TCT-247

Incidence and Characterization of Stent Dissections in Women Versus Men: A Report from the Massachusetts General Hospital Optical Coherence Tomography Registry

Magdalena Zeglin-Sawczuk,1,2 Bi-Kyung Jung3, Taka Ashikaga4, Koji Katoh5, Tsaiyi Yometta3, Se-Youm Choi6, Soo Joong Kim7, Christina Kratulan1, Hang Lee8, Harold Ginsburg9

1University of Vermont, Burlington, VT, 2Harvard Medical School, Boston, USA, 3Massachusetts General Hospital, Boston, MA, 4University of Vermont, Burlington, USA

Background: We hypothesized that women are more prone to develop coronary dissections during PCI due to potential balloon over-sizing or gender specific plaque or vascular characteristics. To date, such a difference in edge dissection has not been systematically studied.

Methods: The MGH OCT Registry is an international registry of patients undergoing PCI. We identified 206 patients (159 men, 47 women) with stable angina or acute coronary syndrome with adequate OCT images for gender specific comparison in areas of non-overlapping stents. Presence of proximal/distal edge dissections, characteristics of dissections, underlying plaque composition at stent borders and luminal diameters were assessed and compared. A multivariable logistic regression model was applied to determine if female gender was independently predictive of coronary dissection after adjusting for clinical and OCT characteristics.

Results: Women had smaller mean reference vessel diameter (2.89 mm vs 3.07 mm, p=0.04) when compared to men. No gender difference was observed in age, clinical characteristics, presentation, stents per patient or plaque characteristics. Incidence and characteristics of edge dissections were different in women compared to men (Table1). These data showed that female gender (OR: 2.3, p=0.02) was an independent predictor of coronary dissection. Hypertension (OR: 2.1, p=0.03), plaque calcification at distal edge (OR: 4.6 p=0.02), lipid rich plaque at proximal edge (OR: 3.1 p=0.01) and lipid rich plaque at distal edge (OR: 3.4, p<0.01) were independently associated with the development of stent edge dissection.

Conclusions: OCT confirms that women have approximately a two-fold increased risk of developing coronary edge dissections as compared to men. The unique characteristics of gender associated dissections (proximal edge, flap length) warrant further investigation into gender specific device-vessel wall interactions.

TCT-248

Early and late stent thrombosis: different clinical entities? IVUS findings

Leire Unzuel1, Hernandez Felipe2, Maite Velazquez2, Julio Garcia Tejada3, Agustín Albarrán1, Javier Andreu1, Taxón Juan1

1H. MONTEPRÍNCIPE, MADRID, NY, 212 OCTUBRE, MADRID, NY, 312 OCTUBRE, MADRID, SC, 412 OCTUBRE, MADRID, Spain

Background: Stent thrombosis (ST) is a rare but devastating adverse event. The Academic Research Consortium proposed a standard classification of the ST based on the elapsed time since stent implantation: early ST (0-30 days), late ST (>30 days), and very late ST (>12 months). The multicenter Spanish Registry ESTROFA suggested that the patients with EST and LST presented a different clinical profile, which may correlate with a different physiopathologic mechanism. The aim of this study is to describe the differences between EST and LST analysing the clinical characteristics, therapeutic management and intracoronary ultrasound (IVUS) findings.

Methods: Patients with demonstrated ST presented in a single center were collected. Demographic, procedural variables and treatment was recorded. ST were divided in two groups: EST and LST (>30 days).Statistical analyses were performed with SPSS 14.0.

Results: 45 ST were detected:23 EST (11 of them acute ST) and 22 LST (7 very LST). 16 were bare metal ST and 29 were drug-eluting ST. Patients with EST were older (68.5±11.9 vs. 59.8±12.6) and had more diabetes (63.6% vs.34.8%). Multivessel disease was more frequent in the group of LST. The mortality rate was higher in the group of EST (30% against 4.5% for LST). The vessel most frequently affected was the LAD for EST (60% against 70% for LST). The vessel most frequently affected was the LAD for EST (30% against 4.5% for LST). The vessel most frequently affected was the LAD for EST (30% against 4.5% for LST). The vessel most frequently affected was the LAD for EST (30% against 4.5% for LST).

