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Abstract

Let M1 andM2 ben-dimensional connected orientable finite-volume hyperbolic manifolds
geodesic boundary, and letϕ :π1(M1) → π1(M2) be a given group isomorphism. We study t
problem whether there exists an isometryψ :M1 → M2 such thatψ∗ = ϕ. We show that this is
always the case ifn � 4, while in the 3-dimensional case the existence ofψ is proved under som
(necessary) additional conditions onϕ. Such conditions are trivially satisfied if∂M1 and∂M2 are
both compact.
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Let M1 and M2 be connected orientable finite-volume hyperbolicn-manifolds with
geodesic boundary. Supposen � 3 and letϕ :π1(M1) → π1(M2)be an isomorphism o
abstract groups. We determine necessary and sufficient conditions forϕ to be induced by
an isometryψ :M1 → M2. When this is the case, we say thatϕ is geometric(see Section 1
for a more detailed definition). Mostow–Prasad’s rigidity theorem ensures geome
of ϕ whenever the boundary ofMi is empty fori = 1,2. Building on classical results i
the theory of Kleinian groups, we will extend Mostow–Prasad’s result to the non-e
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boundary case, following slightly different strategiesaccording to the dimension of the

und-
ifolds

arden
ucing

f ori-
our

terial

defin-
lic
tary

d

nd
manifolds involved.
If M1 andM2 are 3-dimensional hyperbolic manifolds with non-empty geodesic bo

ary, applying Mostow–Prasad’s rigidity theorem to their doubles, i.e., to the man
obtained by mirroringM1 andM2 in their boundary, we will show thatϕ is geometric
provided it is induced by a homeomorphism, rather than an isometry. A result of M
and Maskit [8] will then be applied to relate the existence of a homeomorphism ind
ϕ to the behaviour ofϕ with respect to theperipheralsubgroups ofπ1(M1) andπ1(M2)

(see below for a definition).
If dim(M1) = dim(M2) � 4, the existence of an isometryψ :M1 → M2 such thatψ∗ =

ϕ will be proved by a more direct argument using results from [1,12].

1. Preliminaries and statement

In this section we list some preliminary facts about the topology and geometry o
entable finite-volume hyperbolicn-manifolds with geodesic boundary and we state
main theorem and its corollaries. From now on we will always supposen � 3. Moreover,
all manifolds will be connected and orientable. We omit all proofs about the basic ma
addressing the reader to [3,6,7].

Before going into the real matter, we devote the first paragraph to give a formal
ition of the notion ofgeometric isomorphismbetween fundamental groups of hyperbo
manifolds. To this aim we will need to spell out in detail some well-known elemen
results in the theory of fundamental groups.

1.1. Homomorphisms between fundamental groups

If ϕ,ϕ′ :G → H are group homomorphisms, we say thatϕ′ is conjugated toϕ if there
existsh ∈ H such thatϕ′(g) = hϕ(g)h−1 for every g ∈ G. Let X be a manifold and
x0, x1 be points inX. Then there exists an isomorphismπ1(X,x0) ∼= π1(X,x1) which
is canonical up to conjugacy. It follows that an abstract groupπ1(X) is well-defined and
for anyx0 ∈ X there exists a preferred conjugacyclass of isomorphisms betweenπ1(X)

andπ1(X,x0).
If f :X → Y is a continuous map between manifolds, thenf determines a well-define

conjugacy class of homomorphismsf∗ ∈ Hom(π1(X),π(Y ))/π1(Y ). If a homomorphism
ϕ :π1(X) → π1(Y ) is given, we say thatϕ is induced byf if ϕ belongs tof∗; if so, with
an abuse we will writeϕ = f∗, rather than[ϕ] = f∗.

