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Abstract

An oriented graptdominates pairsf for every pair of verticesl, v, there exits a vertexw such
that the edgesyu and wv both lie in G. We andruct regular oriented triangle-free graphs with
this property, and thereby we disprove a conjecture of Myers. We also construct oriented graphs for
which each pair of vertices is dominated by a unique vertex.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Let G be a digraph. We say th&t is 2-dominatingor that itdominates pair# for every
pairvy, v2 € V(G) there existal € V(G) suchthatuvy, uv, € E(G). More generally, we
sayG isr-dominatingor that it dominates rtuplesif for everyr -tuplevs, ..., vy € V(G)
there existal € V(G) suchthatuvy,...,us, € E(G). We sayG dominates pairs (or
r-tuples)uniquelyif the vertexu is unique.

Let g be the (direatd) girth of G. If g > 3 thenG is an orienéd graph, i.e., for
eachu,v € V(G), at mos one of the edgesiv, vu lies in E(G). We will be mostly
interested in the case wheh is an orienéd graph. For any vertex € V(G), write
I't(v) = {w : viv € E(G)) for the vertices dominated hy

Myers [10] conjectured that every 2-dominating oriented graph contains an oriented
triangle. One of our aims is to give an infinite family of counterexamples to this conjecture.
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Myers was led to his conjecture by trying to prove a conjecture of Seymour (quoted
by Dean and Latka5]) saying that every oriented graph contains a vettesuchthat
It w)| > 2| ()|, wherew e I''T(v) iff w is dominated by some vertex in
I't(v) U {v).
The special case of Seymour’s conjecture for tournam&me’s conjecturgsee p)),
was poved by Fisher6], and then a simpler proof was given by Havet and Thomagjsé [
Also, the special case of Seymour’s conjeettor ciraulant oriented graphs follows from
the Cauchy-Davenport theorem (se&-f7,8]) that for S C Z, we have|S+ § >
min{n, 2| S| — 1}. A circulant oriented graplinas vertex sef, and its edges are given by a
setS C Zn \ {0}: a vertexa dominates a verteltiff b —a e S. Our counterexamples to the
conjecture of Myers are also circulant oriented graphs, i.e., we shall fin&setg, \ {0}
suchthatS— S =7,,0¢ S+ S and 0¢ S+ S+ S. We leaveopen the question of
whetherS — S = Z;, implies thatS+ S+ S+ S = Zy, and wedo not even know whether
there is & such that if S— S = Z,, then thek-fold sum of Swith itself is the entireZ,.
Another of our aims in this paper is to stahat here are infinitely many uniquely
2-dominating graphs. As we shall see, these are oriented graphs G such that the collection
of out-setsl"™ (v), v € V(G), is the set ofines of a projective plane with point set(G),
and so is the collection of in-sefS~(v). Another of the problems that we leave open
is whether there are triangle-free uniqueld@minating graphs. We shall show that the
exampeks that we construct all have oriented triangles.

2. Sum sets and difference sets

As stated above, we shall considerceilant digraphs obtained by takinggG) = Zn;,
the integgers modN, and letting uv € E(G) iff v — u € Sfor some suitably chosen set
SC Zn \ {0}. For the grah to be an oriented graph dominating pairs we need

SL S—S=7n,
S2 0¢S+S

whereS+ S={a+b:a,be S} Ingereral, for the (directed) girth to be k we need
ther-fold sumsS+ S+ - - - 4+ Snotto contain O for alf < k. If Sis a set anah € Z, write
nS={nx:x e S}.

Lemmal. ming_s_z, IS+ S+ S = 0o(N) as N — oo.

