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Abstract

Let M1 and M» be n-dimensional connected orientable finite-volume hyperbolic manifolds with
geodesic boundary, and let: 71(M1) — 71(M2) be a given group isomorphism. We study the
problem whether there exists an isomeifry M1 — M> such thaty, = ¢. We show that this is
always the case if > 4, while in the 3-dimensional case the existenceyds proved under some
(necessary) additional conditions gn Such conditions are trivially satisfied #f\/; anddM, are
both compact.
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Let M1 and M> be connected orientable finite-volume hyperbalimanifolds with
geodesic boundary. Suppose> 3 and lety : m1(M1) — m1(M>2)be an isomorphism of
abstract groups. We determine ngsary and sufficient conditions ferto be induced by
an isometryy : M1 — M>. When this is the case, we say tleit geometriq'see Section 1
for a more detailed definition). Mostow—Prasad’s rigidity theorem ensures geometricity
of ¢ whenever the boundary aff; is empty fori = 1, 2. Building on classical results in
the theory of Kleinian groups, we will extend Mostow—Prasad’s result to the non-empty
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boundary case, followinglightly different strategiesccording to the dimension of the
manifolds involved.

If M1 andM> are 3-dimensional hyperbolic manifolds with non-empty geodesic bound-
ary, applying Mostow—Prasad’s rigidity theorem to their doubles, i.e., to the manifolds
obtained by mirroringVf1 and M> in their boundary, we will show thap is geometric
provided it is induced by a homeomorphism, rather than an isometry. A result of Marden
and Maskit [8] will then be applied to relate the existence of a homeomorphism inducing
¢ to the behaviour of with respect to theeripheralsubgroups ofr1(M1) andry(M2)

(see below for a definition).

If dim(M1) = dim(M>2) > 4, the existence of an isometyy: M1 — M> such that), =

¢ will be proved by a more direct argument using results from [1,12].

1. Preliminaries and statement

In this section we list some preliminary facts about the topology and geometry of ori-
entable finite-volume hyperbolie-manifolds with geodesic boundary and we state our
main theorem and its corollaries. From now on we will always suppose3. Moreover,
all manifolds will be connected and orientable. We omit all proofs about the basic material
addressing the reader to [3,6,7].

Before going into the real matter, we devote the first paragraph to give a formal defin-
ition of the notion ofgeometric isomorphistetween fundamental groups of hyperbolic
manifolds. To this aim we will need to spell out in detail some well-known elementary
results in the theory of fundamental groups.

1.1. Homomorphisms between fundamental groups

If 9,¢’:G — H are group homomorphisms, we say thats conjugated t@ if there
existsh € H such thaty’(g) = he(g)h~ for every g € G. Let X be a manifold and
x0, x1 be points inX. Then there exists an isomorphism(X, xg) = 71(X, x1) which
is canonical up to conjugacy. It follows that an abstract graugX) is well-defined and
for any xg € X there exists a preferred conjugaagss of isomorphisms between (X)
andm1(X, xo).

If f:X — Y isacontinuous map between manifolds, thfedetermines a well-defined
conjugacy class of homomorphisrfise Hom(z1(X), 7 (Y))/71(Y). If a homomorphism
¢ m1(X) —» m1(Y) is given, we say thap is induced byf if ¢ belongs tof,; if so, with
an abuse we will write = f,, rather tharjg] = f.

Definition 1.1. Let M1 and M2 by hyperbolic manifolds with geodesic boundary and
¢ m1(M1) — m1(M>2) be a group isomorphism. Thenis geometric ifp = v, for some
isometryyr : M1 — Mbo.
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1.2. Natural compactification of hyperbolic manifolds

