
 Procedia Computer Science 18 (2013) 2647 – 2650

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
doi: 10.1016/j.procs.2013.06.002

International Conference on Computational Science, ICCS 2013

On Mixed Precision Iterative Refinement for Eigenvalue Problems

Karl E. Prikopaa, Wilfried N. Gansterera,∗

aUniversity of Vienna, Research Group Theory and Applications of Algorithms, Austria

Abstract

We investigate novel iterative refinement methods for solving eigenvalue problems which are derived from Newton’s
method. In particular, approaches for the solution of the resulting linear system based on saddle point problems are compared
and evaluated. The algorithms presented exploit the performance benefits of mixed precision, where the majority of operations
are performed at a lower working precision and only critical steps within the algorithm are computed in a higher target preci-
sion, leading to a solution which is accurate to the target precision. A complexity analysis shows that the best novel method
presented requires fewer floating point operations than the so far only existing iterative refinement eigensolver by Dongarra,
Moler and Wilkinson.

Keywords: iterative refinement; eigenvalue problems; mixed precision; saddle point/equilibrium problems

1. Introduction

We investigate novel iterative refinement methods for solving the eigenvalue problem Ax = λx with symmetric
A ∈ Rn×n based on Newton’s method for solving non-linear equations. Iterative refinement for linear systems [1]
is a strategy for improving the accuracy of a computed solution by trying to reduce round-off errors. The method
iteratively computes a correction term to an approximate solution by solving a linear system using the residual
of the result as the right-hand side. Mixed precision iterative refinement for solving linear systems of equations
[2] is a special performance-oriented case of iterative refinement where the majority of operations is performed in
single precision while still achieving double precision accuracy.

This paper introduces a mixed precision iterative refinement method for eigenvalue problems by returning
to the origin of iterative refinement, Newton’s method, which leads to linear systems changing in each iteration
for each eigenpair. The complexity of solving the resulting linear systems for all n eigenpairs directly would be
O(n4), which is too high for an efficient eigenvalue iterative refinement method. Therefore we exploit solvers for
equilibrium problems to reduce the complexity and find an efficient solution for the linear systems.

2. Related Work

Dongarra, Moler and Wilkinson [3] described an iterative refinement method for improving the numerical
accuracy of eigenvalues and eigenvectors, based on the same concept as iterative refinement for linear systems

∗Corresponding author. Tel.: +43-1-4277-78311
E-mail address: wilfried.gansterer@univie.ac.at.

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82831405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

2648 Karl E. Prikopa and Wilfried N. Gansterer / Procedia Computer Science 18 (2013) 2647 – 2650

[1]. Their eigenvalue iterative refinement [3, 4] improves eigenvalues and either improves or computes the corre-
sponding eigenvectors. The method is divided into two parts [4]: the pre-SICE phase and the SICE phase. In the
pre-SICE phase the matrix is factored in single precision using the Schur decomposition A = QUQ∗, where U is
an upper triangular matrix and Q is a unitary matrix. The SICE phase then uses the results from the Schur decom-
position in combination with triangularizations using plane rotations to improve the approximate eigenvalues by
iteratively solving a linear system for a correction term using the residual r = λx − Ax as the right hand-side.

3. Computational Cost of Existing Eigenvalue Iterative Refinement

In the LAPACK User’s Guide [5], the LAPACK eigenvalue solver for symmetric matrices xSYEVD is described
to have a floating point operation count of 9n3 for computing the eigenvalues and the right eigenvectors and 1.33n3

operations for computing the eigenvalues only. As described in [4], the pre-SICE phase requires 10n3 + 30n2

fused-multiply add (FMA) operations, which corresponds well with the flop count of the LAPACK function for
computing the eigenvalues of a general matrix. The SICE phase requires 13n2 FMA operations per iteration. The
author states that on average 3 iterations are needed to improve an eigenpair. Our experiments have shown that
while this is correct for small matrices with n = 10, the number of iterations required increases with the matrix
size, for example, a matrix with n = 1000 requires on average 4.77 iterations to reach convergence.