Proof. Let T = {2,3,11,14,17,19,21}. ThenT — T = {-19,...,19} \ {+13} and
T+T+TC{6,...,9U{15,...,63}\ {29 58}. Pickm minimal so thatN < 24(29)™
and letSy = T + 29T + (29)2T + - -- 4+ (29™T. Firstwe prove by induction om that
Sn— Sn 2 {—12(29™M, ..., 12(29™. This is dearly true form = 0, so asumem > O.
Now Sy =29Sh-1+ T,S0Sm — Sn = 29(Sn-1 — Sn-1) + (T — T). Pickx with |x| <
12(29)™. For al suchx, we can writex = 29x’ + x” with |x”| € {0, ..., 12} U {14, 16}
and|x'| < 1229™ L Butx’ € Sn-1 — Sn_1 andx” € T — T. As a onsequence,
Sn — Sn contains every residue class mbdd Now considerthe setSy + Sn + S Let
X € Sn+ Sn+ Snand writex in base29,x = Y& (29)', & € {0, ..., 28}. We shall show
that it is impossible tha; = 12 anda ;1 = 1. Sincex € Sn + Sn+ Sn, X = 3. b (29)',
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with bi € T+ T + T. Sincebi < 63,Y,_4bj(29) < 3(29)'. Herce b; must be 12,
11, or 10 mod 29. The only sudh are 41, 40, and 39. But thd®,; = 0 mod 29, a
contradiction. Since no pai@&, a+1) can be (12, 1) for any, the number of elements
iN Sn+ Sn + Sy is 0(3(299™1) = o(N). Herce if we letS be the set of reductions of
elements of5,, mod N, then he number of elements B+ S+ Sis alsoo(N). O

Coroallary 2. For all sufficiently large N there is an oriented graph on N vertices which
dominates pairs and is (oriented) triangle-free.

Proof. TakeN large enough that thé& given by the previous lemma satisfi&st+ S+ S| <

5. Clearly|S+ S| < [S+ S+ S|, 50/2(S+ S+ S U3(S+ )| < ¥, wherefor a setT
andn € Z,nT = {nx : x € T}. Herce there are six consecutive elements mbthat do
notliein 2(S+ S+ S U 3(S+ S). At least one of these will be divisible by 6%, say

6¢, andby replacingSby S — c we can ensure that@ 2(S+ S+ S U 3(S+ ). Then

0¢ S+ Sand 0¢g S+ S+ S. This then gives an oriented graph as above which has no
oriented triangles. O

For N = 29 we can také&s to be theT defined inLemma 1 This is the sméest example
that we know of for an oriented triangle-free graph that dominates pairs. There are several
other constructions of such graphs. We list three such constructions.

2.1. Blowing up vertices

Take any example of an oriented triangle-free graph that dominates pairs (such as the
above example on 29 vertices) and replace one or more vertices by independent sets of
vertices to give an example for larghr. This shows that examples exist for &l > 29. In
general the graph constructed will not be a circulant graph.

2.2. A simple explitconstruction

Letn > 8 be anintegerand I8 = {1,2,...,.n—2} U {n,2n,2n+ 1,1 — 2n}. If
5n +3 < N < 6n — 5 then his gives an example dfy. Note hat such examples exist
forall N > 63.

2.3. The base b expansion method

Chooseb, k > 1 and letN = bX — 1. Fora € Zn, considera as an integer in the range
0,..., N —1andwrite ain baseb, a = !‘;&ajb',aj € {0,...,b—1}. Let Sbe the set
of a for which 0 < ik:‘& a; < k(b —1)/3. If bandk are sulfficiently large then this also
gives an example.

Although these constructions are simpler than that givelhéoyma 1 we consider
Lemma 1to beof independent interest and pose the following.

Question 1. Does there exist an N and a set S Zy such hat S— S = Zy, but
S+ S+ S+ S#ZN?

If the answer to this question is in the affirmative, is it true that for ekery 3 there
exist anN and a se C Zy suchthatS — S = Zy, but thek-fold sum of Swith itself is
not the whole ofZn ?
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3. Unique domination of pairs

Lemma 3. Suppose we are given a set of points=Hpy, ..., pn} and lines{lq, ..., Im},
li € P, with m < n such bat every pair of points lies in a unique line. Then either

(a) there is a line containing all the points and all other lines have cardinadity or

(b) there is a line ontaining n— 1 points and all other lines consist of one point from this
line and the th point; or

(c) n = d? +d + 1, and the points and lines form a projective plane of order @.

Proof. If two lines intersect in at least two points then these two points would not lie in a
uniqueline. Hence the intersection of two linesntains at most one point. Assume that

is the line with the largest number of points, and|lef = a+ 1. If a+ 1 = n then all
the other lines can have at most one point and we are in case (a). Now assufne: n

so there are suoe points not if1. Then here must be lines that contain a point pnd
apoint notinly. Letb 4+ 1 be the maimum size of sich aline, sayl,, and asume that