Let N be an orientable complete finite-volume hyperbalimanifold with (possibly
empty) geodesic boundary (from now on we will summarize all this information saying
just thatN is hyperbolic). Therd N, endowed with the Riemannian metric it inherits from
N, is a hyperboliagn — 1)-manifold without boundary (completenessa¥ is obvious,
and the volume 08 N is proved to be finite in [6]). Moreover, iD(N) is thedoubleof N,

i.e., the manifold obtained by mirroring along its geodesic boundary, th&{N) admits

an obvious complete finite-volume hyperbolic structure. Also observeDliat) has no
boundary, and that there exist natural embeddings— N < D(N), so we can think of
dN andN as of subsets aD(N). It is well-known [1,9] thatD (N) consists of a compact
portion together with some cusps based on Euclidean 1)-manifolds, and it is easily
seen that the ends of can be obtained by intersectingwith the ends ofD(N). So also

N consists of a compact portion together with some cusps of the fosni0, co), where

T is a compact Euclideafm — 1)-manifold with (possibly empty) geodesic boundary such
that (T x [0,00)) NdN = 9T x [0, 00). A cusp based on a closed Euclide@gn— 1)-
manifold is therefore disjoint frond N and is calledinternal, while a cusp based on a
Euclidean(n — 1)-manifold with non-empty boundary intersedtd in one or two internal
cusps ofdN, and is called éoundary cuspThis description of the ends af easily
implies thatV admits a naturatompactificationV obtained by adding a closed Euclidean
(n — 1)-manifold for each internatusp and a compact Euclide&an— 1)-manifold with
non-empty geodesic boundary for each boundaspc@&ome more details on the structure
of the ends ofV will be given in the last two paragraphs of this section.

Whenn = 3, N is obtained by adding t&/ some tori and some closed annuli. In this
case we denote hyly the family of added closed annuli, and we observe that no annulus
in Ay lies on a torus irf N. Note also thatdy = ¢ if N is compact. A loop/ € 71(N)
will be called anannular cusp loogf it is freely-homotopic to a loop in some annulus
of Ay.

1.3. Main result
We are now ready to state our main result.

Theorem 1.2. Let N1 and N2 be hyperbolio:-manifolds, and lep : 71 (N1) — 71(N2) be
a group isomorphism. ki = 3, suppose also that the following condition holds

e ¢(y) is an annular cusp loop i1 (N2) if and only if y is an annular cusp loop in
71(N1).

Theng is geometric.
Theorem 1.2 readily implies the following corollaries:

Corollary 1.3. Let N1 and N2 be hyperboli@-manifolds with compact geodesic boundary
and lety : 71(N1) — m1(N2) be an isomorphism. Thenis geometric.
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Corollary 1.4. Let N be a hyperbolie:-manifold, letlsom(N) be the group of isometries
of N and letOut(r1(N)) := Aut(rr1(N))/m1(N) be the group of the outer isomorphisms of
71(N). If n = 3, suppose also that the boundary®fis compact. Then there is a natural
isomorphismsom(N) = Out(r1(N)).

Proof. Let h:lsom(N) — Out(r1(N)) be the map defined by(y) = ¢.. Thenk is a
well-defined homomorphism. Injectivity @f is a well-known fact, while surjectivity of
is an immediate consequence of Theorem 1.2 and Corollary 113.

1.4. Universal covering and action at infinity

Let N be an-dimensional hyperbolic manifold and let: N — N be the universal
covering ofN. By developlngN in H" we can |dent|ny with a convex polyhedron dfl”
bounded by a countable number ofjdiat geodesic hyperplanes, i € N. For any:; € N
let S;“ denote the closed half-spacel bounded bys; and containing\~/, let S, be the
closed half-space dfli” opposite toSl.+ and letA; be the internal part of the closure at
infinity of §;. Of course we have/ = Mien Sl.+, so denoting by’\vfo<> the closure at infinity
of N we obtainNoo =0H"\ U, ey Ai-

The group of the automorphisms of the coveringN — N can be identified |n a
natural way with a discrete torsion-free subgraUmf Isont™ (H") such thaty (N) =
foranyy e I' andN = N/F Also recall that there exists an isomorphigq(N) =
which is canonical up to conjugacy. Lét(I") denote the limit set of” and IetQ(F) =
dH"\ A(I"). Kojima has shown in [6] thatA(I") = Noo, SO the round ballsp;, i € N
previously defined actually are the connected componeng(@f). A subgroup ofl" is
calledperipheralif it is equal to the stabilizer of one of th&;’s.

