follows that it
suffices to show x− aεt �∈ K for �x� t� in a neighborhood of �x0� t0� and ε
small which is obviously satisfied.
To begin with, let us determine the wave front set of U for the particular

initial value U0 = δ = class��φ�φ∈�0����, so K = �0�. Let �x0� t0� ∈ S and
let ψ ∈ ���2�, ψ�x0� t0� �= 0. Then

(
ψu�φ�2�

ε ���)∧�ξ�τ�=∫
e−i�ξx+τt�ψ�x�t�ε−1φ

(
x−ad�φ�εt

ε

)
d�x�t�

=
∫
e−i�ξ�εx+ad�φ�εt�+τt�ψ

(
εx+ad�φ�εt�t

)
φ�x�dxdt�

Setting �ξ�τ�=ω�ξ0�τ0� this equals∫
eiωfε�x�t�ψ

(
εx+ad�φ�εt�t

)
φ�x�dxdt� (10)

where fε�x�t�=−�ad�φ�εξ0+τ0�t−εξ0x. By [10, Theorem 7.7.1], for any
k∈� we obtain a constant C independent of ε such that∣∣(ψu�φ�2�

ε ���)∧�ξ�τ�∣∣≤Cω−k · ∑
�α�≤k

sup
(∣∣Dα

(
ψ�εx+ad�φ�εt�t�

×φ�x�)∣∣∣∣Dfε�x�t�∣∣�α�−2k)
� (11)

Here �Dfε�x�t��2=ε2�ξ0�2+�τ0+ad�φ�εξ0�2, which remains bounded away
from 0 (uniformly in ε) for τ0 �∈−Bξ0. Then from (11) we conclude that
any such pair �ξ0�τ0� is not contained in �g��x0�t0��U�. Denoting by  B the
cone ��ξ�τ� �∃b∈B with τ=−bξ� we have shown that

WFg�U�⊆S× B� (12)

Conversely, let τ0=−bξ0 for some b∈B, fixφ∈�0���, and choose a sequence
εk→0 with ad�φ�εk →b. Then from (10) we have �ψu�φ�2�

ε ����∧�ξ�τ�
→ ∫

ψ�bt�t�dt which for an appropriate choice of ψ is nonzero.
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Thus �ψu�φ�2�
ε ����∧ is not rapidly decreasing in the direction �ξ0�τ0�,

so we also obtain the reverse inclusion of (12). Summing up,

WFg�U�=S× B� (13)

We note that inclusion (12) can even be obtained for general initial data in
���� by propagation of singularities: in fact, by Theorem 4 of [4] we have

WFgU⊆CharP∪WFgP�U� �U ∈����� (14)

for any linear differential operator with coefficients in �∞���. Since
the right hand side of (8) is 0 it therefore remains to determine the
characteristic directions of the operator P=∂t+a∂x. Fix φ∈�0��� and set
Pε�x�t�ξ�τ�=P�φ�2�

ε �x�t�ξ�τ�= i�τ+aεξ� (to simplify notation we assume
d�φ�=1). To show that �x0�t0�ξ0�τ0� is noncharacteristic it suffices to
prove the existence of a neighborhood V of �x0�t0�, a conic neighborhood
of �ξ0�τ0�, and constants r∈� (independent of φ), C>0, and η>0 such
that

�Pε�x�t�ξ�τ��≥Cεr��ξ�+�τ�� (�x�t�∈V��ξ�τ�∈ �0<ε<η)� (15)

Let τ0 �∈−Bξ0 and suppose ξ0 �=0 to begin with. Then there exists some
c>0 such that �τ0/ξ0+aε�≥c for ε small. Let

 =
{
�ξ�τ� �

∣∣∣∣τξ−
τ0
ξ0

∣∣∣∣< c

2

}
�

For �ξ�τ�∈ we get

�τ+aεξ�≥�ξ�
(∣∣∣∣τ0ξ0 +aε

∣∣∣∣−
∣∣∣∣τξ−

τ0
ξ0

∣∣∣∣
)
≥ c

2
�ξ�≥ c̃��ξ�+�τ��

so �ξ�τ� is noncharacteristic. On the other hand, if ξ0=0 then we choose c
such that c�aε�<1/2 for all ε and set  =��ξ�τ� � �ξ/τ�<c�. Then again

�τ+aεξ�≥�τ�
(
1−�aε�

�ξ�
�τ�

)
≥ 1
2
�τ�≥ c̃��ξ�+�τ��

for �ξ�τ�∈ . Thus CharP⊆�2× B which by (9) and (14) implies (12).
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Remark 2.1. In [7] it is shown that inclusion (9)—and consequently also
(12)— may be strict.