I intersectd; at p. We dhall bound the number of linas. Each pair of points, not equal
to p, one froml1 and one fromi,, specifies a unique line, and all these lines are distinct.
There areab such lines none of which contaip. The number of lines containing is at
Ieast”%‘l.‘*l + 1 dnce these partition the— 1 points not equal t@, and ajart froml; they

all contain at mosb points not equal tg. Herce

ab+1+n_+a_1§m§n. (1)
Rearranging givea(b2 —1) < (n—1)(b—1). Assume nw thatb > 1. Then
n—1>ab+1). (2)

The number of lines other thdm going through each point df is at Ieast%b‘l, and
these lines are all distinct. Hence

n_ﬁa_l(a+1)+1§m§n. 3)
Thus
(n—l@+1-b) <a@+1). (4)

Substituting inequality 2) into (4) gives

(h—1@+2a—-n-1%2<a’@+1) (5)
or, rearranging,

n—-l-ain-1-a—ad>0. (6)

The casen — 1 — a < 0 implies thatl; contains all the points. Hence we may assume
n—1—ax>0.Thus

n—1>a@+1). 7

This together with Eq.4) givesb = a andn = 1 + a + a2. In fact, thereare at mosa
lines oher thanl; through p, so dl lines throughp must havea + 1 points. Since every
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point is now m aline with a + 1 points, we see that every line hast+ 1 (or 0) points. If

we had two non-intersecting lines with+ 1 points, then by considering lines meeting one
point of the first and one point of the second, we would have a total of at(east)? > n

lines, a contrdiction. Hence every two lines intersect in a single point, and the set of lines
and points form a projective plane.

The only remaining case is whén< 1, so every line intersectirlg has at most two
points. Hence for each pair of points, ondjrand one outsidé, there is aunique line
through the pair, and all such lines are distinct. This gives atot@defl)(n—a—1)+1
lines. Thusa+1)(n—a—1) <n-—1,so

an—1 <a@+1D. (8)
Hencen < a+ 2 and we arericase (b). O

Corollary 4. If G is an oriented graph that dominates pairs uniquely #dG)| > 1then
the sets" ™ (v) form the lines of a projective plane on(@).

Proof. Every pair of points is uniquely dominated, so lies in a unique lingv). The
number of lines is the same as the number of points. Hendtetmma 3we either have a
projective plane, or one of the two special cases listed in that lemma. It is easy to see that
the two special cases cannot give rise to an oriented grapil

It remains to show that such oriented graphs exist. For this we consider the known
projective planes, given by the lines in a three-dimensional vector space over a finite field.

Theorem 5. For all g = p", p prime, n> 1, there exits anoriented graph of order
a2 + q + 1 that dominates pairs uniquely.

Proof. LetFq be the feld with g elements. LeF s be the (unique) cubic extensionBg.
Then we can regarfl;s as a three-dimensional vector space dgrand wecan therefore

regard the projective plane ovEy asIF;g/]FX, Where]F;3 andFg are the groups of non-

zero elements of ;3 andFq respectively. The lines of this projective plane correspond
to two-dimensionalFq-subspaces df;s. Recall that the trace map TrFys — Fqis a

surjectiveFg-linear map. Fow IF;?, (to be determined) leB,, be the following graph:

GL V(Ga) = F2/F},
G2 E(Ggy) = {uv: Tr(av/u) = 0},

where the condition Terv/u) = 0 is independent of the choice of representatives, af
in F:3. The setl"*(u) corresponds to a two-dimensional subspacggpf so is aline in
the projective space.

If the lines given byu; andu, are the same, then the linear maps—> Tr(av/u;)
have the same kernel. But this implies that the maps are proportionaly/Tp) =
ATr(av/u) = Tr(kev/ug) for all v. By letting v run over a basis foFyz, we seethat
a/U2 = Aa/Uz, SOU; = AUz, andui anduy give the sam vertex ofG,. The only
remaining conditions concern the girth. These are implied by the following condition:

ClL If Tr(x) = Tr(y) = 0 thenxy # .
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To seetls, takex = y = «. Then Tkav/v) # 0s0G, contains noloops. i, v € V (Gy,),
takex = au/v, y = av/u. Then the condition shows that we cannot have hatlandvu
in E(G). The resulnow follows from thefollowing lemma. O

Lemma®6. For every q = p", p primen > 1, there exids a < IF:3 such that
conditionC1 above holds.

Proof. The kernel of the trace map is a two-dimensioFigisubspace oF ;3. Let {n, n'}
be a basis for this subspace andjet 1'/n. Nowy ¢ Fq, soFq(y) = Fqe and{1, y, v2)
is a basis foffy3 overFg.