Since No = A(I"), we have thatV is the intersection ofl" with the convex hull of
A(I'), sSON is the convex core (see [1,9]) of the hyperbolic manifallty I". This implies
that N uniquely determines” up to conjugation by elements in IsowH"), that I is
geometrically finite and tha¥ is homeomorphic to the manifoldl® U £2(I"))/I".

1.5. Parabolic subgroups df

Let I’ be a subgroup of". We say that™’ is maximal parabolidf it is parabolic (i.e.,
all its non-trivial elements are parabolic) and it is maximal with respect to inclusion among
parabolic subgroups af. If I'" is a maximal parabolic subgroup &7, then there exists
a pointg € 9H" such thatI™ equals the stabilizer of in I'. ThenI"’ can be naturally
identified with a discrete subgroup of IsoifE” 1), so by Bierbebach’s Theorem [9]’
contains an Abelian subgroui of finite index. Ifk is the rank ofH, we say that™’ is a
rank+ parabolic subgroup af'. Now it is shown in [6] that ifi # j, thenA; N Zj is either
empty or consists of one poiptwhose stabilizer is a rank: — 2) parabolic subgroup af'.
Moreover, any maximal ranks — 2) parabolic subgroup of" is the stabilizer of a point
;iwhich lies on the boundary of two different;’s. On the other hand, the intersection of
N with a horoball centered at a point with rask— 2) parabolic stabilizer projects onto
a boundary cusp oV, and any boundary cusp of lifts to the intersection ofV with a
horoball centered at a point with rarik— 2) parabolic stabilizer. It follows that there is
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a natural correspondence between the boundary cusipsawmid the conjugacy classes of
rank<(n — 2) maximal parabolic subgroups &f.

We shall see that rank-1 maximal parabolic subgroupk @iay a special role in the
proof of our main theorem. Since any parabolic subgrou abrresponds to a cusp of,
we have that ifz > 4 thenI” does not contain rank-1 maximal parabolic subgroups, while
whenn = 3 the elements of rank-1 maximal parabolic subgroups @orrespond to the
annular cusp loops previously defined.

Proposition 1.5. Let y be an element of". Theny is parabolic if and only if one of the
following conditions holds

(1) y belongs to a rankk maximal parabolic subgroup df, or
(2) y belongs to a subgroup” of I which contains a finite-index Abelian subgroup of
rank > 2.

Proof. The “only if” part of the statement is an immediate consequence of the discussion
above, so we concentrate on the “if” part. LEt a subgroup ofl" as in condition (2).

A standard result in the theory of Kleinian groups implies thatis elementary, i.e., it
consists either of parabolic elements having all the same fixed point or of hyperbolic ele-
ments having all the same axe. However, in the latter ¢dsghould be isomorphic té,

a contradiction. O

For later purpose we point out the following:

Remark 1.6. For anyk € N let Hy be the stabilizer ofd, in I". If i # j, then either
AiNA;=@PandH;,NH; =§,0rA;NA; ={p} andH; N H; is the rank¢n — 2) parabolic
stabilizer ofp in I'.

2. Some preliminary lemmas

The following result is a slight generalization of Lemma 5.1 in [5], which is due to
J.P. Otal. Notation is kept from the preceding section.

Lemma 2.1. Let j: §"~2 — A(I") be a topological embedding. Thet(I")\j(5"~2) is
path connected if and only jf(S"~2) = 9A; for somel € N.

Proof. If 3N = ¢, then A(I") = §"~1 and the claimed result is readily deduced from
Jordan—Brower separation theorem, so we can assing (.