The method described in [3, 4] computes the majority of operations, the Schur decomposition and solving
the linear systems, in single precision (SP) and only a few operations, computing the residual and updating the
result, use double precision (DP) to achieve the target accuracy of the eigenpairs. To compute all n eigenpairs to
DP accuracy, the total number of operations is (10 + 13k)n3 FMA operations with k being the average number
of iterations and kn3 operations being executed using DP to compute the residual. Estimating the performance
difference between SP and DP to be a factor of 2, the algorithm would perform (5 + 7k)n3 DP operations. Thus,
for k = 5 the flop count is higher than for the LAPACK eigenvalue solver for general matrices xGEEV [5], which
requires 26.33n3 FLOPs to compute the eigenvalues and eigenvectors.

4. Newton’s Method for Iterative Refinement Eigensolver

Iterative refinement is based on Newton’s method for solving non-linear equations, which finds a root of a
function f (x) using the iterative process xk+1 = xk − f (xk)/ f ′(xk). In higher dimensions, f ′(x) is the Jacobian
matrix J f (x) which results in a linear system of equations. In iterative refinement, the function f (x) is the residual
of the solution which is being improved. The residual of eigenvalue problems can be expressed for each eigenpair
as Ax − λx. In [6], the function f is expanded by the additional condition x�x − 1 to normalize the eigenvector x.

For an eigenpair the function is defined as f (x, λ) =
(

Ax − λx x�x − 1
)�

. f (x, λ) = 0 if and only if Ax = λx

and xT x = 1, which requires x to be normalized. An alternative approach is f (x, λ) =
(

Ax − λx − x�x−1
2

)�
.

Introducing the factor−0.5 leads to a symmetric Jacobian matrix J f (x, λ) =
(

A − λI −x
−x� 0

)
. This structure can be

exploited by special system solvers, as will be shown in Section 5. The correction termΔ(xk, λk) =
(
Δxk Δλk

)�
consists of a correction for the eigenvector and for the eigenvalue and is found by solving the linear system
J f (xk, λk) Δ(xk, λk) = f (xk, λk). Then, the approximate solution from the previous iteration is updated according
to (xk+1 λk+1)� = (xk λk)� + Δ(xk, λk).

The eigenvalue iterative refinement takes an approximate eigenvalue and a random vector as its input and each
eigenpair is refined separately. Based on experimental observations, compared to [6], the rate of convergence can
be improved significantly by normalising the eigenvector xk before constructing and solving the linear system.
For each eigenpair a new linear system has to be solved in each iteration because the improved eigenvalue and
eigenvector appear in the function f (x, λ) and in its Jacobian. Therefore the system of equations changes in each
iteration. If the linear system was factorized, this would lead to a complexity of O(n3) for improving a single
eigenpair, resulting in a complexity of O(n4) for improving all eigenpairs multiplied by the number of iterations
required to reach a target accuracy. This is too high for an efficient eigenvalue iterative refinement method.
The Jacobian matrices are saddle point matrices [7, 8, 9] and corresponding solvers can be used to reduce the
complexity.

2649 Karl E. Prikopa and Wilfried N. Gansterer / Procedia Computer Science 18 (2013) 2647 – 2650

5. Saddle Point Problems

The special structure of saddle point matrices can be exploited when solving such systems. There are direct
and iterative methods for solving equilibrium problems. A direct method is the range space method [9], which
assumes a symmetric saddle point matrix. Applying the range space method to iterative refinement solves the
eigenvalue problem. This does not yet reduce the complexity of the iterative refinement method because multiple
linear systems have to be solved for the range space method. The range space method only requires a solver for
the shifted linear system A − λI.