The mapIF; — FFg; k = k4 1/k is not surjective sinceﬁF;| < |Fql. Herce there
is an element € Fq not of the formk + 1/k. Let 8 = n? + cnyn’ + n'2. ThenB is
not the product of two trace-free numbers. Indeedail; + azn’)(bin + ben’) = B then
1+ cy + y2 = (a1b) + (a1by + asb1)y + (azbp)y2. But shce{l, y, y2} is a basis over
Fq, we get

aib; =1, azhy =1, aihy + agby =c. (9)

This impliesc = k+ 1/k wherek = aj/ap € FY, a ontradiction.

If A is not a square ifq then it is not a square i s (otherwisqu(ﬁ) would be
aquadratic extension dfq lying in Fy3). Hence some element of the fons, A € IF;,
will be a perfect square iffi;3, since if 8 is not a perfect square, we can takéo be a
non-square iffq. Now chooser so thatw? = A8. O

If @ = 2 mod 3 wecan takew = 1 in the lemma. To see thisve note that the trace
is the sum of tk mnjugates, Tix) = x + x9 + X%, |f Tr(x) = Tr(1/x) = 0 then
X + X9 + x9° = x9 4 x9*=a+1 4 x — 0. Thusx%°~24+1 = 1. Thus the order of in the
grouplF 5 divides gedg? —29+1,9°—1) = (q—-Dgedq—1,0°+q+1) =q—1.
But thenx9 = x, sox € Fq. But then T(x) = 3x # 0, a contradiction.

It is worth noting that the graphs obtained above have a cyclic automorphism. Indeed,
IF;?, is a cyclic group under multiplication of ordgf — 1, song/]Fg has the structure of

a cydic group of ordemj? + q + 1. The condition T¢au/v) = 0 is jus the condition that
the difference in this cyclic group lies in a certain Sgso thegraph can be described as a
circulant graph oy whereN = g + g+ 1 and|S| = q + 1.

4. Unique domination of n-tuples

Lemma 7. Suppose we are given a set of points=R{ps, ..., pn} and lines{lq, ..., Im},
li € P,withm < n,n>r > 3, such hat every r-tuple of points lie in a unique line. Then
either

(a) there is a line containing all the points and all other lines have cardinality or
(b) m=n=r 4 1 and the lines consist of all subsets of P of size h.

Proof. If there is a line containing every poitihen we are in case (a), and this must
occur ifr = n, so asume that < n and some pointp, say, does not lie in every line.
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Letly, ..., Ik be the lines containing, andlk1, . . ., Im the lines notontainingp,. Each
(r — 1)-tuple of points in{ps, ..., pn—1} lies in anl; with i < k since ading p; to this
(r — 1)-tuple gives am-tuple whichlies in a linel;, andi < k since his line containgy.
If the (r — 1)-tuple lies in two such lines, we would have two lines containing ¢his 1)-
tuple andpn. Thus everyr — 1)-tuple lies in a unique ling&y, ..., Ix. Sincek < n — 1 we
can apply induction on. If one of the line$;, i < k contains all the points d? \ { p,} then
it contains all ofP and we are in case (a). In all other caseskémma 3or by induction on
r fromLemma 7 k = n — 1. Hence there is only one lidg not containingp,. Pick any
point p; # pn and someér — 1)-tuple of points containing; butnot pn. This(r — 1)-tuple
mustlie in some unique lingj, j < k. Pick apoint py notinl;. Then ther -tuple obtained
by addingpn can only lie inl, and sdp containsp;. Thusl, = P \ {pn} and every other

line can contain at most— 1 points fromP \ {pn}. There are(?ji) r-tuples containing

pn, but each lind4, ..., lh—1 can only contain one of these. Th j < n— 1. Since
3 <r < nwe haver =n — 1 and thdines consist of alln — 1)-tuples of points. O

Theorem 8. Forr > 3, theonly directed graph withV (G)| > r that dominates r-tuples
uniquely is the complete digraph ont 1 vertices.

Proof. The linesI* (v) satisfy the conditions ofemma 7 Howevery ¢ I't(v) so we
cannot be in case (a). Thus we are in case (b) WMiiG)| =r +1 and|I"+(v)| =r for all

r. Herce there is a directed edge franto every other vertex, and the graph is the complete
digraph orr + 1 vertices. O
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