Suppose that(S”~2) = 3 Ao. Using the upper half-space model of hyperbolic space, we
identify 9H" with (R"~1 x {0}) U {oco} in such a way that\o corresponds t&l = {(x, 0) €
R*1 x {0}: x,_1 > 0}. Now let p1, p2 € A(I")\dAg and let : [0, 1] — (R"~1 x {OH\H
be the straight Euclidean segment which jopsto pa. If { (a;,b;) C [0,1],i > 1} is
the set of the connected components:of (£2(I")), then, up to reordering tha;’s with
i > 1, we havex([a;, bj]) C A;. Let r; be the Euclidean radius of;. SincedA; can



74 R. Frigerio / Topology and its Applications 145 (2004) 69-81

touchd A at most in one point, for any> 1 there exists a path; : [a;, b;] — 9A; with
Bi(ai) = a(a;), Bi(b;) = a(b;) and length(B;) < 2xr;. Now let o; be the path induc-
tively defined as followswg = «, aj11 = Bi+1(¢) if ¢ € [a;j41, bi+1] anda;+1(¢) = o, ()

if t €[0,a;+1]VU [bi+1, 1]. The pathy; is obviously continuous for aniye N. Moreover,
since lim_, - r; = 0, the sequence of pats;, i € N} uniformly converges to the desired
continuous patl : [0, 1] — A(I7)\d Ao.

Suppose now thatt(I")\j (5"~2) is path connected. The Jordan—Brower separation
theorem implies thadH"\ j (S"~2) = A1 U Ay, where the4;’s are disjoint open subset of
dH" with 9A; = j(S"2) for i = 1,2 (since we are not assuming thats tame, at this
stage we are not allowed to claim that thgs are topological balls). Our hypothesis now
forcesAy N A(I") = @ for somek € {1, 2}, so A, C A;; for somel € N. Moreover, since
AL = j(S"2) Cc A(I), itis easily seen that(5"~2) = 9A;, and we are done.O

From now on letN7; and N> be hyperbolicn-manifolds, letr; : H" D ]V,- — N, be
the universal covering o¥; and letl; be a discrete subgroup of Isord") such that
N; £ N;/T;. Letalsop : It — I'> be a group isomorphism satisfying the condition of The-
orem 1.2. If f: N1 — N2 is a continuous map, it is easily seen thais induced byf if
and only if f admits a continuous liff : N1 — N» such thatf o y = ¢(y) o f for every
y eln.

Lemma 2.2. The isomorphisnp satisfies the following conditions

(1) ¢(y) is a parabolic element af if and only ify is a parabolic element of;

(2) There exists a homeomorphigmA(I'1) — A(I2) such thap(y (x)) = ¢(¥)(¢(x))
foranyx € A(I), y € I;

(3) ¢(H) is a peripheral subgroup af if and only if H is a peripheral subgroug?; if
so we also have(A(H)) = A(p(H)).

Proof. Sincey is supposed to satisfy the condition of Theorem 1.2, point (1) is an imme-
diate consequence of Proposition 1.5.

Now a general result in the theory of discrete subgroups of (8dn(see, e.g., [1,
Theorem 4.41]) applies providing the equivariant homeomorplism (1)) — A(I%)
described in point (2).

Let H = stalfA) be a peripheral subgroup éf, whereA is a component of2 (I'1).

By Lemma 2.1, A(I')\A(H) = A(I1)\dA is path connected, sd (I2)\¢(A(H)) =
@(A(I')\A(H)) is also path connected, apdA(H)) is equal toA(K) for some periph-
eral subgrouK of I'x. Let K = staliA’), whereA’ is a component of2 (I%). Now leth
be a loxodromic element a@f with fixed pointsps, p2 in A(H). Sinceg is g-equivariant,
we have thatp(h) is a loxodromic element of with fixed points¢(p1), ¢(p2) which
lie in A(K). Since the boundaries of two different component£2¢f>») can intersect at
most in one point, it easily follows thai(h) € stallA’) = K. Now H is generated by
its loxodromic elements, sp(H) is contained inK. On the other hand, the same argu-
ment applied tap~! shows thatp~1(K) is contained in a peripheral subgroupigf, say
H’, with H ¢ H’'. Now Remark 1.6 implies thal = H’, sogp(H) = K and point (3) is
proved. O
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Corollary 2.3. 9N1 =@ if and only ifo N2 = @.