3. THE WAVE FRONT SET OF A PRODUCT

In order to give a concise presentation of the following results we first
collect a few facts on cones in �n resp. �n \ 0.
Lemma 3.1. (i) If �1, �2 are closed cones in �n such that �1 ∩�2 = �0�

then ∃α > 0,

�ξ − η� ≥ α�η� ∀ξ ∈ �1� ∀η ∈ �2�

Let  1,  2 be closed cones in �n \ 0 such that 0 �∈  1 +  2. Then

(ii)  1 +  2
�n\0 = � 1 +  2� ∪  1 ∪  2.

(iii) For any open conic neighborhood W of  1 +  2 in �n \ 0 one can
choose open conic neighborhoods W1, W2 in �n \ 0 of  1,  2, respectively,
such that W1 +W2 ⊆ W .

Remark 3.1. (i) The second assertion is false (in gen.) if 0 ∈  1 + 2 by
the following example (in �3) due to M. Grosser: Let K1 = �λ · �−1� t� t2� �
0 ≤ t ≤ 1� λ ≥ 0�, K2 = �λ · �1� t� t2� � 0 ≤ t ≤ 1� λ ≥ 0�. Then  i =
Ki \ 0 (i = 1� 2) are closed cones in �3 \ 0. The sequence  1 +  2 � ξn =
n · �−1� 1/n� 1/n2� + n · �1� 1/n� 1/n2� = �0� 2� 2/n� tends to �0� 2� 0� as
n → ∞. But �0� 2� 0� �∈ � 1 +  2� ∪  1 ∪  2: first, �0� 2� 0� = λ�−1� t� t2� +
µ�1� s� s2� implies λ = µ, λ �= 0 and s = t = 0, yielding 0 = 2 in the sec-
ond component, so �0� 2� 0� �∈  1 +  2. Also, �0� 2� 0� �∈  i �i = 1� 2� by
construction.

(ii) The third assertion is false (in gen.) if 0 ∈  1 + 2 by the following
example in �2: Let  1 = ��x� 0� � x > 0�,  2 = ��x� 0� � x < 0�. Then the
sum of any two open conic neighborhoods of  1,  2 is �2.

Proof. (i) Otherwise there would be sequences ξj ∈ �1 and ηj ∈ �2
(j ∈ �) such that �ξj − ηj� < �ηj�/j for all j ∈ �; this implies �ξj/�ηj� −
ηj/�ηj�� < 1/j which shows that ξj/�ηj� has an accumulation point ξ0 ∈ �1
with �ξ0� = 1; but then ξ0 is also an accumulation point of ηj/�ηj� and
therefore an element of �2—a contradiction.

(ii) See [5, proof of Theorem 1.3.6].
Assume that (iii) does not hold; for each k choose conic neighborhoods

W k
j (j = 1� 2) in �n \ 0 with the following property: ∀η ∈ W k

j the projection
η/�η� to Sn−1 has distance less than 1/k to the compact set  j ∩ Sn−1.
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By assumption we can choose ηkj ∈ W k
j such that ηk1 + ηk2 �∈ W . In

particular,  = �n \ W is a nonempty closed cone in �n and therefore
also ηk = �ηk1 + ηk2 �/βk with βk = �ηk1 � + �ηk2 � is contained in  .
Now we choose ξkj� 0 ∈  j ∩ Sn−1 such that �ξkj� 0 − ηkj /�ηkj �� < 1/k and set

ξk = �ηk1 �
βk

ξk1� 0︸ ︷︷ ︸
ξk1∈ 1

+ �ηk2 �
βk

ξk2� 0︸ ︷︷ ︸
ξk2∈ 2

∈  1 +  2�

By (ii) of the current lemma � 1 ∪ �0�� + � 2 ∪ �0�� is a closed cone in �n;
it intersects  only in 0, so we can apply (i): for all k ∈ � we have for some
α > 0