Definition 1.1. Let M1 and M2 by hyperbolic manifolds with geodesic boundary a
ϕ :π1(M1) → π1(M2) be a group isomorphism. Thenϕ is geometric ifϕ = ψ∗ for some
isometryψ :M1 → M2.
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1.2. Natural compactification of hyperbolic manifolds
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Let N be an orientable complete finite-volume hyperbolicn-manifold with (possibly
empty) geodesic boundary (from now on we will summarize all this information sa
just thatN is hyperbolic). Then∂N , endowed with the Riemannian metric it inherits fro
N , is a hyperbolic(n − 1)-manifold without boundary (completeness of∂N is obvious,
and the volume of∂N is proved to be finite in [6]). Moreover, ifD(N) is thedoubleof N ,
i.e., the manifold obtained by mirroringN along its geodesic boundary, thenD(N) admits
an obvious complete finite-volume hyperbolic structure. Also observe thatD(N) has no
boundary, and that there exist natural embeddings∂N ↪→ N ↪→ D(N), so we can think o
∂N andN as of subsets ofD(N). It is well-known [1,9] thatD(N) consists of a compac
portion together with some cusps based on Euclidean(n − 1)-manifolds, and it is easily
seen that the ends ofN can be obtained by intersectingN with the ends ofD(N). So also
N consists of a compact portion together with some cusps of the formT × [0,∞), where
T is a compact Euclidean(n− 1)-manifold with (possibly empty) geodesic boundary su
that (T × [0,∞)) ∩ ∂N = ∂T × [0,∞). A cusp based on a closed Euclidean(n − 1)-
manifold is therefore disjoint from∂N and is calledinternal, while a cusp based on
Euclidean(n− 1)-manifold with non-empty boundary intersects∂N in one or two interna
cusps of∂N , and is called aboundary cusp. This description of the ends ofN easily
implies thatN admits a naturalcompactificationN obtained by adding a closed Euclide
(n − 1)-manifold for each internalcusp and a compact Euclidean(n − 1)-manifold with
non-empty geodesic boundary for each boundary cusp. Some more details on the structu
of the ends ofN will be given in the last two paragraphs of this section.

Whenn = 3, N is obtained by adding toN some tori and some closed annuli. In th
case we denote byAN the family of added closed annuli, and we observe that no ann
in AN lies on a torus in∂N . Note also thatAN = ∅ if ∂N is compact. A loopγ ∈ π1(N)

will be called anannular cusp loopif it is freely-homotopic to a loop in some annulu
of AN .

1.3. Main result

We are now ready to state our main result.

Theorem 1.2. LetN1 andN2 be hyperbolicn-manifolds, and letϕ :π1(N1) → π1(N2) be
a group isomorphism. Ifn = 3, suppose also that the following condition holds:

• ϕ(γ ) is an annular cusp loop inπ1(N2) if and only if γ is an annular cusp loop in
π1(N1).

Thenϕ is geometric.

Theorem 1.2 readily implies the following corollaries:

Corollary 1.3. LetN1 andN2 be hyperbolic3-manifolds with compact geodesic bounda
and letϕ :π1(N1) → π1(N2) be an isomorphism. Thenϕ is geometric.
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Corollary 1.4. Let N be a hyperbolicn-manifold, letIsom(N) be the group of isometries
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of N and letOut(π1(N)) := Aut(π1(N))/π1(N) be the group of the outer isomorphisms
π1(N). If n = 3, suppose also that the boundary ofN is compact. Then there is a natur
isomorphismIsom(N) ∼= Out(π1(N)).

Proof. Let h : Isom(N) → Out(π1(N)) be the map defined byh(ψ) = ψ∗. Thenh is a
well-defined homomorphism. Injectivity ofh is a well-known fact, while surjectivity ofh
is an immediate consequence of Theorem 1.2 and Corollary 1.3.�
1.4. Universal covering and action at infinity

Let N be an-dimensional hyperbolic manifold and letπ : Ñ → N be the universa
covering ofN . By developing̃N in Hn we can identifyÑ with a convex polyhedron ofHn

bounded by a countable number of disjoint geodesic hyperplanesSi , i ∈ N. For anyi ∈ N

let S+
i denote the closed half-space ofHn bounded bySi and containing̃N , let S−

i be the
closed half-space ofHn opposite toS+

i and let∆i be the internal part of the closure
infinity of S−

i . Of course we havẽN = ⋂
i∈N

S+
i , so denoting bỹN∞ the closure at infinity

of Ñ we obtainÑ∞ = ∂Hn\⋃
i∈N

∆i .
The group of the automorphisms of the coveringπ : Ñ → N can be identified in a

natural way with a discrete torsion-free subgroupΓ of Isom+(Hn) such thatγ (Ñ) = Ñ

for anyγ ∈ Γ andN ∼= Ñ/Γ . Also recall that there exists an isomorphismπ1(N) ∼= Γ ,
which is canonical up to conjugacy. LetΛ(Γ ) denote the limit set ofΓ and letΩ(Γ ) =
∂Hn\Λ(Γ ). Kojima has shown in [6] thatΛ(Γ ) = Ñ∞, so the round balls∆i , i ∈ N

previously defined actually are the connected components ofΩ(Γ ). A subgroup ofΓ is
calledperipheralif it is equal to the stabilizer of one of the∆i ’s.