If 9Ny = dN, =@, Mostow—Prasad’s rigidity theorem applies ensuring geometricity of
¢. Then from now on we shall assume that bthand N> have non-empty boundary.

3. Then-dimensional case, n > 4

The next proposition easily implies Theorem 1.2 under the assumption that the dimen-
sion of N1 and N> is at least 4.

Proposition 3.1. Letn > 4. Then there exists a conformal mgp 0H" — odH" such that
foy=e(y)o fforanyy e I.

Proof. Let Al be a connected component@f(I'1), andH; be the stabilizer ofAt in I7.
By point (3) of Lemma 2.2, the groufd, = ¢ (H1) is a peripheral subgroup @%. Let now
A2 be theH,-invariant component of? (I2), i.e., the unique component (/%) whose
boundary is equal to\(H>). By construction, the homeomorphispn A(I') — A(I%)
described in Lemma 2.2 restricts to a homeomorphq“ﬂghl:aAl — 9A2 such that
Plaar oy = @(y) o @lya1 for everyy € Hy. Let now S%, S? be the hyperplanes "
bounded respectively byAl and A2, Then $¥/Hj, is isometric to a component of
the geodesic boundary @V for k = 1,2, so it is a finite-volume complete hyperbolic
(n — 1)-manifold without boundary. Since > 4, Mostow—Prasad’s rigidity theorem ap-
plies providing an isometry : ST — $2 whose continuous extension éa?! is equal to
@lya1. Let now pg, k = 1, 2 be the orthogonal projection 6f onto A%, i.e., the function
which maps a poing € S* to the pointp € A¥ such that the geodesic rdy, p) is or-
thogonal tos*. The mapg’: A — A2 defined byg’ = p» o g o p; * is conformal, and its
continuous extension @A? is equal top |4 A1

By repeating the construction deied above for each component@f(I1), we can
construct a conformal map 2 (I'1) — $2(1%2). This map is ahomeomorphism, since it ad-
mits a continuous inverse which can be constructed from the isomorghi$mi» — I7.
We want now to show that for any € I';, we haver o y = ¢(y) ot. Let A be a compo-
nent of2(I1). By the very definition of it follows thatz(A) is the unigue component of
£2(I2) which is bounded by (3 A), so

e (1)) = (3(1(A)) = e()($(32)) = §(r(34))
=¢(0(r()) =8t (y())-

This shows that botho y and¢(y) ot map A onto the same component of 2 (I7%).
Moreover, the continuous extensionsefy andg(y) ot to 3 A are respectively equal to
¢ oy ande(y) o ¢, which are in turn equal to each other because of#fegjuivariance
of ¢. Being conformal, the mapso y and¢(y) o + must then be equal on, and this
proves the required-equivariance of.

Now let f: 9H" — 0H" be defined byf (x) =¢(x) if x € 2(I1), and f (x) = ¢(x) if
x € A(I1). To conclude the proof we only have to observe that sifide p-equivariant
and conformal o2 (I'1), a result of Tukia [12] ensures thétis a conformal map. O
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We can now conclude the proof of Theorem 1.2, under the assumption that the di-
mension of N1 and N> is greater than 3. Let be the unique isometry dfi” whose
continuous extension t&H" is equal tof. The g-equivariance off readily implies that
U (y(x) = o(y) (W (x)) for everyx e H*, y € I'1. If we identify N; with the convex core
of the manifoldH" /I for i = 1, 2, theny induces an isometry : N1 — N with v, = ¢.

4. The 3-dimensional case

As briefly explained in the Introduction, the 3-dimensional case needs a different ap-
proach.

Lemma 4.1. There exists a homeomorphigmN1 — N> such thaty = g..