The initial approximation for the eigenvalues can be computed using the Schur factorization A = QUQ� in
single precision. The Schur factors can then be used to solve the linear systems by applying the shift to U and
inverting U − λI. This removes the necessity of a decomposition in each iteration and reduces the complexity for
improving an eigenpair to O(n2). As we consider A being symmetric in this paper, the Schur factor U is a diagonal
matrix and the shifted system can be inverted at a very low cost of n operations. The orthogonal matrix Q from
the Schur factorization can be used as the initial approximation of the eigenvectors, but random values can also be
used instead although it will increase the number of iterations required until convergence. This behaviour will be
shown in Section 6. When computing U − λI, the approximate eigenvalue is subtracted from the diagonal of U.
This results in U becoming singular, causing the inversion to fail. A small correction δ has to be introduced when
subtracting the eigenvalue from the diagonal of U to ensure non-singularity.

Acquiring the initial approximate eigenvalues through the Schur decomposition requires 9n3 SP operations
[10]. For each eigenpair, computing the residual costs n2 DP operations. The range space method requires the
solution of three linear systems in SP using the already available Schur factors, each solution therefore consisting
of two matrix-vector operations (2n2) and a back-substitution (n2/2) to invert U − λI. The total number of oper-
ations is 8.5n2 per each iteration for each eigenpair. Taking into account the mixed precision computation with a
speed-up factor 2 for SP, the total number of operations would be further reduced to (4.5+4.75k)n3 DP operations.
Due to A being symmetric, the Schur factor U becomes a diagonal matrix and a matrix-vector operation is reduced
to n multiplications, leading to (9 + 7k)n3 operations and considering SP to (4.5 + 4k)n3 DP operations. Thus, the
new method has a lower complexity than the algorithm in [4] with (5+7k)n3 DP operations as shown in Section 2.

Another factorization of a symmetric matrix A is the Householder tridiagonalization A = QTQ�, with T
being tridiagonal and Q the product of the Householder transformations. As described previously for the Schur
decomposition, the shifted linear systems can be solved analogously by applying the shift to T, again resulting in
the reduced complexity of O(n2) for each improved eigenpair.

The approximate eigenvalues are obtained computing the Householder tridiagonalization in 4n3/3 SP opera-
tions followed by the Pan-Walker-Kahan QR algorithm with a complexity of O(n2) [10]. The product Q of the
Householder transformations is needed explicitly for solving the shifted linear systems, which requires 4n3/3 SP
operations. The three linear systems solved for the range space method consist of two matrix-vector operations
(2n2) and a bidiagonalization to solve the tridiagonal shifted system T − λI with a complexity of O(n). This totals
to 8n3/3 + 7kn3 operations. Applying mixed precision, only the computation of the residual requires DP with n2

operations, reducing the total number of DP operations to (4/3+ 4k)n3. If the number of iterations k was to be the
same for all discussed approaches, the Householder approach would lead to the lowest number of operations.

6. Experiments and Initial Results

The experiments compare the eigenvalue iterative refinement by Dongarra, Moler and Wilkinson [4] (SICEDR),
and the saddle point approaches with Schur factorization (SPSIR) and Householder tridiagonalization (SPHIR).
Almost all experiments were conducted using Matlab 2010a with the exception of SICEDR which was imple-
mented in C. The initial experiments summarized in this section focus on the number of iterations required for
convergence and the accuracy of the results, which is compared based on the relative residual. The iterative
process terminates if the correction term ‖Δ(x, λ)‖∞ is less than a defined threshold ε and a predefined maximum
number of iterations is set as an additional termination criterion. For our experiments random, symmetric matrices
are used, ε = 10−12 and the maximum number of iterations is set to 20.