SinceÑ∞ = Λ(Γ ), we have that̃N is the intersection ofHn with the convex hull of
Λ(Γ ), soN is the convex core (see [1,9]) of the hyperbolic manifoldHn/Γ . This implies
that N uniquely determinesΓ up to conjugation by elements in Isom+(Hn), that Γ is
geometrically finite and thatN is homeomorphic to the manifold(H3 ∪ Ω(Γ ))/Γ .

1.5. Parabolic subgroups ofΓ

Let Γ ′ be a subgroup ofΓ . We say thatΓ ′ is maximal parabolicif it is parabolic (i.e.,
all its non-trivial elements are parabolic) and it is maximal with respect to inclusion am
parabolic subgroups ofΓ . If Γ ′ is a maximal parabolic subgroup ofΓ , then there exist
a pointq ∈ ∂Hn such thatΓ ′ equals the stabilizer ofq in Γ . ThenΓ ′ can be naturally
identified with a discrete subgroup of Isom+(En−1), so by Bierbebach’s Theorem [9]Γ ′
contains an Abelian subgroupH of finite index. Ifk is the rank ofH , we say thatΓ ′ is a
rank-k parabolic subgroup ofΓ . Now it is shown in [6] that ifi 
= j , then∆i ∩∆j is either
empty or consists of one pointp whose stabilizer is a rank-(n−2) parabolic subgroup ofΓ .
Moreover, any maximal rank-(n − 2) parabolic subgroup ofΓ is the stabilizer of a poin
p which lies on the boundary of two different∆i ’s. On the other hand, the intersection
Ñ with a horoball centered at a point with rank-(n − 2) parabolic stabilizer projects ont
a boundary cusp ofN , and any boundary cusp ofN lifts to the intersection of̃N with a
horoball centered at a point with rank-(n − 2) parabolic stabilizer. It follows that there
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a natural correspondence between the boundary cusps ofN and the conjugacy classes of
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rank-(n− 2) maximal parabolic subgroups ofΓ .
We shall see that rank-1 maximal parabolic subgroups ofΓ play a special role in the

proof of our main theorem. Since any parabolic subgroup ofΓ corresponds to a cusp ofN ,
we have that ifn � 4 thenΓ does not contain rank-1 maximal parabolic subgroups, w
whenn = 3 the elements of rank-1 maximal parabolic subgroups ofΓ correspond to the
annular cusp loops previously defined.

Proposition 1.5. Let γ be an element ofΓ . Thenγ is parabolic if and only if one of the
following conditions holds:

(1) γ belongs to a rank-1 maximal parabolic subgroup ofΓ , or
(2) γ belongs to a subgroupΓ ′ of Γ which contains a finite-index Abelian subgroup

rank� 2.

Proof. The “only if” part of the statement is an immediate consequence of the discu
above, so we concentrate on the “if” part. LetΓ ′ a subgroup ofΓ as in condition (2).
A standard result in the theory of Kleinian groups implies thatΓ ′ is elementary, i.e., i
consists either of parabolic elements having all the same fixed point or of hyperbol
ments having all the same axe. However, in the latter caseΓ ′ should be isomorphic toZ,
a contradiction. �

For later purpose we point out the following:

Remark 1.6. For anyk ∈ N let Hk be the stabilizer of∆k in Γ . If i 
= j , then either
∆i ∩∆j = ∅ andHi ∩Hj = ∅, or∆i ∩∆j = {p} andHi ∩Hj is the rank-(n−2) parabolic
stabilizer ofp in Γ .

2. Some preliminary lemmas

The following result is a slight generalization of Lemma 5.1 in [5], which is du
J.P. Otal. Notation is kept from the preceding section.

Lemma 2.1. Let j :Sn−2 → Λ(Γ ) be a topological embedding. ThenΛ(Γ )\j (Sn−2) is
path connected if and only ifj (Sn−2) = ∂∆l for somel ∈ N.

Proof. If ∂N = ∅, thenΛ(Γ ) ∼= Sn−1 and the claimed result is readily deduced fro
Jordan–Brower separation theorem, so we can assume∂N 
= ∅.