Proof. Let M; = (H3U 2(I}))/T; for i =1, 2. By Lemma 2.2 and Remark 1.6, we can
apply Theorem 1 of [8] te, obtaining a homeomorphisgi: M1 — M> inducinge (note
that our definition ofgeometricis stronger than the one in [8]). Now; is canonically
embedded inV; in such a way thad;\ N; is an open collar 06 M;. This implies thate’
can be isotoped to g’ : M1 — M> such thatg” (N1) = N2 andg = g”|n, is the required
homeomorphism. O

Remark 4.2. If N1 andN2 have compact geodesic boundary, then Lemma 4.1 can also be
deduced by the following result of Johannson [4,10]: Any homotopy equivalence between
compact orientable boundary-irreducible anannular Haken 3-manifolds can be homotoped
to a homeomorphism.

We can now conclude the proof of Theorem 1.2 in the case wiemnd N2 are
3-dimensional manifolds. Lej: N1 — N2 be the homeomorphism constructed in Lem-
ma 4.1, letD(N;) be the double ofv; fori = 1,2 and letD(g): D(N1) — D(N2) be
the homeomorphism obtained by doublindBy Mostow—Prasad’s rigidity theorem,(g)
is homotopic to an isometry : D(N1) — D(N2). Sinced N2 = g(dN1) andh(dNy) are
embedded totally geodesic homotopic surfacesvin we get thath(dN1) = dN2, so
h(N1) = N2. Moreoverj, = g, onmw1(D(N1)), and the inclusion of1(N;) in w1(D(N;))
is injective fori = 1,2, soh, = g« = ¢ on Iy. In conclusion, we have shown that
h|n, : N1 — N2 is an isometry inducing, sog is geometric.

4.1. Counterexamples in the non-compact boundary case
We now show that the conclusions of Corollaries 1.3 and 1.4 are no longer true if we
consider hyperbolic 3-manifolds with non-compact geodesic boundary. More precisely, we

will prove the following:

Proposition 4.3. There exist hyperbolig-manifolds with non-compact geodesic boundary
N1, N2 such that
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(2]

Fig. 1. The manifoldsvy, My, and N, = M are obtained by gluing in pairs the non-shadowed faces of the regular
ideal octahedron along suitable isometries.

(1) 71(N1) = m1(N2) butd N1 is not homeomorphic téN» (so,a fortiori, N1 is not home-
omorphic toNy);
(2) Out(r1(N;)) 2 lsom(N;) fori =1, 2.

Proof. We will give an explicit construction a1 andN». Let O ¢ H? be the regular ideal
octahedron and lat, ..., vs be the vertices 0D as shown in Fig. 1. We denote Wy,

the face ofO with verticesv;, v;, vi. Letg: Fiza— Fis6 be the unique isometry such that
g(v1) = v1, g(v3) = vs andg(v4) = vs, andhz, ho: Fo36 — Fo54 be the unique isometries
such thathy (v2) = v2, h1(v3) = v4, hi(ve) = vs, h2(v2) = vs, h2(v3) = v2, h2(ve) = v4.

We now defineV; to be the manifold obtained by gluin@ alongg andhi, andN> to be

the manifold obtained by gluin@ alongg and#». Since all the dihedral angles ¢6f are

right, it is easily seen that the metric an induces a complete finite-volume hyperbolic
structure on theV;’s such that the shadowed faces in Fig. 1 are glued along their edges to
give a non-compact totally geodesic boundary.

Now the natural compactification @¥; is homeomorphic to the genus-2 handlebody
fori =1,2, sor1(N1) = w1(N2) = Z % Z (see also Remark 4.5 and Fig. 6).

Moreover, we claim that the boundary df is homeomorphic to the disjoint union of
two 3-punctured spheres, while the boundaryefis homeomorphic to the 4-punctured
sphere. To see this, note that the shadowed fac&sgifie up to give an ideal triangulation
of N;, i =1,2. The combinatorial structure of this triangulation can be easily deduced
from the rulesg, h; definingN; as a quotient oD, and is explicitly described in Figs. 2
and 3. Using this description we can readily compute the Euler characteristic and the num-
ber of punctures of any componenta¥;, thus proving point (1).