0 < α�ξk� ≤ �ξk − ηk�

= 1
βk

∣∣∣∣�ηk1 �
(
ξk1� 0 −

ηk1
�ηk1 �

)
+ �ηk2 �

(
ξk2� 0 −

ηk2
�ηk2 �

)∣∣∣∣ < 1
k
�

Sending k → ∞ we conclude that ξk → 0. By construction the sum-
mands of ξk are bounded: �ξkj � ≤ 1 (j = 1� 2). If ξk1 would tend to 0
then so would ξk2 = ξk − ξk1 . But since ξkj� 0 are normalized this would
imply that both �ηkj �/βk (j = 1� 2) tend to zero yielding the contradiction
1 = ��ηk1 � + �ηk2 ��/βk → 0. Therefore the norms of (suitable subsequences
of) ξkj are bounded away from zero and above. There are subsequences ξklj
(l ∈ �) such that ξklj → ζj �= 0; then  1 +  2 � ζ1 + ζ2 = 0 and therefore
0 ∈  1 +  2—a contradiction.

An essential new feature of microlocal analysis in the Colombeau setting
is the precise quantification of decrease properties in terms of powers of
the regularization parameter ε. Recall from [11, Definition 17], that R ∈ �τ

is called rapidly decreasing in a cone  if ∃N ∀p ∈ �0 ∃M ∈ �0 ∀φ ∈ �M

∃c > 0 ∃η > 0,

�R�φε� x�� ≤ cε−N�1+ �x��−p �x ∈  � 0 < ε < η�� (16)

The following lemma shows that on closed cones in the complement of
the cone of irregular directions of U ∈ �c , the order N in (16) of rapid
decrease of the Fourier transform of U can be chosen uniformly.

Lemma 3.2. Let U ∈ �c��� and let  be a closed cone in the complement
of �g�U�. Then ∃N ∀p ∈ �0 ∃M ∈ �0 ∀φ ∈ �M ∃c > 0 ∃ε0 > 0,

�� �U�φε� � ���ξ�� ≤ cε−N�1+ �ξ��−p �ξ ∈  � 0 < ε < ε0�� (17)
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Proof. For any η ∈  there exists an open conic neighborhood  �η�
such that ∃N�η� ∀p ∈ �0 ∃M�η�p� ∈ �0 ∀φ ∈ �M ∃c�η�p�φ� > 0
∃ε0�η�p�φ� > 0 such that (17) holds with this set of constants on  �η�.
The sets  �η� ∩ Sn−1 are open in Sn−1 and form a covering of the compact
set  ∩ Sn−1. Thus there exist η1� � � � � ηm ∈  such that

 ∩ Sn−1 ⊆
m⋃
j=1

� �ηj� ∩ Sn−1��

Consequently,  is contained in the union of the  �ηj� (1 ≤ j ≤ m). Now
set N = max1≤j≤m N�ηj� to finish the proof.

Following the terminology of [14] we will say that the wave front sets of
two elements V1, V2 of � are in favorable position if WFg�V1� +WFg�V2�
does not contain any zero direction (i.e., any element of the form �x� 0�).
For V1 = ι�v1�, V2 = ι�v2� distributions (in which case WF�vi� and
WFg�ι�vi�� coincide by [11, Corollary 24; 13, Theorem 3.8 ]) this con-
dition ensures that the Fourier product v1v2 of v1 and v2 exists in �′

[14, Proposition 6.3]. Also, by [14, Proposition 10.3], V1V2 is associated
with v1v2 in this case. Moreover, the wave front sets of v1, v2 and v1v1 are
related by (see [10, Theorem 8.2.10])

WF�v1v2� ⊆ �WF�v1� +WF�v2�� ∪WF�v1� ∪WF�v2�� (18)

Our aim in the remainder of this section is to prove the analog of relation
(18) for elements of � whose generalized wave front sets are in favorable
position, where the product is to be taken in the algebra �. In the following
section it will turn out that the inclusion will in general break down if the
assumption of a favorable position of the wave front sets is dropped.