Suppose thatj (Sn−2) = ∂∆0. Using the upper half-space model of hyperbolic space
identify ∂Hn with (Rn−1 ×{0})∪{∞} in such a way that∆0 corresponds toH = {(x,0) ∈
Rn−1 × {0}: xn−1 > 0}. Now letp1,p2 ∈ Λ(Γ )\∂∆0 and letα : [0,1] → (Rn−1 × {0})\H

be the straight Euclidean segment which joinsp1 to p2. If { (ai, bi) ⊂ [0,1], i � 1} is
the set of the connected components ofα−1(Ω(Γ )), then, up to reordering the∆i ’s with
i � 1, we haveα([ai, bi]) ⊂ ∆i . Let ri be the Euclidean radius of∆i . Since∂∆i can
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touch∂∆0 at most in one point, for anyi � 1 there exists a pathβi : [ai, bi] → ∂∆i with
-
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βi(ai) = α(ai), βi(bi) = α(bi) and length(βi) � 2πri . Now let αi be the path induc
tively defined as follows:α0 = α, αi+1 = βi+1(t) if t ∈ [ai+1, bi+1] andαi+1(t) = αi(t)

if t ∈ [0, ai+1] ∪ [bi+1,1]. The pathαi is obviously continuous for anyi ∈ N. Moreover,
since limi→∞ ri = 0, the sequence of paths{αi, i ∈ N} uniformly converges to the desire
continuous pathα∞ : [0,1] → Λ(Γ )\∂∆0.

Suppose now thatΛ(Γ )\j (Sn−2) is path connected. The Jordan–Brower separa
theorem implies that∂Hn\j (Sn−2) = A1 ∪ A2, where theAi ’s are disjoint open subset o
∂Hn with ∂Ai = j (Sn−2) for i = 1,2 (since we are not assuming thatj is tame, at this
stage we are not allowed to claim that theAi ’s are topological balls). Our hypothesis no
forcesAk ∩ Λ(Γ ) = ∅ for somek ∈ {1,2}, soAk ⊂ ∆l ; for somel ∈ N. Moreover, since
∂Ak = j (Sn−2) ⊂ Λ(Γ ), it is easily seen thatj (Sn−2) = ∂∆l , and we are done.�

From now on letN1 and N2 be hyperbolicn-manifolds, letπi :Hn ⊃ Ñi → Ni be
the universal covering ofNi and letΓi be a discrete subgroup of Isom+(Hn) such that
Ni

∼= Ñi/Γi . Let alsoϕ :Γ1 → Γ2 be a group isomorphism satisfying the condition of T
orem 1.2. Iff :N1 → N2 is a continuous map, it is easily seen thatϕ is induced byf if
and only iff admits a continuous liftf̃ : Ñ1 → Ñ2 such thatf̃ ◦ γ = ϕ(γ ) ◦ f̃ for every
γ ∈ Γ1.

Lemma 2.2. The isomorphismϕ satisfies the following conditions:

(1) ϕ(γ ) is a parabolic element ofΓ2 if and only ifγ is a parabolic element ofΓ1;
(2) There exists a homeomorphism̂ϕ :Λ(Γ1) → Λ(Γ2) such thatϕ̂(γ (x)) = ϕ(γ )(ϕ̂(x))

for anyx ∈ Λ(Γ1), γ ∈ Γ1;
(3) ϕ(H) is a peripheral subgroup ofΓ2 if and only ifH is a peripheral subgroupΓ1; if

so we also havêϕ(Λ(H)) = Λ(ϕ(H)).

Proof. Sinceϕ is supposed to satisfy the condition of Theorem 1.2, point (1) is an im
diate consequence of Proposition 1.5.

Now a general result in the theory of discrete subgroups of Isom(Hn) (see, e.g., [1
Theorem 4.41]) applies providing the equivariant homeomorphismϕ̂ :Λ(Γ1) → Λ(Γ2)

described in point (2).
Let H = stab(∆) be a peripheral subgroup ofΓ1, where∆ is a component ofΩ(Γ1).

By Lemma 2.1,Λ(Γ1)\Λ(H) = Λ(Γ1)\∂∆ is path connected, soΛ(Γ2)\ϕ̂(Λ(H)) =
ϕ̂(Λ(Γ1)\Λ(H)) is also path connected, andϕ̂(Λ(H)) is equal toΛ(K) for some periph-
eral subgroupK of Γ2. Let K = stab(∆′), where∆′ is a component ofΩ(Γ2). Now leth
be a loxodromic element ofH with fixed pointsp1,p2 in Λ(H). Sinceϕ̂ is ϕ-equivariant,
we have thatϕ(h) is a loxodromic element ofΓ2 with fixed pointsϕ̂(p1), ϕ̂(p2) which
lie in Λ(K). Since the boundaries of two different components ofΩ(Γ2) can intersect a
most in one point, it easily follows thatϕ(h) ∈ stab(∆′) = K. Now H is generated by
its loxodromic elements, soϕ(H) is contained inK. On the other hand, the same arg
ment applied toϕ−1 shows thatϕ−1(K) is contained in a peripheral subgroup ofΓ1, say
H ′, with H ⊂ H ′. Now Remark 1.6 implies thatH = H ′, soϕ(H) = K and point (3) is
proved. �
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Corollary 2.3. ∂N1 = ∅ if and only if∂N2 = ∅.
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If ∂N1 = ∂N2 = ∅, Mostow–Prasad’s rigidity theorem applies ensuring geometrici
ϕ. Then from now on we shall assume that bothN1 andN2 have non-empty boundary.