In order to prove point (2), we only have to observe that the group of the outer iso-
morphisms ofZ * Z is of infinite order, while the group of isometries of any complete
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V1 U1 V2 V2
a i i a b j i b d i j d e i i e
Ve c U3 V4 c Vs V4 f V3 Ve f Us

Fig. 2. The pairings definingN1: the two triangles on the left areugd to each other giving a 3-punctured
sphere, and the same holds alsptfe two triangles on the right.

Uy 1 V2 V2
a i j a b i i b c i i f d f i f
U6 c v3 U4 d Us V4 e U3 V6 e vs
Fig. 3. The pairings definingN,: the resulting space is clearly connegtadd the ideal vertices glue up giving

exactly four punctures. Moreovey,(d No) = #{triangle§ — #{edge$ = —2, sodN, is homeomorphic to the
4-punctured sphere.

finite-volume hyperboliaz-manifold with geodesic boundary has a finite number of ele-
ments. O

The construction just described can be slightly modified to provide manifolds with
homeomorphic (but not isometric) bound=sj as the following proposition shows.

Proposition 4.4. There exist hyperboli8-manifolds with non-compact geodesic boundary
M1, M> such that

(1) m1(M1) = w1(M>2) andd M; is homeomorphic to M»;
(2) oM is not isometric ta) M>;

(3) M1 is not homeomorphic tdfy;

(4) Outir1(M;)) 2 Isom(M;) fori =1, 2.

Proof. We setM> = N> the manifold described in ¢éhpreceding proposition, and we
define M; to be the hyperbolic manifold with non-compact geodesic boundary obtained
by gluing the faces of0 along g’ and k3, whereg’: Fi34 — Fisg, h3: Fo36 — Fosg
are the unique isometries such thatv1) = vs, g'(v3) = v1, g (va) = vg and hz(vz) =
v4, h3(v3) = vs, h3(ve) = v2. As before, the natural compactification of thg's is the
genus-2 handlebody, saM1) = n(M2) = Z x Z. Let nowT; be the ideal triangulation of
dM; given by the shadowed faces 6f The description of> and 77 in Figs. 3 and 4 im-
plies that bottd M1 anda M» are homeomorphic to the 4-punctured sphere, which proves
point (1).

In order to prove point (2) we need now tecall some elementary facts about the
geometry of ideal triangles and to lead a more accurate analysis afd 7». First of
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Fig. 4. The ideal triangulatiorT;: the resulting surfac@ M1 is connected with four punctures and has Euler
characteristic equal te-2, so it is homeomorphic to the 4-punctured sphere.

all, letey, e be distinct edges of an ideal trianglec H?, let v € 9H? be their common
endpoint, and leV; be the hyperbolic half-plane containiagbounded by; fori =1, 2.
Then for anyr > 0 we denote byH, (v, A) the open horodisc centered atsuch that
Area(H, (v, A)N V1N Vo) =r (note thatH, (v, A)NViNVo=H,. (v, A)NAifr <2,i.e.,

if H,(v, A) does not intersect the edge Afopposite tav). We refer toH; (v, A) as to the
standardhorocycle neighbourhood af in A, and recall that there exists a well-defined
notion of midpointof an edge in a hyperbolic ideal triangle: namelye i an edge ofA
with verticesr1, r2, then the midpoint oé is given bye N 0 H1 (w1, A) = e N d Hy(w2, A).
We also observe that i, wy, w are as above, theH,, (w1, A) N Hy, (w2, A) =9 if and
only if rirp < 1.

Coming back to the surfaces we are interdstg let us observe that the isometries
realizing the gluings between the non-shadowed facé3 pfeserve the midpoints of the
edges of the shadowed ones. This me&ias the standard horocycle neighbourhoods of
the vertices of the triangles iy glue up to a horocycle neighbourhood of the punctures
of aM; for i =1, 2. Since the number of vertices corresponding to any punctus@fin
is exactly 3, this gives in turn four pairwise disjoint subsets df;, each of which is a
horocycle neighbourhood of a puncture having area equal to 3. LetfaoW®,, P3, P4 be
the punctures 0 M2 and suppos@ M, is isometric tod M>. Under this assumption, for
anyi =1,...,4 there exists a horocycle neighbourhdgdof P; such that Are@/;) =3
andU; NU; =0 foranyi, j €{1,2,3,4},i # j.