Proposition 3.1. Let V1, V2 ∈ �c��n� and suppose that 0 �∈ �g�V1� +
�g�V2�. Then

�g�V1V2�⊆�g�V1� + �g�V2�
�n\0

=��g�V1� + �g�V2�� ∪ �g�V1� ∪ �g�V2��
(19)

Proof. Choose representatives v1, v2 with compact support; with the
shorthand notation wε

j �η� = � �vj�φε� ����η� we have to estimate

�2π�n� (
v1�φε� ��v2�φε� ��

)�ξ� = wε
1 ∗wε

2 �ξ�

=
∫
�n

wε
1�ξ − η�wε

2�η�dη

in a suitable conic neighborhood of any point ξ0 in the complement of the
right hand side of (19).
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Let  0 be an open cone containing �g�V1� + �g�V2�
�n\0

such that ξ0 �∈  0.
By Lemma 3.1(iii) there exist open cones  j ⊇ �g�Vj� (j = 1� 2) such that
 1 +  2 ⊆  0. Further, we set  = �n \  0. We claim that wε

1 ∗wε
2 is rapidly

decreasing in  .
To show this we write

wε
1 ∗wε

2�ξ� =
∫
 c2

wε
1�ξ − η�wε

2�η�dη︸ ︷︷ ︸
Iε1 �ξ�

+
∫
 2

wε
1�ξ − η�wε

2�η�dη︸ ︷︷ ︸
Iε2 �ξ�

and estimate the summands individually.
Substituting η′ = ξ − η, Iε1 takes the form

Iε1 �ξ� =
∫

��ξ�− c2�∩ 1

wε
2�ξ − η′�wε

1�η′�dη′

︸ ︷︷ ︸
Iε11�ξ�

+
∫

��ξ�− c2�∩ c1

wε
2�ξ − η′�wε

1�η′�dη′

︸ ︷︷ ︸
Iε12�ξ�

Iε12 By Lemma 3.2, ∃N ∀p ∈ �0 ∃M ∈ �0 ∀φ ∈ �M ∃c > 0 ∃ε0 > 0,

�wε
2�ξ − η′�� ≤ c�1+ �ξ − η′�2�−pε−N (

η′ ∈ �ξ� −  c2� ε ∈ �0� ε0�
)

and ∃N ′ ∀p′ ∈ �0 ∃M ′ ∈ �0 ∀φ ∈ �M ′ ∃c′ > 0 ∃ε′0 > 0,

�wε
1�η′�� ≤ c′�1+ �η′�2�−p′

ε−N
′ �η′ ∈  c1� ε ∈ �0� ε′0���

Thus by Peetre’s inequality we obtain (for ε small and φ ∈ �max�M�M ′�),

�Iε12�ξ�� ≤ c′′ε−N−N ′ �1+ �ξ�2�−p
∫
�n
�1+ �η′�2�p−p′

dη′�

This last integral is convergent for p′ > p+ n
2 , so Iε12 is rapidly decreasing

in  .
Iε11 We abbreviate the domain of integration by Bξ =  1 ∩ ��ξ�−  c2�.

For η′ ∈ Bξ, w
ε
1 is tempered in η′ and wε

2 is rapidly decreasing in ξ − η′.
(For later use we note here that since  1 ⊆ � −  2�c , the same decrease
properties for wε

1 and wε
2 in fact hold on all of  1. The following estimates

thus remain valid upon replacing Bξ by  1.) Hence

�Iε11�ξ�� ≤ cε−N
∫
Bξ

�1+ �ξ − η′��−p�1+ �η′��M dη′�

Supposing �ξ� ≥ 1 and setting ξ0 = ξ
�ξ� this equals

cε−N �ξ�M−p
∫
Bξ

(
1
�ξ� +

∣∣∣∣ξ0− η′

�ξ�

∣∣∣∣
)−p( 1

�ξ� +
η′

�ξ�
)M

dη′

≤cε−N �ξ�M+n−p
∫

1
�ξ�Bξ

(
1
�ξ� +�ξ0−η�

)−p
�1+�η��Mdη� (20)
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Since  ∩ 1=�0�, by (i) of Lemma 3.1 we have

∃α>0� �ξ0−η�≥α�η� ∀ξ0∈Sn−1∩ �∀η∈ 1 (21)

∃β>0� �ξ0−η�≥β�ξ0�=β ∀ξ0∈Sn−1∩ �∀η∈ 1� (22)

We now split the domain of integration in (20) into the parts B1= 1
�ξ�Bξ∩

��η�≤ 1
2� and B2= 1

�ξ�Bξ∩��η�> 1
2�. Then by (22)