3. The n-dimensional case, n ��� 4

The next proposition easily implies Theorem 1.2 under the assumption that the d
sion ofN1 andN2 is at least 4.

Proposition 3.1. Let n � 4. Then there exists a conformal mapf : ∂Hn → ∂Hn such that
f ◦ γ = ϕ(γ ) ◦ f for anyγ ∈ Γ1.

Proof. Let ∆1 be a connected component ofΩ(Γ1), andH1 be the stabilizer of∆1 in Γ1.
By point (3) of Lemma 2.2, the groupH2 = ϕ(H1) is a peripheral subgroup ofΓ2. Let now
∆2 be theH2-invariant component ofΩ(Γ2), i.e., the unique component ofΩ(Γ2) whose
boundary is equal toΛ(H2). By construction, the homeomorphism̂ϕ :Λ(Γ1) → Λ(Γ2)

described in Lemma 2.2 restricts to a homeomorphismϕ̂|∂∆1 : ∂∆1 → ∂∆2 such that
ϕ̂|∂∆1 ◦ γ = ϕ(γ ) ◦ ϕ̂|∂∆1 for everyγ ∈ H1. Let nowS1, S2 be the hyperplanes ofHn

bounded respectively by∂∆1 and ∂∆2. Then Sk/Hk is isometric to a component o
the geodesic boundary ofNk for k = 1,2, so it is a finite-volume complete hyperbo
(n − 1)-manifold without boundary. Sincen � 4, Mostow–Prasad’s rigidity theorem a
plies providing an isometryg :S1 → S2 whose continuous extension to∂∆1 is equal to
ϕ̂|∂∆1. Let nowpk, k = 1,2 be the orthogonal projection ofSk onto∆k , i.e., the function
which maps a pointq ∈ Sk to the pointp ∈ ∆k such that the geodesic ray[q,p) is or-
thogonal toSk . The mapg′ :∆1 → ∆2 defined byg′ = p2 ◦ g ◦ p−1

1 is conformal, and its
continuous extension to∂∆1 is equal toϕ̂|∂∆1.

By repeating the construction described above for each component ofΩ(Γ1), we can
construct a conformal mapt :Ω(Γ1) → Ω(Γ2). This map is a homeomorphism, since it a
mits a continuous inverse which can be constructed from the isomorphismϕ−1 :Γ2 → Γ1.
We want now to show that for anyγ ∈ Γ1, we havet ◦ γ = ϕ(γ ) ◦ t . Let ∆ be a compo-
nent ofΩ(Γ1). By the very definition oft it follows that t (∆) is the unique component o
Ω(Γ2) which is bounded bŷϕ(∂∆), so

∂
(
ϕ(γ )

(
t (∆)

)) = ϕ(γ )
(
∂
(
t (∆)

)) = ϕ(γ )
(
ϕ̂(∂∆)

) = ϕ̂
(
γ (∂∆)

)

= ϕ̂
(
∂
(
γ (∆)

)) = ∂
(
t
(
γ (∆)

))
.

This shows that botht ◦ γ andϕ(γ ) ◦ t map∆ onto the same component∆′ of Ω(Γ2).
Moreover, the continuous extensions oft ◦ γ andϕ(γ ) ◦ t to ∂∆ are respectively equal t
ϕ̂ ◦ γ andϕ(γ ) ◦ ϕ̂, which are in turn equal to each other because of theϕ-equivariance
of ϕ̂. Being conformal, the mapst ◦ γ andϕ(γ ) ◦ t must then be equal on∆, and this
proves the requiredϕ-equivariance oft .