Let A be the triangle off> with verticesv, vs andvz. An easy analysis of the combi-
natorics of7> shows thatv; andvg correspond to distinct punctures ®#», say P, and
P», respectively. Moreovely; is the only vertex of triangles dfs incident to P1, while
the number of vertices incident t8 is equal to 5. Since Argd/1) = AreaUz) = 3, this
implies thatU; N A D H3(vy, A) N A and Uz N A D Hzys(ve, A), which gives in turn
U1 NUz # @, a contradiction. We have eventually shown thaf; is not isometric td M,
thus proving point (2).

To prove point (3) it is sufficient to observe thatif; and M2 were homeomorphic,
then by Theorem 1.2 they should be isometricg 86y should be isometric tdM>, against
point (2).

The same argument given in the proof Bfoposition 4.3 applies here yielding
point (4). O

Remark 4.5. From a topological and combinatorial point of view, an ideal octahedron
with four marked faces as in Fig. 1 is equivati¢o a truncated tetrahedron with the edges
connecting truncation triangles removed, which is in turn equivalent to a “tetrapod” with
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Fig. 5. An ideal octahedron, a truncatettabedron, and a tetrapod with arcs.

N Ny = M

Fig. 6. The natural compactifications 8f, M1 and No» = M> are genus-2 handlebodies with boundary annuli.
Here we represent annuli by drawing their core curves.

six arcs connecting circular ends removed, as shown in Fig. 5. Under this identification, the
four shadowed ideal faces of correspond to the four regions into which the lateral surface
of the tetrapod is cut by the 6 arcs, while the non-shadowed ideal fac@scofrespond

to the four discs at the ends of the tetrapod. TherefdreM1 and N> = M> are obtained

from the tetrapod by suitably gluing together in pairs the discs at its four ends. So these
manifolds are homeomorphic to handlebodies with boundary loops removed. Using this
correspondence we can easily draw pictures of the natural compactificatiofis 11
and N> = M». These pictures are shown in Fig. 6. For a more detailed description of the
natural compactification of hyperbolici@anifolds with non-compact geodesic boundary
obtained by gluing regular ideal octahedra see [2].

4.2. A more general construction
We now briefly describe a different method of constructing homotopically-equivalent

non-homeomorphic hyperbolic 3-manifolds with non-compact geodesic boundary. To this
aim we first recall that Thurston’s hyperboltian theorem for Haken manifolds [11] gives
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necessary and sufficient topgjlical conditions on a 3-manifold to be hyperbolic with geo-
desic boundary:

Theorem 4.6. Let M be a compact orientabl@-manifold with non-empty boundary, 1&t
be the set of boundary tori @ and let.A be a family of disjoint closed annuli i\ 7 .
ThenM = M\ (7 U A) is hyperbolic if and only if the paifM, A) satisfies the following
conditions

e the components @fM have negative Euler characteristic
e M\ Ais boundary-irreducible and geometrically atoroidal
o the only proper essential annuli containedih are parallel in M to the annuli inA.

Using Theorem 4.6 we now prove the following:

Proposition 4.7. Let N be a hyperbolic3-manifold with non-empty geodesic boundary,
and suppose that at least one componeri ®fis not a3-punctured sphere. Then there
exists a hyperboli@-manifold with geodesic boundary which is homotopically equivalent
but not homeomorphic t.

Proof. By assumptiorf N contains an essential loap We then defingVv’ as N\« and

note thatV andN’ have a common compactificatids such thatv = M\ (7 U A), N’ =

M\(T U A, with A c A" and #4’' = #A + 1. Moreover, sincéM, 7, A) satisfies the
assumptions of Theorem 4.6, so da@$, 7, .A’), so N’ is hyperbolic. Of courseV’ is

homotopically equivalent t&/, butd N’ is not homeomorphic té N, soa fortiori N and

N’ are not homeomorphic to each othen
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