∫
B1

(
1
�ξ� +�ξ0−η�

)−p
�1+�η��Mdη≤β−p

∫
B1

�1+�η��Mdη≤const�

Also, by (21),
∫
B2

(
1
�ξ� +�ξ0−η�

)−p(
1+�η�

)M

dη≤α−p
∫
B2

�η�−p�1+�η��Mdη≤const

for p>M−n. It follows that Iε11 and hence also Iε1 is rapidly decreasing
in  .
Turning now to Iε2 , we first note that wε

2 is tempered on the domain
of integration. Moreover, since  2⊆� − 1�c it follows that wε

1 is rapidly
decreasing in ξ−η in said domain (again by Lemma 3.2). Thus the same
reasoning as in the case of Iε11 (cf. the above remark) shows that Iε2 is rapidly
decreasing in  as well, which completes the proof.

Theorem 3.1. Let U1, U2 be elements of ���� whose wave front sets are
in favorable position. Then

WFg�U1U2�⊆�WFg�U1�+WFg�U2��∪WFg�U1�∪WFg�U2�� (23)

Proof. Let �x�ξ� �∈ r.h.s. Then for any ϕ∈���� with ϕ�x� �=0 and
support sufficiently close to x we have ξ �∈�g�ϕUi� (i=1�2). Also, by
Lemma 3.1(ii) and (iii), since ξ is not contained in

�g�x�U1�+�g�x�U2�
�n\0

there exist open conic neighborhoods  i of �g�x�Ui� in �n\0 such that
ξ �∈ 1+ 2 and 0 �∈ 1+ 2. Thus, by [11, (13)], if the support of ϕ is close
enough to x we also have

ξ �∈�g�ϕU1�+�g�ϕU2�⊆ 1+ 2�

Since 0 �∈�g�ϕU1�+�g�ϕU2�,

ξ �∈�g�ϕU1�+�g�ϕU2�
�n\0

=��g�ϕU1�+�g�ϕU2��∪�g�ϕU1�∪�g�ϕU2��
Thus by Proposition 3.1, ξ �∈�g�ϕ2U1U2�. Again from [11, (13)], the claim
follows.
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4. EXAMPLES

In the previous section we have extended the validity of the wave front
inclusion relation (18) to the product in the algebra �, provided that
the generalized wave front sets of the factors are in favorable position.
Contrary to the distributional situation, however, a favorable position of
the wave front sets is of course not a prerequisite for forming the product
in the algebra. Thus the question arises whether a further extension of
the classical result to arbitrary products in � is possible. The second
example in this section will demonstrate that this is not the case. Before
we turn to this matter, we first give an example illustrating some genuinely
non-distributional effects in the application of Theorem 3.1.

Example 4.1. Denote by U the class in ���2� of U�φ�2��x�y�=
�1/d�φ��φ�x/d�φ�−y/√d�φ��. As the results of the following cal-
culations are independent of the concrete value of d�φ� we will for
simplicity assume that d�φ�=1 and we will abbreviate U�φ�2�

ε �x�y� by
uε�x�y�=�1/ε�φ�x/ε−y/√ε�. As a matter of fact, this assumption effec-
tively transfers the problem into the setting of the special Colombeau
algebra. It is easily seen that U≈δ�x�⊗1�y�.
Further, let A=ι� 1

x+i0�∈���� and define B∈���2� by B�φ�2��x�y�=
A�φ�√d�φ�x+y�. Employing the same simplification as above we will
write bε�x�y� for

B
(
φ�2�
ε �x�y

)=∫ ∞

0

φε�
√
εx+y−z�−φε�

√
εx+y+z�

z
dz

−iπφε�
√
εx+y��

Let us first determine WFg�U�. To begin with, we claim that supp�U�=
�0�×�. Indeed, the inclusion ⊆ is obvious. Conversely, let �0�a�∈�0�×�
and set xε=ε+a

√
ε, yε=

√
ε+a. Then �xε�yε� is the representative

of a compactly supported generalized point (cf. [15]) supported in
any ball Br��0�a�� (r>0 arbitrary). Since uε�xε�yε�= 1

ε
φ�0�, the claim

follows from [15, Theorem 2.4]. To determine an upper bound for
WFg�U� we note that setting Pε=∂y+