Now let f : ∂Hn → ∂Hn be defined byf (x) = t (x) if x ∈ Ω(Γ1), andf (x) = ϕ̂(x) if
x ∈ Λ(Γ1). To conclude the proof we only have to observe that sincef is ϕ-equivariant
and conformal onΩ(Γ1), a result of Tukia [12] ensures thatf is a conformal map. �
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We can now conclude the proof of Theorem 1.2, under the assumption that the di-
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mension ofN1 and N2 is greater than 3. Let̃ψ be the unique isometry ofHn whose
continuous extension to∂Hn is equal tof . Theϕ-equivariance off readily implies that
ψ̃(γ (x)) = ϕ(γ )(ψ̃(x)) for everyx ∈ Hn, γ ∈ Γ1. If we identify Ni with the convex core
of the manifoldHn/Γi for i = 1,2, thenψ̃ induces an isometryψ :N1 → N2 with ψ∗ = ϕ.

4. The 3-dimensional case

As briefly explained in the Introduction, the 3-dimensional case needs a differe
proach.

Lemma 4.1. There exists a homeomorphismg :N1 → N2 such thatϕ = g∗.

Proof. Let Mi = (H3 ∪ Ω(Γi))/Γi for i = 1,2. By Lemma 2.2 and Remark 1.6, we c
apply Theorem 1 of [8] toϕ, obtaining a homeomorphismg′ :M1 → M2 inducingϕ (note
that our definition ofgeometricis stronger than the one in [8]). NowNi is canonically
embedded inMi in such a way thatMi\Ni is an open collar of∂Mi . This implies thatg′
can be isotoped to ag′′ :M1 → M2 such thatg′′(N1) = N2 andg = g′′|N1 is the required
homeomorphism. �
Remark 4.2. If N1 andN2 have compact geodesic boundary, then Lemma 4.1 can al
deduced by the following result of Johannson [4,10]: Any homotopy equivalence be
compact orientable boundary-irreducible anannular Haken 3-manifolds can be hom
to a homeomorphism.

We can now conclude the proof of Theorem 1.2 in the case whenN1 and N2 are
3-dimensional manifolds. Letg :N1 → N2 be the homeomorphism constructed in Le
ma 4.1, letD(Ni) be the double ofNi for i = 1,2 and letD(g) :D(N1) → D(N2) be
the homeomorphism obtained by doublingg. By Mostow–Prasad’s rigidity theorem,D(g)

is homotopic to an isometryh :D(N1) → D(N2). Since∂N2 = g(∂N1) andh(∂N1) are
embedded totally geodesic homotopic surfaces inN2, we get thath(∂N1) = ∂N2, so
h(N1) = N2. Moreover,h∗ = g∗ onπ1(D(N1)), and the inclusion ofπ1(Ni) in π1(D(Ni))

is injective for i = 1,2, so h∗ = g∗ = ϕ on Γ1. In conclusion, we have shown th
h|N1 :N1 → N2 is an isometry inducingϕ, soϕ is geometric.

4.1. Counterexamples in the non-compact boundary case

We now show that the conclusions of Corollaries 1.3 and 1.4 are no longer true
consider hyperbolic 3-manifolds with non-compact geodesic boundary. More precise
will prove the following:

Proposition 4.3. There exist hyperbolic3-manifolds with non-compact geodesic bound
N1, N2 such that:
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Fig. 1. The manifoldsN1,M1 andN2 = M2 are obtained by gluing in pairs the non-shadowed faces of the re
ideal octahedron along suitable isometries.

(1) π1(N1) ∼= π1(N2) but∂N1 is not homeomorphic to∂N2 (so,a fortiori, N1 is not home-
omorphic toN2);

(2) Out(π1(Ni)) � Isom(Ni) for i = 1,2.

Proof. We will give an explicit construction ofN1 andN2. LetO ⊂ H3 be the regular idea
octahedron and letv1, . . . , v6 be the vertices ofO as shown in Fig. 1. We denote byFijk

the face ofO with verticesvi, vj , vk . Let g :F134→ F156 be the unique isometry such th
g(v1) = v1, g(v3) = v6 andg(v4) = v5, andh1, h2 :F236→ F254 be the unique isometrie
such thath1(v2) = v2, h1(v3) = v4, h1(v6) = v5, h2(v2) = v5, h2(v3) = v2, h2(v6) = v4.
We now defineN1 to be the manifold obtained by gluingO alongg andh1, andN2 to be
the manifold obtained by gluingO alongg andh2. Since all the dihedral angles ofO are
right, it is easily seen that the metric onO induces a complete finite-volume hyperbo
structure on theNi ’s such that the shadowed faces in Fig. 1 are glued along their edg
give a non-compact totally geodesic boundary.