Conclusions: The physiopathologic mechanism of the EST and LST seems to be different. A specific treatment for each entity could be necessary. The IVUS is an invaluable tool in the matter of ST, providing precise information of the mechanism of ST and guiding the best therapeutic choice.

TCT-249

Different Optical Coherence Tomography Neointimal Tissue Appearance of Drug-Eluting Stent Restenosis After Bifurcation Stenting

Sakoto Tahara1

1New Tokyo Hospital, Matsudo, Chiba

Background: Higher incidence of drug-eluting stent (DES) restenosis after bifurcation stenting has been suggested. However, it is another problematic issue associated with bifurcation stenting. We assessed restenotic tissue characteristics after DES deployment at bifurcation using optical coherence tomography (OCT).

Methods: One hundred and fourteen angiographically documented in-stent restenotic lesions of five types of first- and second-generation DES (sirolimus DES: 50%, paclitaxel DES: 24%, zotarolimus DES: 3%, everolimus DES: 20%, biolimus DES 3%) in 90 patients were included. OCT appearance of restenotic tissue was qualitatively assessed.

Results: The vessel most frequently affected was the LAD for EST (30% against 4.5% for LST). The vessel most frequently affected was the LAD for EST (30% against 4.5% for LST). The vessel most frequently affected was the LAD for EST (30% against 4.5% for LST). The vessel most frequently affected was the LAD for EST (30% against 4.5% for LST).

Conclusions: Different restenotic tissue characteristics were identified by OCT at bifurcation after DES deployment. This may depict a peculiar healing mechanism correlated with DES deployed at bifurcation.

TCT-250

Predictors of In Stent Restenosis by Optical Coherence Tomography Derived Tissue Characterization In The Novel In Stent Neointimal Hyperplasia Model Of Familial Hypercholesterolemic Swine

Piotr Buszman1, Taylor Palmieri1, Maxwell Afari2, Armando Tellez3, Yaping Cheng4, Jong Shuan Yeh5, Seung-Jin Oh5, Greg Katzula6, Juan Granada1

1Cardiovascular Research Foundation, Orangeburg, NY

Background: Several publications have shown the potential for in vivo neointimal characterization using OCT-based light intensity backscattering. Several neointimal patterns have been described and correlated with histopathology. Nevertheless, the clinical significance of these findings is unclear. In this study, we aimed to seek for predictors of in-stent restenosis (ISR) based on OCT tissue characterization analysis in a novel peripheral artery model of familial hypercholesterolemic swine (FHS).

Methods: A total of 15 arterial segments of 8 FHS were enrolled. At baseline balloon injury followed by self-expandable stent implantation was performed. Two weeks after, each site underwent OCT with tissue characterization followed by POBA. All animals were then followed for additional 28 days. Morphometric OCT analysis was performed before POBA and at follow up. At last follow up, stent segments were labeled as ISR (>75%) according to percent area of stenosis (%) by OCT. Tissue characterization by OCT included neointimal structure and light backscatter analysis following previously published definitions. Each stent was divided into 5 segments along the longitudinal axis and matched with corresponding cross sections at follow up.

Results: A total of 75 stent segments were analyzed in which ISR occurred in 18.7%. Mean %AS was 21.7±15% before treatment and 56.6±22% at termination (p<0.01). Sections presenting with ISR, had higher %AS (34.1 vs. 12.3%;p<0.01), occurrence of heterogeneous neointima (64.3% vs. 19.7%; p<0.001) and low tissue backscattering (42.8% vs. 26.7%; p=0.01) at 14 days. In the multivariate analysis the presence of a heterogeneous neointima (OR:5.9 [1.2-28.2], p<0.01) and low tissue backscattering (OR:2.9 [1.1-7.8]; p<0.01) were the only independent predictors of ISR at 28 days, regardless of baseline %AS (OR:53.6 [0.1-42797];p=0.24).

Conclusions: The presence of heterogeneous neointima and low light tissue backscattering was predictive of the restenosis process by 6 and 3 fks respectively. These findings could assist in the decision making process and guide the selection of the most appropriate therapeutic strategy for ISR.