√
ε∂x we have Pεuε=0. Thus

by (14) the set of characteristic directions of P provides such an
upper bound. By Example 2.1, Char�P�⊆�2×��ξ�0� �ξ �=0�. Next, we
show that ��ξ�0� �ξ �=0�⊆�g��0�a��U� for any a∈�. To this end, let
ψ�x�y�=f �x�g�y�∈���2��f �x�≡1, g�y�≡1 near x=0 resp. y=0, and g
positive. For ε sufficiently small, �x �g�y�φε�x−

√
εy� �=0�⊆�x �f �x�=1�,

so ψu=gu. Hence

� �ψuε��ξ�0�=
∫
e−ixξφε�x−

√
εy�g�y�dxdy=φ̂ε�ξ�ĝ�

√
εξ�

=φ̂�εξ�ĝ�√εξ�→φ̂�0�ĝ�0�= ĝ�0� �=0 �ε→0��
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which shows that � �ψuε� is not rapidly decreasing in the direction �ξ�0�.
Replacing g by τag=g��−a� and setting ψa�x�y�=f �x�τag�y� we obtain
� �ψauε�=φ̂�εξ�ĝ�

√
εξ�e−iaξ, so the same reasoning gives ��ξ�0� �ξ �=0� ⊆

�g��0�a��U�. Summing up, we have shown

WFg�U�=�0�×�×�\0×�0�� (24)

Turning now to B, we first show that singsupp�B�=��0�0��. Let �x�y�∈
K��2\0. Since φ�x/√ε+�y±z�/ε�≡0 near z=0 for ε small, we can
write

bε�x�y�=
1
ε

∫ ∞

0

φ�x/√ε+�y−z�/ε�
z

dz− 1
ε

∫ ∞

0

φ�x/√ε+�y+z�/ε�
z

dz

=



1
ε

∫∞
−∞

φ�s�ds
y+√εx−εs

x√
ε
+ y

ε
>d�φ�

− 1
ε

∫∞
−∞

φ�s�ds
εs−y−√εx

x√
ε
+ y

ε
<−d�φ�.

In any case,

∂ky ∂
l
x�bε�=±1

ε
ε

l
2

∫ ∞

−∞
φ�t�dt

�−εt±�y+√
εx��k+l+1

=�

(
1
ε

)
�

so B is an element of �∞ off �x�y�=�0�0� (but clearly not in any
neighborhood of �0�0� itself). Setting Pε=∂x−

√
ε∂y we have Pεbε=0, so

by the same reasoning as above we have WFg�B�⊆Charg�P�=�2×�ξ=0�.
To determine �g��0�0�B it therefore remains to estimate (with ψ as above)

� �ψbε��0�η�

=
∫
e−iyη

∫ ∞

0

φε�
√
εx+y−z�−φε�

√
εx+y+z�

z
dz

·f �x�g�y�dxdy−iπ
∫
e−iyηφε�

√
εx+y�f �x�g�y�dxdy

= 1
2π

∫
f �x�

(
�y→η

(((
vp
(
1
x

)
−iπδ

)
∗φε

)
�√εx+y�

)
∗ ĝ

)
�η�

︸ ︷︷ ︸
=�Iε�x�η�

dx�

Using � �vp� 1
x
�−iπδ�=cH (with H the Heaviside function) we have

Iε�x�η�=c
∫ ∞

0
ĝ�η−η′�eiη′√εxφ̂�εη′�dη′�

Suppose now that η<0. Then in the domain of integration of Iε��η−η′�≥
�η�. Thus for any l∈� we get

�ĝ�η−η′��≤cl�1+�η−η′��−2l≤cl�1+�η��−l�1+�η−η′��−l�
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But then for l sufficiently large �Iε�x�η��≤c′�1+�η��−l, implying �g��0�0�
�B�⊆��0�η� �η>0�. Since we have seen above that �g��0�0� �=', this implies

WFg�B�=��0�0��×�0�×�+� (25)

By (24) and (25), the wave front sets of U and B are in favorable position,
so Theorem 3.1 gives

�g��0�0��BU�⊆�×�+� (26)

We are now going to establish also the inverse inclusion to (26). With ψ as
above, we have to analyze

� �ψbεuε��ξ�η�=�x→ξ��y→η�g�y�bε�x�y�uε�x�y��︸ ︷︷ ︸
=�Jε�x�η�

f �x���

Here, �2π�2Jε�x�η�=�ĝ∗�y→η′ �bε�x�y��∗�y→η′ �uε�x�y����η�, and a short
calculation gives