Now the natural compactification ofNi is homeomorphic to the genus-2 handlebo
for i = 1,2, soπ1(N1) ∼= π1(N2) ∼= Z ∗ Z (see also Remark 4.5 and Fig. 6).

Moreover, we claim that the boundary ofN1 is homeomorphic to the disjoint union o
two 3-punctured spheres, while the boundary ofN2 is homeomorphic to the 4-puncture
sphere. To see this, note that the shadowed faces ofO glue up to give an ideal triangulatio
of ∂Ni , i = 1,2. The combinatorial structure of this triangulation can be easily ded
from the rulesg, hi definingNi as a quotient ofO , and is explicitly described in Figs.
and 3. Using this description we can readily compute the Euler characteristic and the
ber of punctures of any component of∂Ni , thus proving point (1).

In order to prove point (2), we only have to observe that the group of the oute
morphisms ofZ ∗ Z is of infinite order, while the group of isometries of any compl
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Fig. 2. The pairings defining∂N1: the two triangles on the left are glued to each other giving a 3-puncture
sphere, and the same holds also for the two triangles on the right.

Fig. 3. The pairings defining∂N2: the resulting space is clearly connected, and the ideal vertices glue up givin
exactly four punctures. Moreover,χ(∂N2) = #{triangles} − #{edges} = −2, so∂N2 is homeomorphic to the
4-punctured sphere.

finite-volume hyperbolicn-manifold with geodesic boundary has a finite number of
ments. �

The construction just described can be slightly modified to provide manifolds
homeomorphic (but not isometric) boundaries, as the following proposition shows.

Proposition 4.4. There exist hyperbolic3-manifolds with non-compact geodesic bound
M1, M2 such that:

(1) π1(M1) ∼= π1(M2) and∂M1 is homeomorphic to∂M2;
(2) ∂M1 is not isometric to∂M2;
(3) M1 is not homeomorphic toM2;
(4) Out(π1(Mi)) � Isom(Mi) for i = 1,2.

Proof. We setM2 = N2 the manifold described in the preceding proposition, and w
defineM1 to be the hyperbolic manifold with non-compact geodesic boundary obta
by gluing the faces ofO along g′ and h3, whereg′ :F134 → F156, h3 :F236 → F254
are the unique isometries such thatg′(v1) = v5, g′(v3) = v1, g′(v4) = v6 andh3(v2) =
v4, h3(v3) = v5, h3(v6) = v2. As before, the natural compactification of theMi ’s is the
genus-2 handlebody, soπ(M1) ∼= π(M2) ∼= Z ∗ Z. Let nowTi be the ideal triangulation o
∂Mi given by the shadowed faces ofO . The description ofT2 andT1 in Figs. 3 and 4 im-
plies that both∂M1 and∂M2 are homeomorphic to the 4-punctured sphere, which pr
point (1).

In order to prove point (2) we need now to recall some elementary facts about
geometry of ideal triangles and to lead a more accurate analysis ofT1 andT2. First of
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Fig. 4. The ideal triangulationT1: the resulting surface∂M1 is connected with four punctures and has Eu
characteristic equal to−2, so it is homeomorphic to the 4-punctured sphere.

all, let e1, e2 be distinct edges of an ideal triangle∆ ⊂ H2, let v ∈ ∂H2 be their common
endpoint, and letVi be the hyperbolic half-plane containing∆ bounded byei for i = 1,2.
Then for anyr > 0 we denote byHr(v,∆) the open horodisc centered atv such that
Area(Hr(v,∆)∩V1 ∩V2) = r (note thatHr(v,∆)∩V1 ∩V2 = Hr(v,∆)∩∆ if r � 2, i.e.,
if Hr(v,∆) does not intersect the edge of∆ opposite tov). We refer toH1(v,∆) as to the
standardhorocycle neighbourhood ofv in ∆, and recall that there exists a well-defin
notion ofmidpointof an edge in a hyperbolic ideal triangle: namely, ife is an edge of∆
with verticesr1, r2, then the midpoint ofe is given bye ∩ ∂H1(w1,∆) = e ∩ ∂H1(w2,∆).
We also observe that if∆, w1,w2 are as above, thenHr1(w1,∆) ∩ Hr2(w2,∆) = ∅ if and
only if r1r2 � 1.