Figure 1 shows the average number of iterations per eigenpair for different methods. The comparison cannot
be limited to the number of iterations but has to also include the total floating point operations. The DP operations

2650 Karl E. Prikopa and Wilfried N. Gansterer / Procedia Computer Science 18 (2013) 2647 – 2650

SICEDR
SPSIR (init. with Q)

SPSIR (init. with random vector)
SPHIR

Size n

A
v
er
a
g
e
n
u
m
b
er

o
f
it
er
a
ti
o
n
s

500450400350300250200150100500

12

11

10

9

8

7

6

5

4

3

2

1

0

Fig. 1. Average number of iterations for different system sizes n

SPSIR (init. withQ)
SPSIR (init. with random)

SPHIR

Iteration number

‖A
x
−
λ
x
‖ 1

/
‖A
‖ 1
‖x
‖
1

54321

10−2

10−4

10−6

10−8

10−10

10−12

10−14

Fig. 2. Comparison of the convergence history for the eigenpair
(λ0 , x0) of a symmetric matrix with n = 1000

for the mixed precision methods for n = 500 based on the operations count described in the previous sections are:
SICEDR with k̄ = 4.23 requires 34.61n3 FLOPs, SPSIR with k̄ = 5.44 requires 30.34n3 FLOPs and SPHIR with
k̄ = 9.22 requires 38.21n3 FLOPs. Note that the average iteration count k̄ for SPSIR initialised with Q is slightly
higher compared to SICEDR, but the total operations count is lower.

In Figure 2, the convergence history for the first eigenpair λ0, x0 of a matrix with n = 1000 is shown for all
methods in terms of the relative residual. SPSIR initialized with the Schur factor Q only requires 3 iterations. A
random vector as the starting vector leads to a higher iteration count, achieving the target precision in 5 iterations.
SPHIR does not have an approximation for the eigenvectors and therefore starts with a random vector, converging
in 5 iterations.

7. Conclusion

New approaches for mixed precision eigenvalue iterative refinement have been presented based on the solution
of saddle point problems. The range space method is used in combination with the Schur factorization and House-
holder tridiagonalization to solve the resulting non-constant linear systems. It has been shown that the number of
floating point operations is lower than the previously described iterative refinement method by Dongarra, Moler
and Wilkinson [4], even though the number of iterations is higher. Future research will have to analyse the conver-
gence, the numerical accuracy and the performance of the presented methods. The behaviour for non-symmetric
system matrices and other saddle point solvers are future topics of interest.

Acknowledgements

This work has been partly supported by the Austrian Science Fund (FWF) in project S10608 (NFN SISE).

References

[1] J. Wilkinson, Rounding Errors in Algebraic Processes, Her Majesty’s Stationery Office, London, 1963.
[2] A. Buttari, J. Dongarra, J. Kurzak, P. Luszczek, S. Tomov, Using mixed precision for sparse matrix computations to enhance the perfor-

mance while achieving 64-bit accuracy, ACM Trans. Math. Softw. 34 (4) (2008) 17:1–17:22.
[3] J. J. Dongarra, C. B. Moler, J. H. Wilkinson, Improving the Accuracy of Computed Eigenvalues and Eigenvectors, SIAM Journal on

Numerical Analysis 20 (1) (1983) 23.
[4] J. Dongarra, Algorithm 589: SICEDR: A FORTRAN subroutine for improving the accuracy of computed matrix eigenvalues, ACM

Transactions on Mathematical Software (TOMS) 8 (4) (1982) 371–375.
[5] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney,

D. Sorensen, LAPACK Users’ guide (third ed.), Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.
[6] H. Röck, Finding an Eigenvector and Eigenvalue, with Newtons Method for Solving Systems of Nonlinear Equations, Tech. rep., De-

partment of Scientific Computing, University of Salzburg, Salzburg (2003).
[7] S. A. Vavasis, Stable numerical algorithms for equilibrium systems, SIAM J. Matrix Anal. Appl 15 (1992) 1108–1131.
[8] M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numerica 14 (2005) 1–137.
[9] W. Gansterer, J. Schneid, C. W. Ueberhuber, Mathematical properties of equilibrium systems, Technical report (2003).

[10] G. Golub, C. Van Loan, Matrix Computations, Johns Hopkins University Press, 1996.

	Untitled