�y→η′ �bε�x�y���η′�=−2πieiη
′√εxH�η′�φ̂�εη′�

�y→η′ �uε�x�y���η′�= 1√
ε
e
−iη′ x√

ε φ̂�−√εη′��

Inserting this and substituting x′ =x/√ε we obtain

� �ψbεuε��ξ�η�=
1

2πi

∫∫∫ ∞

0
e−iξ

√
εx′+ix′�εη′′−η′�ĝ�η−η′−η′′�

·φ̂�εη′′�φ̂�−√εη′�dη′′dη′f �√εx′�dx′� (27)

For ε→0 this converges to

1
2πi

∫∫∫ ∞

0
e−ix

′η′
ĝ�η−η′−η′′�dη′′dη′dx′

= 1
2πi

∫∫ z

−∞
ĝ�ξ�dξ

∫
e−ix

′�η−z�dx′dz= 1
2πi

∫ η

−∞
ĝ�ξ�dξ�

It follows that for η>0 and any ξ, � �ψbεuε� is not rapidly deceasing in
the direction �ξ�η�. Thus, in fact

�g��0�0��BU�=�×�+� (28)

The above example demonstrates the usefulness of Theorem 3.1 for
determining wave front sets of products of generalized functions even
beyond the distributional regime: Provided the wave front sets of the
factors are in favorable position, an upper bound for the wave front set
of the product is given by (23). However, should the assumption of a
favourable position be dropped, despite the fact that the product is still
defined in � the inclusion (23) will break down in general, as is explicitly
demonstrated in the following example.



microlocal properties 267

Example 4.2. Let U as in Example 4.1 and set v=u�φ�2��x�y�=
�1/d�φ��φ�x/d�φ�−y/√d�φ��. Employing the same notational simplifi-
cations as in the previous example we have vε�x�y�=�1/ε�φ�x/ε+y/√ε�.
Again, supp�V �=�0�×�, V ≈δ�x�⊗1�y�, and

WFg�V �=�0�×�×�\0×�0�� (29)

Thus the wave front sets of U and V are not in favorable position and we
shall demonstrate that in fact the conclusion of Theorem 3.1 is violated for
the product W =UV .
We first show that supp�W �=��0�0��. To this end we again utilize

[15, Theorem 2.4]. We only have to show that W vanishes in a suitable
neighborhood of any point �0�a� with a �=0. We shall assume a>0 (the
other case being analogous) and we choose some r>0 such that Br��0�a��
does not contain �0�0�. Now let �xε�yε� be a representative of any general-
ized point supported in Br��0�a��. Then if xε≥0 and ε is sufficiently small
we have

xε
ε
+ yε√

ε
≥ a−r√

ε

and similarly, for xε≤0��xε/ε�−�yε/
√
ε�≤−�a−r�/√ε. Thus, for small ε,

one of the factors of wε always vanishes. This means that W vanishes on
all compactly supported points in Br��0�a��, so W =0 on Br��0�a��.

It remains to determine �g��0�0��W �, to which end we choose f , g as
in Example 4.1. As above, f 2�x�g2�y�uε�x�y�vε�x�y�=g2�y�uε�x�y�vε�x�y�
for ε small. Thus it suffices to consider

� �guεgvε��ξ�η�=
∫∫
φ̂ε�ξ′�φ̂ε�ξ−ξ′�ĝ�η′+√

εξ′�

×ĝ�η−η′−√
ε�ξ−ξ′��dξ′dη′

=
∫
φ̂�εξ′�φ̂�ε�ξ−ξ′��ĝ∗ ĝ�η+2

√
εξ′−√

εξ�dξ′

= 1√
ε

∫
φ̂�√εξ′′�φ̂�εξ−√

εξ′′�ĝ∗ ĝ�η+2ξ′′−√
εξ�dξ′′�

The integral in this equation converges to
∫
ĝ∗ ĝ�2ξ′′�dξ′′, so � �guεgvε�

�ξ�η�∼��1/√ε�. In particular, � �guεgvε� is not rapidly decreasing in any
direction �ξ�η�. Thus