Coming back to the surfaces we are interested in, let us observe that the isometri
realizing the gluings between the non-shadowed faces ofO preserve the midpoints of th
edges of the shadowed ones. This means that the standard horocycle neighbourhood
the vertices of the triangles inTi glue up to a horocycle neighbourhood of the punctu
of ∂Mi for i = 1,2. Since the number of vertices corresponding to any puncture in∂Mi

is exactly 3, this gives in turn four pairwise disjoint subsets of∂M1, each of which is a
horocycle neighbourhood of a puncture having area equal to 3. Let nowP1,P2,P3,P4 be
the punctures of∂M2 and suppose∂M1 is isometric to∂M2. Under this assumption, fo
any i = 1, . . . ,4 there exists a horocycle neighbourhoodUi of Pi such that Area(Ui) = 3
andUi ∩ Uj = ∅ for anyi, j ∈ {1,2,3,4}, i 
= j .

Let ∆ be the triangle ofT2 with verticesv1, v6 andv3. An easy analysis of the comb
natorics ofT2 shows thatv1 andv6 correspond to distinct punctures of∂M2, sayP1 and
P2, respectively. Moreover,v1 is the only vertex of triangles ofT2 incident toP1, while
the number of vertices incident toP2 is equal to 5. Since Area(U1) = Area(U2) = 3, this
implies thatU1 ∩ ∆ ⊇ H3(v1,∆) ∩ ∆ and U2 ∩ ∆ ⊇ H3/5(v6,∆), which gives in turn
U1 ∩U2 
= ∅, a contradiction. We have eventually shown that∂M1 is not isometric to∂M2,
thus proving point (2).

To prove point (3) it is sufficient to observe that ifM1 andM2 were homeomorphic
then by Theorem 1.2 they should be isometric, so∂M1 should be isometric to∂M2, against
point (2).

The same argument given in the proof ofProposition 4.3 applies here yieldin
point (4). �
Remark 4.5. From a topological and combinatorial point of view, an ideal octahed
with four marked faces as in Fig. 1 is equivalent to a truncated tetrahedron with the edg
connecting truncation triangles removed, which is in turn equivalent to a “tetrapod”
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Fig. 5. An ideal octahedron, a truncated tetrahedron, and a tetrapod with arcs.

Fig. 6. The natural compactifications ofN1,M1 andN2 = M2 are genus-2 handlebodies with boundary ann
Here we represent annuli by drawing their core curves.

six arcs connecting circular ends removed, as shown in Fig. 5. Under this identificatio
four shadowed ideal faces ofO correspond to the four regions into which the lateral surf
of the tetrapod is cut by the 6 arcs, while the non-shadowed ideal faces ofO correspond
to the four discs at the ends of the tetrapod. ThereforeN1,M1 andN2 = M2 are obtained
from the tetrapod by suitably gluing together in pairs the discs at its four ends. So
manifolds are homeomorphic to handlebodies with boundary loops removed. Usin
correspondence we can easily draw pictures of the natural compactifications ofN1, M1
andN2 = M2. These pictures are shown in Fig. 6. For a more detailed description o
natural compactification of hyperbolic 3-manifolds with non-compact geodesic bound
obtained by gluing regular ideal octahedra see [2].

4.2. A more general construction

We now briefly describe a different method of constructing homotopically-equiv
non-homeomorphic hyperbolic 3-manifolds with non-compact geodesic boundary. T
aim we first recall that Thurston’s hyperbolization theorem for Haken manifolds [11] give
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Theorem 4.6. LetM be a compact orientable3-manifold with non-empty boundary, letT
be the set of boundary tori ofM and letA be a family of disjoint closed annuli in∂M\T .
ThenM = M\(T ∪A) is hyperbolic if and only if the pair(M,A) satisfies the following
conditions:

• the components of∂M have negative Euler characteristic;
• M\A is boundary-irreducible and geometrically atoroidal;
• the only proper essential annuli contained inM are parallel inM to the annuli inA.

Using Theorem 4.6 we now prove the following:

Proposition 4.7. Let N be a hyperbolic3-manifold with non-empty geodesic bounda
and suppose that at least one component of∂N is not a3-punctured sphere. Then the
exists a hyperbolic3-manifold with geodesic boundary which is homotopically equiva
but not homeomorphic toN .

Proof. By assumption∂N contains an essential loopα. We then defineN ′ asN\α and
note thatN andN ′ have a common compactificationM such thatN = M\(T ∪A), N ′ =
M\(T ∪ A′), with A ⊂ A′ and #A′ = #A + 1. Moreover, since(M,T ,A) satisfies the
assumptions of Theorem 4.6, so does(M,T ,A′), so N ′ is hyperbolic. Of courseN ′ is
homotopically equivalent toN , but ∂N ′ is not homeomorphic to∂N , soa fortiori N and
N ′ are not homeomorphic to each other.�
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