WFg�UV �=��0�0��×�2\0 �⊆�0�×�×�\0×�0�
=�WFg�U�+WFg�V ��∪WFg�U�∪WFg�V ��

(30)
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5. CONSEQUENCES FOR MICROLOCAL PROPERTIES
OF PULLBACKS

In this final section we are going to compare our previous considerations
with an alternative (classical) approach to products of distributions and
their microlocal properties [10, Sect. 8.2]. In this approach, one considers
the product of two distributions u and v (provided it exists) as the restriction
of their tensor product to the diagonal, i.e., as the pullback of u⊗v under d �
x→�x�x�. The basic properties of this operation then follow directly from
the general theorem about microlocal transformation under composition
with smooth maps [10, Theorem 8.2.4].
As a first step, we note that the tensor product of Colombeau generalized

functions is “well behaved” from a microlocal point of view. Recall that
for open subsets �⊆�m, �′ ⊆�n and U ∈����, V ∈���′�, U⊗V is
represented by �φ�m�⊗φ�n��x�y�→u�φ�m��x�v�φ�n��y�.
Lemma 5.1.

WFg�U⊗V �⊆
(
WFg�U��WFg�V �

)
∪
((
suppU×�0�)�WFg�V �

)

∪
(
WFg�U��(

suppV ×�0�))� (31)

where  1� 2 �=��x�y�ξ�η� ��x�ξ�∈ 1��y�η�∈ 2� for arbitrary subsets  1⊆
�×�m,  2⊆�′×�n.

Proof. This is a straightforward adaptation of the proof of the
corresponding distributional result (see, e.g., [6, Theorem 11.2.1]).

If f ��1→�2 is a smooth map between open subsets �i⊆�ni and
u∈�′��2� then the classical condition ensuring existence of f ∗u is

WF�u�∩Nf ='�
where Nf =��f �x1��ξ2�∈�2×�n2 � tf ′�x1�ξ2=0� (cf. [10, Theorem 8.2.4]).
Furthermore, in this case

WF�f ∗u�⊆f ∗WF�u�� (32)

where f ∗ =��x1�tf ′�x1�ξ2 � �f �x1��ξ2�∈ � for  ⊆�2×�n2 .
Just as the product of generalized functions can be carried out

unrestrictedly in the Colombeau algebra, it is also possible to form
pullbacks of Colombeau generalized functions under arbitrary smooth
maps: For U ∈� and f smooth, U ◦f is defined by componentwise
composition. Moreover, for U , V in ���� we have UV =�U⊗V �◦d with
d ��→�×�, x *→�x�x� (simply observe that UV and �U⊗V �◦d have
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identical representatives). We are thus in a position to review our previous
examples in this picture:

Example 5.1. Let U and V as in Example 4.2 and set T =U⊗V . By
Lemma 5.1,

WFg�T �⊆
{��0�x2�0�x4���ξ1�0�ξ3�0�� �x2�x4∈���ξ1�ξ3�∈�2\��0�0��}�

In fact, we have equality in the above relation since by using cutoff
functions of tensor product form the reasoning leading to (24) can
be carried out in parallel in the independent factors corresponding
to U and V . In the notation of Example 4.2 we have W =T ◦d and
WFg�W �=��0�0��×�2\0. A simple computation shows that d∗WFg�T �=
���0�r���µ�0�� � r�µ∈�� which implies that

WFg�d∗T � �⊆d∗WFg�T �� (33)

Note that Nd∩WFg�T � �=' in Example 5.1. We conclude that the validity
(32) cannot be extended to arbitrary pullbacks of Colombeau functions
under smooth maps.

Remark 5.1. We note that a common feature of the examples introduced
in Section 4 is that they are formed as pullbacks of (canonical images of)
distributions under generalized maps. Thus the fact that—contrary to the
distributional setting—composition of generalized functions can be carried
out in � (subject to certain growth conditions) can be viewed as one of the
causes of the new microlocal effects presented there.
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6. G. Friedlander and M. Joshi, “Introduction to the Theory of Distributions,” 2nd ed.,

Cambridge Univ. Press, Cambridge, UK, 1998.
7. T. Gramchev and M. Oberguggenberger, Regularity theory and pseudodifferential

operators in algebras of generalized functions, in preparation.
8. M. Grosser, E. Farkas, M. Kunzinger, and R. Steinbauer, On the foundations of nonlinear

generalized functions, I, II, Mem. Amer. Math. Soc., in press.
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10. L. Hörmander, “The Analysis of Linear Partial Differential Operators,” Vol. I,
Springer-Verlag, Berlin/Heidelberg, 1983, 2nd ed., 1990.
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